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1 Abstract

A numerical algorithm for computing the field components Br and Bz and their r and z
derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with
uniform current density is described in this note. An algorithm for computing the vector
potential Aθ is also described. For the convenience of the reader, derivations of the final
expressions from their defining integrals are given in detail, since their derivations are not
all easily found in textbooks. Numerical calculations are based on evaluation of complete
elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the
algorithms described in this note applies to cases where the field point is outside of the
bore of the solenoid and the field-point radius approaches the solenoid radius. Since the
elliptic integrals of the third kind normally used in computing Bz and Aθ become infinite
in this region of parameter space, fields for points with the axial coordinate z outside of
the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals
of the third kind of modified argument, derived by use of an addition theorem. Also, the
algorithms also avoid the numerical difficulties the textbook solutions have for points near
the axis arising from explicit factors of 1/r or 1/r2 in the some of the expressions.

2 Integrals for the field components Br and Bz.

All units used in this note are MKS. Fields and field derivatives are computed in a cylin-
drical coordinate system. The thin solenoid has radius a and extends from −b to b in
z. Solenoids with centers offset from z = 0 are treated by a shift in z of the field point.
The current density is denoted by J0, and has units of A/m. The field is given by the
Biot-Savart law, which in this case takes the form

~B =
µ0J0a

4π

∫ +b

−b

∫ 2π

0

φ̂× (~r − ~r ′)
|~r − ~r ′|3

dz′dφ (1)
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In Eq. 1, ~r is the field point and ~r ′ is the source point. The current density vector is J0φ̂.
The field point has coordinates r, θ, z and the source point coordinates a, φ, z′. Since the
field has axisymmetry, Bθ = 0 and with no loss of generality the field point can be taken
to be r, 0, z. Then Eq. 1 gives for the field components

Br(r, z) =
µ0J0a

2π

∫ π

0

∫ +b

−b

(z − z′) cosφdz′dφ

[r2 + a2 − 2ar cosφ+ (z − z′)2]3/2
(2)

Bθ(r, z) = 0 (3)

Bz(r, z) =
µ0J0a

2π

∫ π

0

∫ +b

−b

(a− r cosφ)dz′dφ

[r2 + a2 − 2ar cosφ+ (z − z′)2]3/2
(4)

In terms of the variable u = z − z′, the integrals for Br and Bz become

Br(r, z) =
µ0J0a

2π

∫ π

0

∫ u2

u1

u cosφdudφ

(A+ u2)3/2
(5)

Bz(r, z) =
µ0J0a

2π

∫ π

0

∫ u2

u1

(a− r cosφ)dudφ

(A+ u2)3/2
(6)

with u1 = z− b, u2 = z+ b, and A = r2 + a2− 2ar cosφ. The usual approach to evaluating
the double integrals in Eqs. 5 and 6 is to first integrate over u. This gives

Br(r, z) = −µ0J0a
2π

[∫ π

0

cosφdφ(
A+ u22

)1/2 − ∫ π

0

cosφdφ(
A+ u21

)1/2
]

(7)

Bz(r, z) =
µ0J0a

2π

[
u2

∫ π

0

(a− r cosφ)dφ

A
(
A+ u22

)1/2 − u1 ∫ π

0

(a− r cosφ)dφ

A
(
A+ u21

)1/2
]

(8)

We now note that the two integrands in Eq. 7 are well-behaved when r = a and φ = 0,
provided u1 and u2 are non-zero. However, due to the 1/A factor, the integrands in Eq.
8 become infinite when r = a and φ = 0, even when u1 and u2 are non-zero. This is
the source of the numerical problems that occur in the usual algorithms for computing Bz
when |z| > b and r is near a.

