
LA-UR-17-27092
Approved for public release; distribution is unlimited.

Title: Dependency graph for code analysis on emerging architectures

Author(s): Shashkov, Mikhail Jurievich
Lipnikov, Konstantin

Intended for: White paper for DOE ASCR Meeting

Issued: 2017-08-08



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Title: ”Dependency graph for code analysis on emerging architectures”
by M.Shashkov (LANL), K Lipnikov (LANL)

Direct acyclic dependency (DAG) graph is becoming the standard for mod-
ern multi-physics codes. It increases tremendeously code robustness and sim-
plifies adding new physics models strongly coupled with the implemented mod-
els. Unlike previous attempts to develop external tools to analyze code for par-
allel blocks, the DAG is implemented within the code and represents on some
level its skeleton. The ideal DAG is the true block-scheme of a multi-physics
code. Therefore, it is the convienient object for insitu analysis of the cost of
computations and algorithmic bottlenecks related to statistical frequent data
motion and dymanical machine state.

The simplest example of a DAG graph is the calculation of coefficients
in a system of nonlinear PDEs. For instance, relative permeability k of a
porous rock depends on liquid saturation s which in turn depends on liquid
pressure p which in turn depends on stiffness matrix, boundary conditions and
deforming mesh. Automatic calculation of the Jacobian uses a chain rule on
the dependency graph.

The nodes of the DAG graph have different complexity and may require
different data communication patterns for different architectures. Automatic
analysis of the DAG may show problems with the code design and algorithm
bottlenecks on emerging computer architectures. For instance, if evaluation
of a field requires a global solver for all primary variables, the code design
most probably has a flaw. If a field evaluation requires a consecutive sequence
of steps, e.g. s = s(p) followed k = k(s), the number of memory accesses
could be reduced by stream-lining calculations by implementing one additional
evaluator k = k(p).

A comprehensive analysis of the DAG requires its blending with special
metrics that reflect the type of a mathematical operation associated with a
node, such as a field evaluation, update of a discrete operator, a mesh re-
finement/derefinement, or calcultion of the Jacobian. The metric may include
actual and estimated flops to memory ratios. Development and analysis of var-
ious mathematical tools for DAG-enabled codes could become essential part in
optimization on new multi-physics codes. It may help to select the most ap-
propriate scalable methods (among a set of available methods) for a particular
computer architecture and/or physics models.


