

LA-UR-17-27088

Approved for public release; distribution is unlimited.

Title: The Viability of LEDs at LANL (PowerPoint)

Author(s): Shelton, Sydney Anne

Intended for: Personal Reference

Issued: 2017-08-08

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The Viability of LEDs at LANL

Student Project Summary

Sydney Shelton

7 August 2017

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Purpose

- Can we replace High Pressure Sodium bulbs with LEDs?
- Where are HPS being used at LANL?
- We should complete a pilot project
 - Leo and ES-LFO were excited to provide a location
 - Prove if LEDs are a viable lighting option
 - Create a template for an LED upgrade

Scope

- Replace 42 building exterior fixtures on MPF-0001
- My role was project manager and researcher
- Release an internal report
 - Explain benefits and constraints of the upgrade

Steps

- Identified past fixtures
- Completed energy analysis
- Completed cost analysis
- Completed light survey and pictures at night
- Purchased LED fixtures
- Installation is about 3/4 completed

Fixtures

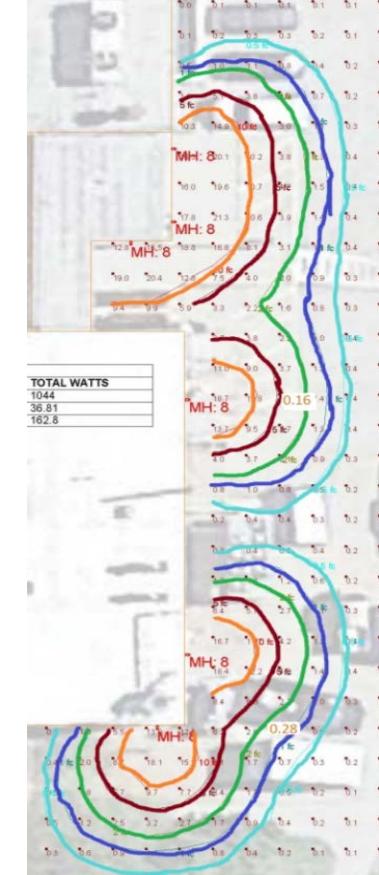
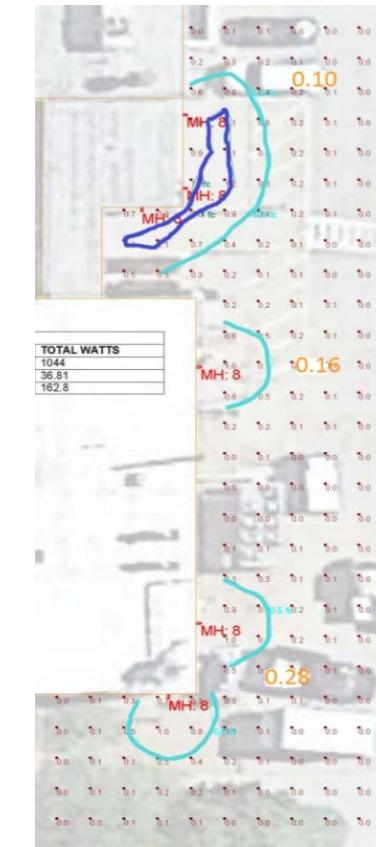
Quantity	16	4	1	1	1	1	18	
Original Fixture	Description	Original Wallpacks, High Pressure Sodium	Wallpacks circa 2007, Metal Halide	unknown incandescent fixture	unknown wallpack	unknown ceiling-mounted fixture	Original recessed fixture, Metal Halide	Original recessed fixtures, general Edison base
New Fixture	Description	Wallpack; Lumark XTOR Crosstour MAXX LED				Ceiling-mounted LED, CLCSLED	LED bulb	
	Image							

Energy Savings

- Initial analysis has about a 75% energy savings
- 22420.2 kWh saved
- Different applications will have different savings

Past Wattage			
Fixture	Wattage (W)	Quantity	Total Wattage (kW)
General wallpack	200*	16	3.2
Recessed near main entrance	150 *	4	0.6
Other recessed	150 *	14	2.1
2007 wallpack	150 *	4	0.6
unknown wallpack	150 ^	1	0.15
ceiling mounted	150 ^	1	0.15
incandescent	100 ^	1	0.1
recessed	150 ^	1	0.15
Total Wattage (kW)			7.05
Total kWh ¹			30315
Total Energy Cost Low (\$) ²			2,122.05
Total Energy Cost Middle (\$) ³			3,031.50
Total Energy Cost High (\$) ⁴			3,637.80
New Wattage			
Fixture	Wattage (W)	Quantity	Total Wattage (kW)
Wallpack	58	22	1.276
Recessed near main entrance	17	4	0.068
Other recessed	30	14	0.42
CLCSLED	36	2	0.072
Total Wattage			1.836
Total kWh ¹			7894.8
Total Energy Cost Low (\$) ²			552.64
Total Energy Cost Middle (\$) ³			789.48
Total Energy Cost High (\$) ⁴			947.38
Energy Savings			
Energy Savings (kWh)			22420.2
Energy Cost Savings Low (\$) ²			1,569.41
Energy Cost Savings Mid (\$) ³			2,242.02
Energy Cost Savings High (\$) ⁴			2,690.42

*numbers taken from original drawings
^numbers estimated



1-assuming about 4300 hours of night per year^f
2-\$0.07 per kWh^g
3-\$0.10 per kWh^e
4-\$0.12 per kWh^h

Cost Savings

- **\$50,000 project cost (with contingency)**
- **\$1,569.41 energy cost savings per year**
- **\$1,655.00 maintenance cost savings per year**
- **15 year simple payback**

Quality of Light

- Superior quality of light
 - Color
 - Distribution

Original

Current

Light Pollution

- Affects wildlife
- Compliance with Night Sky Protection Act and Endangered Species Act
- Directional
- “Blue” light

Transferability

- **Dimmable**
- **Instant start time**
- **Less waste**
 - Reduce a LLW stream

Conclusion

While the cost return is not strong, the other benefits of an LED upgrade prove that an upgrade is feasible.

Thank You

- **Everyone in MSS**
 - Particularly Randy King, Ray Richey, and Kelly Gee
- **ES-LFO**
- **The P2 Team**