Nevertheless, we know on physical grounds that Bz is finite when r = a, provided that
|z| > b (i.e. u1 < 0 and u2 < 0 or u1 > 0 and u2 > 0). Indeed, we can combine the two
integrands in Eq. 8 into a single integrand that is finite when u1 and u2 are both non-zero
and have the same sign. Setting R2

1 = A + u21 and R2
2 = A + u22, it is easy to prove the

identity
1

A

(
u2
R2
− u1
R1

)
=

u22 − u21
R1R2(u2R1 + u1R2)

(9)

Inspection of Eq. 9 shows that indeed the right-hand side is finite when r = a and φ = 0,
provided u1 and u2 are both non-zero and have the same sign. That is, the apparent
singularity in the expression for Bz for r = a, |z| > b is a fictitious singularity.
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3 Legendre-form elliptic-integral expressions for Br and Bz

The right-hand sides of Eqs. 7 and 8 are complete elliptic integrals. To put them in
Legendre form, we make the change of variables ψ = π/2 − φ/2. Then dφ = −2dψ and
cosφ = sin2 ψ − cos2 ψ. The expression for Br becomes

Br(r, z) = −µ0J0a
π

{
1

D2

∫ π/2

0

(sin2 ψ − cos2 ψ)dψ(
1− k22 sin2 ψ

)1/2 − 1

D1

∫ π/2

0

(sin2 ψ − cos2 ψ)dψ(
1− k21 sin2 ψ

)1/2
}
, (10)

with D2
1 = (a+r)2+u21, D

2
2 = (a+r)2+u22, k

2
1 = 4ar/D2

1 and k22 = 4ar/D2
2. The expression

for Bz becomes

Bz(r, z) =
µ0J0a

π

{
u2

(a+ r)2D2

∫ π/2

0

(a+ r − 2r sin2 ψ)dψ

(1− α2 sin2 ψ)
(
1− k22 sin2 ψ

)1/2−
u1

(a+ r)2D1

∫ π/2

0

(a+ r − 2r sin2 ψ)dψ

(1− α2 sin2 ψ)
(
1− k21 sin2 ψ

)1/2
}
, (11)

with α2 = 4ar/(a + r)2. In the following, we will refer to the complete elliptic integral of
the first kind K(k), the complete elliptic integral of the second kind E(k), and the complete
elliptic integral of the third kind Π(α2, k). As usual, they are defined to be

K(k) =

∫ π/2

0

dψ

(1− k2 sin2 ψ)1/2
, (12)

E(k) =

∫ π/2

0
(1− k2 sin2 ψ)1/2dψ, (13)

and

Π(α2, k) =

∫ π/2

0

dψ

(1− α2 sin2 ψ)(1− k2 sin2 ψ)1/2
. (14)

We will show that Br can be expressed as a linear combination of the elliptic integrals of
the first and second kinds only, while Bz is a linear combination of the elliptic integrals of
the first and third kinds. We note that when r approaches a, K(k) and E(k) are finite,
but α2 approaches 1 and Π(α2, k) approaches infinity, independently of k. That is, the
fictitious singularity in Bz for r = a can be isolated to the Π(α2, k) terms.

We will also refer to the complete elliptic integrals B(k), D(k), and C(k), defined by

B(k) =

∫ π/2

0

cos2 ψdψ

(1− k2 sin2 ψ)1/2
, (15)

D(k) =

∫ π/2

0

sin2 ψdψ

(1− k2 sin2 ψ)1/2
, (16)
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and

C(k) =

∫ π/2

0

sin2 ψ cos2 ψdψ

(1− k2 sin2 ψ)3/2
, (17)

The elliptic integrals B(k), D(k), and C(k) can all be expressed as linear combinations of
K(k) and E(k), but the expressions contain explicit factors of 1/k2 or 1/k4, which makes
their numerical evalaution problematic when r is near zero.

We will also use the integrals∫ π/2

0

cos2 ψdψ

(1− k2 sin2 ψ)3/2
= D(k) (18)

and ∫ π/2

0

dψ

(1− k2 sin2 ψ)3/2
=

E(k)

1− k2
(19)

We now use the identity D(k)−B(k) = k2C(k)[1] for evaluating Br (see Eq. 10). In terms
of C(k), the expression for Br becomes

Br(r, z) = −µ0J0a
π

[
k22
D2

C(k2)−
k21
D1

C(k1)

]
(20)

The above expression for Br avoids the explicit factor of 1/r appearing in equivalent ex-
pressions for Br in many papers and textbooks (see, for example Ref. [2]) and, as shown
in a following section, also allows evaluation of Br/r without an explicit factor of 1/r2.

The integral for Bz (Equation 11) can be rewritten in such a way that the elliptic
integrals are split into separate terms containing elliptic integrals of the first and third
kinds:

Bz(r, z) =
µ0J0a

π

1

2a

{
u2
D2

∫ π/2

0

dψ(
1− k22 sin2 ψ

)1/2 − u1
D1

∫ π/2

0

dψ(
1− k21 sin2 ψ

)1/2+

(
a− r
a+ r

)
u2
D2

∫ π/2

0

dψ(
1− α2 sin2 ψ

) (
1− k22 sin2 ψ

)1/2−(
a− r
a+ r

)
u1
D1

∫ π/2

0

dψ(
1− α2 sin2 ψ

) (
1− k21 sin2 ψ

)1/2
}
, (21)

This gives

Bz(r, z) =
µ0J0a

π

1

2a

{
u2
D2

K(k2)−
u1
D1

K(k1) +

(
a− r
a+ r

)[
u2
D2

Π(α2, k2)−
u1
D1

Π(α2, k1)

]}
,(22)

When the elliptic integrals of the third kind in Eq. 22 are evaluated numerically for the two
endpoint u values, they become increasingly large as r approaches a, but u2Π(α2, k2)/D2−
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u1Π(α2, k1)/D1 must approach a finite value. Indeed, the algorithm for Bz in Garrett’s
1963 paper [2], which is equivalent to the algorithms described in a following section that
use the Bulirsch algorithm cel[3], fails for r = a, independently of z. When r is close to
a, many iterations are required for convergence and the finite value computed for Bz is
the difference of two increasingly large numbers, which results in loss of precision and/or
increased computation time. This feature is mentioned in Garrett’s paper, but no explicit
method for dealing with it is given. A remedy for this problem is described in the following
section.

4 Use of an addition theorem for Π(α2, k) to eliminate the
fictitious singularity at r = a in computation of Bz

This section describes an expression for Bz that eliminates the fictitious singularity that
appears when r = a and |z| > b. As far as the author knows, the expression has not been
previously published.

The new expression for Bz is based on an addition theorem for complete elliptic integrals
of the third kind [4]:

Π(α2, k) + Π(k2/α2, k) = K(k) +
π

2

[
α2

(1− α2)(α2 − k2)

]1/2
(23)

Equation 23 is valid when 0 < k2 < α2 < 1, which is true here. When we multiply the
addition formulas for Π(α2, k2) and Π(α2, k1) by factors (α2 − k22)1/2 and (α2 − k21)1/2,
respectively, and subtract, the result is

(α2 − k22)1/2Π(α2, k2)− (α2 − k21)1/2Π(α2, k1) = (α2 − k22)1/2
[
K(k2)−Π(k22/α

2, k2)
]
−

(α2 − k21)1/2
[
K(k1)−Π(k21/α

2, k1)
]
(24)

We see that the elliptic integrals of the third kind on the right-hand side of Eq. 24 depend
on the new moduli k21/α

2 and k22/α
2, neither of which approaches unity as r approaches a,

provided that u1 and u2 are non-zero. Therefore all of the elliptic integrals on the right-
hand side are well-behaved as r approaches a. Using the definitions of k21, k22, and α2, we
can write

(α2 − k21)1/2 =
2(ar)1/2|u1|
(a+ r)D1

, (25)

and

(α2 − k22)1/2 =
2(ar)1/2|u2|
(a+ r)D2

, (26)

We now apply Eqs. 23-25 to the last two terms in Eq. 22. The resulting expression for
Bz, valid for any r, including r = a, but only for |z| > b (i.e. u1 < 0 and u2 < 0 or u1 > 0
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and u2 > 0) is

Bz(r, z) =
µ0J0a

π

1

2a

{
u2
D2

K(k2)−
u1
D1

K(k1)+(
a− r
a+ r

)[
u2
D2

[
K(k2)−Π(k22/α

2, k2)
]
− u1
D1

[
K(k1)−Π(k21/α

2, k1)
]]}

(27)

In practice, Eq. 27 is used to compute Bz only when |z| > b and 0.8 < r/a < 1.2, and Eq.
22 is used everywhere else.

5 Elliptic-integral expressions for the vector potential

Having the capability of computing numerical values of the vector potential for an axisym-
metric magnetic field is useful in fluxline plotting and in computing the canonical momen-
tum in numerical trajectory integration with Hamiltonian dynamics of charged particles.
For fluxline plotting, we note that as a consequence of Stoke’s theorem, the magnetic flux
Φ passing through a circular disk of radius r centered on and perpendicular to the axis of
symmetry at axial position z is given by Φ(r, z) = 2πrAθ(r, z). Fluxlines in the r, z plane
are contours of constant Φ(r, z).

In the usual gauge, the vector potential for a solenoid in cylindrical coordinates r, θ, z
is given by

~A =
µ0J0a

4π

∫ +b

−b

∫ 2π

0

φ̂

|~r − ~r ′|
dz′dφ (28)

As before in the derivation of the field components, ~r is the field point, ~r ′ the source point,
and the current density vector is J0φ̂. The vector potential from Equation 28 has only a θ
component, given by

Aθ(r, z) =
µ0J0a

2π

∫ π

0

∫ u2

u1

cosφdudφ

[r2 + a2 − 2ar cosφ+ u2]1/2
, (29)

where again u1 = z − b and u2 = z + b. Performing the integration over u gives

Aθ(r, z) =
µ0J0a

2π

∫ π

0
cosφ log

[
u2 +

(
u22 +A

)1/2
u1 +

(
u21 +A

)1/2
]
dφ, (30)

where again A = a2 + r2− 2ar cosφ. Although at first glance the right-hand side of Eq. 30
does not appear to be an elliptic integral, it can be transformed by means of integration
by parts into an integral that is manifestly an elliptic integral, plus terms that vanish at
the endpoints 0 and π of the angular integration. The result is

Aθ(r, z) =
µ0J0a

2r

2π

∫ π

0

[
u2 sin2 φ

A
(
u22 +A

)1/2 − u1 sin2 φ

A
(
u21 +A

)1/2
]
dφ, (31)
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Equation 31 is derived in Ref. [5], but later in that note Aθ is evaluated by use of the
Heumann lambda function. Here we derive algorithms based on cel. As before, the
change of variables ψ = π/2− φ/2 is used in the integrals of Eq. 31 and we get

Aθ(r, z) =
µ0J0a

π
α2

[
u2
D2

∫ π/2

0

sin2 ψ cos2 ψdψ

(1− α2 sin2 ψ)(1− k22 sin2 ψ)1/2
−

u1
D1

∫ π/2

0

sin2 ψ cos2 ψdψ

(1− α2 sin2 ψ)(1− k21 sin2 ψ)1/2

]
, (32)

where α2, D1, D2, k
2
1, and k22 have the same definitions as in Sections 3 and 4. We see that

due to the presence of the factor of 1/(1 − α2 sin2 ψ), the integrand for Aθ has the same
singularity as that for Bz, and the addition theorem for Π will be used in a similar way to
eliminate the fictitious singularity for r = a, |z| > b.

Except for an overall multiplicative factor, Eq. 32 is the same as the equation for
the mutual inductance between a circular loop and a solenoid given in Ref. [6]. This
correspondence is pointed out in Garrett’s paper [2].

A first step in reducing Eq. 32 to standard form is to elimininate the sin2 ψ factors in
the numerators, with the result

Aθ(r, z) =
µ0J0a

π

{
u2
D2

[∫ π/2

0

cos2 ψdψ

(1− α2 sin2 ψ)(1− k22 sin2 ψ)1/2
−

∫ π/2

0

cos2 ψdψ

(1− k22 sin2 ψ)1/2

]
− u1
D1

[∫ π/2

0

cos2 ψdψ

(1− α2 sin2 ψ)(1− k21 sin2 ψ)1/2
−

∫ π/2

0

cos2 ψdψ

(1− k21 sin2 ψ)1/2

]}
(33)

The integrals in Eq. 33 can be evaluated in terms of D, Π, and K as follows:

Aθ(r, z) =
µ0J0a

π

{
u2
D2

[
D(k2)−

(
1− α2

α2

)[
Π(α2, k2)−K(k2)

]]
−

u1
D1

[
D(k1)−

(
1− α2

α2

)[
Π(α2, k1)−K(k1)

]]}
(34)

Equation 34 could be used for numerical evaluation of Aθ except for the cases r ∼ a, |z| > b
where there is the fictitious singularity, and r ∼ 0, where the 1/α2 factor becomes large.
However, it will not be used directly for computing Aθ in the algorithms described in this
note, but rather as a starting point for applying the addition theorem.

Dealing first with the case r ∼ a, |z| > b, we use the addition theorem for Π (see Eq.
24) as before in evaluation of Bz. This gives
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Aθ(r, z) =
µ0J0a

π

{
u2
D2

[
(a− r)2

4ar
Π(k22/α

2, k2) +D(k2)

]
−

u1
D1

[
(a− r)2

4ar
Π(k21/α

2, k1) +D(k1)

]}
(35)

In order to reduce roundoff error, the ratio (1−α2)/α2 in Eq. 34 has been replaced by the
equivalent ratio (a− r)2/(4ar).

In practice, Eq. 35 is used to compute Aθ only when |z| > b and 0.8 < r/a < 1.2, and
in order to avoid the factor of 1/α2 in Eq. 34, Eq. 33 (with the integrals evaluated directly
by cel) is used everywhere else.

6 Field-component derivatives

Field-component derivatives are needed, for example, in tracking neutral particles that are
subject to spin-field gradient forces. Since the geometry of the problem is axisymmetric, the
θ derivatives are zero and we are left with the four derivatives ∂Br/∂r, ∂Br/∂z, ∂Bz/∂r,
and ∂Bz/∂z. If the field point does not lie on the solenoid itself, both the curl and
divergence of the field are zero. The zero curl condition gives ∂Br/∂z = ∂Bz/∂r. The zero
divergence condition gives ∂Br/∂r = −∂Bz/∂z −Br/r. This leaves only two independent
derivatives. It is most convenient to compute the two z derivatives ∂Br/∂z and ∂Bz/∂z and
use the zero-curl and zero-divergence conditions to compute the remaining two derivatives.
Then, for computation of ∂Br/∂r, the ratio Br/r is needed. For this, we go back to Eq.
20. Writing

1

r
=

1

k2
4a

(a+ r)2 + u2
(36)

we get for Br/r

Br(r, z)

r
= −µ0J0a

π

[
4a

D3
2

C(k2)−
4a

D3
1

C(k1)

]
(37)

We see that, since C(k) approaches a finite limit as k approaches 0, Br/r approaches a
finite limit as r approaches zero.

To get the derivative ∂Br/∂z, we go back to Eq. 5. Since u in the integrand is a dummy
variable, the z derivative involves only the limits, for which ∂u1/∂z = ∂u2/∂z = 1, and we
get

∂Br
∂z

(r, z) =
µ0J0a

2π

{
u2

∫ π

0

cosφ[
u22 +A

]3/2dφ− u1 ∫ π

0

cosφ[
u21 +A

]3/2dφ
}

(38)
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Using the change of variables ψ = π/2− φ/2 now gives

∂Br
∂z

(r, z) =
µ0J0a

π

{
u2
D3

2

∫ π/2

0

(sin2 ψ − cos2 ψ)dψ(
1− k22 sin2 ψ

)3/2 −
u1
D3

1

∫ π/2

0

(sin2 ψ − cos2 ψ)dψ(
1− k21 sin2 ψ

)3/2
}
, (39)

The integrals in Eq. 39 can be evaluated in terms of the elliptic integrals E and D:

∂Br
∂z

(r, z) =
µ0J0a

π

{
u2
D3

2

[
E(k2)

1− k22
− 2D(k2)

]
− u1
D3

1

[
E(k1)

1− k21
− 2D(k1)

]}
(40)

For ∂Bz/∂z we differentiate the right-hand side of Eq. 6 with respect to z, and we get

∂Bz
∂z

(r, z) =
µ0J0a

2π

{∫ π

0

(a− r cosφ)dφ[
u22 +A

]3/2 −
∫ π

0

(a− r cosφ)dφ[
u21 +A

]3/2
}

(41)

The change of variables ψ = π/2− φ/2 gives

∂Bz
∂z

(r, z) =
µ0J0a

π

{
1

D3
2

∫ π/2

0

[a− r + 2r cos2 ψ]dψ(
1− k22 sin2 ψ

)3/2 − 1

D3
1

∫ π/2

0

[a− r + 2r cos2 ψ]dψ(
1− k21 sin2 ψ

)3/2
}
,(42)

The two elliptic integrals in Eq. 42 can again be evaluated in terms of E and D:

∂Bz
∂z

(r, z) =
µ0J0a

π

{
1

D3
2

[
(a− r)E(k2)

1− k22
+ 2rD(k2)

]
− 1

D3
1

[
(a− r)E(k1)

1− k22
+ 2rD(k1)

]}
(43)

7 Numerical evaluation of field components, vector poten-
tial, and field-component derivatives using Bulirsch’s cel

The Bulirsch algorithm cel [3] evaluates a generalized complete elliptic integral of the form

cel(kc, p, a, b) =

∫ π/2

0

(
a cos2 ψ + b sin2 ψ

)
dψ(

cos2 ψ + p sin2 ψ
) (

cos2 ψ + k2c sin2 ψ
)1/2 (44)

The quantities kc and p in Eq. 44 are sometimes called the complementary moduli and
are defined to be kc = (1 − k2)1/2 and p = 1 − α2. We rewrite the expressions for the
complementary moduli in order to reduce roundoff error:

k2c,1 =
(a− r)2 + u21
(a+ r)2 + u21

(45)
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k2c,2 =
(a− r)2 + u22
(a+ r)2 + u22

(46)

p =
(a− r)2

(a+ r)2
(47)

In order to compute Π(k21/α
2, k1) and Π(k22/α

2, k2) with cel, we will need p1 = 1− k21/α2

and p2 = 1− k22/α2. In order to reduce roundoff error, we use for them the expressions

p1 = 1− k21/α2 =
u21

(a+ r)2 + u21
(48)

and

p2 = 1− k22/α2 =
u22

(a+ r)2 + u22
. (49)

From Eq. 44 we see the standard elliptic integrals K, E, Π, B, and D are given by

K(k) = cel(kc, 1, 1, 1), (50)

E(k) = cel(kc, 1, 1, k
2
c ), (51)

Π(α2, k) = cel(kc, p, 1, 1), (52)

B(k) = cel(kc, 1, 1, 0), (53)

and
D(k) = cel(kc, 1, 0, 1). (54)

When evaluating Aθ for points outside of the zone of the fictitious singularity, we use cel

directly to evaluate the elliptic integral in Eq. 33, since this avoids the problem of the 1/α2

factor in Eq. 34. This gives

Aθ(r, z) =
µ0J0a

π

{
u2
D2

[cel(kc,2, p, 1, 0)− cel(kc,2, 1, 1, 0)]−

u1
D1

[cel(kc,1, p, 1, 0)− cel(kc,1, 1, 1, 0)]

}
. (55)

Although C(k) as defined by Eq. 17 is not of the form of Eq. 44, it is shown in Ref.
[7] that C(k) can be computed with the older Bulirsch algorithm cel2, as follows:

C(k) = cel2

(
2k

1/2
c

1 + kc
, 0,

2

(1 + kc)3

)
(56)

It turns out that the newer Bulirsch algorithm cel, used everywhere else in this note, can
also be used to compute C(k):

C(k) = cel

(
2k

1/2
c

1 + kc
, 1, 0,

2

(1 + kc)3

)
(57)
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If only Br, Bz, and Aθ are required, the number of calls to cel required is 8. If the
field derivatives are also required, a total of 10 calls to cel are required when r of the field
point is in the fictitious singularity region r ∼ a, |z| > b. Since, as previously mentioned,
the region outside of the zone of the fictitious singularity includes the region of small r
(small α2), Eq. 55 is used in that region. The total number of calls to cel is then 12.
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