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Algorithms for Computing the Magnetic Field, Vector
Potential, and Field Derivatives for a Thin Solenoid with
Uniform Current Density

P. L. Walstrom

July 13, 2017

1 Abstract

A numerical algorithm for computing the field components B, and B, and their r and z
derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with
uniform current density is described in this note. An algorithm for computing the vector
potential Ay is also described. For the convenience of the reader, derivations of the final
expressions from their defining integrals are given in detail, since their derivations are not
all easily found in textbooks. Numerical calculations are based on evaluation of complete
elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the
algorithms described in this note applies to cases where the field point is outside of the
bore of the solenoid and the field-point radius approaches the solenoid radius. Since the
elliptic integrals of the third kind normally used in computing B, and Ay become infinite
in this region of parameter space, fields for points with the axial coordinate z outside of
the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals
of the third kind of modified argument, derived by use of an addition theorem. Also, the
algorithms also avoid the numerical difficulties the textbook solutions have for points near
the axis arising from explicit factors of 1/r or 1/r? in the some of the expressions.

2 Integrals for the field components B, and B..

All units used in this note are MKS. Fields and field derivatives are computed in a cylin-
drical coordinate system. The thin solenoid has radius a and extends from —b to b in
z. Solenoids with centers offset from z = 0 are treated by a shift in z of the field point.
The current density is denoted by Jp, and has units of A/m. The field is given by the
Biot-Savart law, which in this case takes the form
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In Eq. 1, 7 is the field point and 7 is the source point. The current density vector is JOQAS.
The field point has coordinates 7,6, 2 and the source point coordinates a, ¢, 2’. Since the
field has axisymmetry, By = 0 and with no loss of generality the field point can be taken
to be r,0, z. Then Eq. 1 gives for the field components

By(r, z quoa / / ., T (2)

T [r? 4+ a? —2arcos ¢ + (2 — 2/)2]3/2
B@(T Z) =0 (3)
B.(rz MoJoa / /+b (a —rcos¢)dz'dp (4)

z 7,2 +a? — 2arcos ¢ + (z — )2]3/2

In terms of the variable u = z — 2/, the integrals for B, and B, become
MOJoa “2 4 cos ¢ dudep
By (r,z) = / / (A+u2)*? ?
,uojoa Y2 (@ —rcos¢)dudg

B(r, ) = / / TR (6)

with u; = 2—b, ups = 2+b, and A = r? +a? — 2ar cos ¢. The usual approach to evaluating
the double integrals in Egs. 5 and 6 is to first integrate over u. This gives

B, :_quoa T cos¢pdp B T cospdp .

(7'73) 2 /0 (A—|—u2)1/2 /O (A+ul)1/2 ( )
_ poJoa "(a—rcosp)dd T (a — rcos ¢)dep
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We now note that the two integrands in Eq. 7 are well-behaved when » = a and ¢ = 0,
provided u; and ug are non-zero. However, due to the 1/A factor, the integrands in Eq.
8 become infinite when » = a and ¢ = 0, even when u; and us are non-zero. This is
the source of the numerical problems that occur in the usual algorithms for computing B,
when |z| > b and r is near a.

Nevertheless, we know on physical grounds that B, is finite when r = a, provided that
|z| > b (i.e. up <0 and ug < 0 or u; > 0 and ug > 0). Indeed, we can combine the two
integrands in Eq. 8 into a single integrand that is finite when u; and us are both non-zero
and have the same sign. Setting R? = A + u? and R2 = A + u3, it is easy to prove the
identity

1 <u2 ul)_ u3 —u? (9)
A\ Ry Ry - RlRQ(UQRl + ule)
Inspection of Eq. 9 shows that indeed the right-hand side is finite when » = a and ¢ = 0,
provided u; and ug are both non-zero and have the same sign. That is, the apparent
singularity in the expression for B, for r = a, |z| > b is a fictitious singularity.




3 Legendre-form elliptic-integral expressions for B, and B,

The right-hand sides of Eqs. 7 and 8 are complete elliptic integrals. To put them in
Legendre form, we make the change of variables ¢ = 7/2 — ¢/2. Then d¢ = —2diy and
cos ¢ = sin® 1) — cos® 1. The expression for B, becomes

_M { 1 /71’/2 (sin2 Y — cos2 @Z)) dy B i /W/2 (Sin2 Y — cos? 'Qz))ld;l}} ’ (10)
- 0 0 (1 — k2 sin 1) /

Do

B,(r,z) =
(1—ksin2y)/? D1

with D? = (a+7)%+u?, D3 = (a+7r)?+u3, k? = 4ar/D? and k3 = 4ar/D3. The expression
for B, becomes

B,(r,z2)

_ Hodoa U /W/2 (a+r—2rsin?¢)dy
T | (@+7r)?D2Jo (1 —a2sin2 ) (1 — k2 sin? )"/

ul/ﬂﬂ (a+r —2rsin?e)dy (11)
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with o? = 4ar/(a + r)?. In the following, we will refer to the complete elliptic integral of
the first kind K (k), the complete elliptic integral of the second kind F(k), and the complete
elliptic integral of the third kind II(a?, k). As usual, they are defined to be

w/2 dap
K (k) =/0 1= k2sm? )12’ (12)
w/
E(k):/ 2(1—k2sin2w)l/2dw, (13)
0

and

w/2 di
(o2, k) = / .
( ) o (1 —a?sin?4)(1 — k2sin?q)1/2
We will show that B, can be expressed as a linear combination of the elliptic integrals of
the first and second kinds only, while B, is a linear combination of the elliptic integrals of
the first and third kinds. We note that when r approaches a, K(k) and E(k) are finite,
but a? approaches 1 and II(a?, k) approaches infinity, independently of k. That is, the

fictitious singularity in B, for r = a can be isolated to the II(a?, k) terms.
We will also refer to the complete elliptic integrals B(k), D(k), and C(k), defined by

(14)

B /2 cos? i dip

B(k) = /0 (1 — k2sin?4p)1/2’ (15)
(™ sin?ydy

Dk) = /0 (1 — k2sin?qp)1/2’ (16)
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and

cuy - [ vt
o (1 —Fk2sin?q)3/2
The elliptic integrals B(k), D(k), and C(k) can all be expressed as linear combinations of
K (k) and E(k), but the expressions contain explicit factors of 1/k? or 1/k*, which makes
their numerical evalaution problematic when r is near zero.
We will also use the integrals

/”/2 cos? 1 dip
o (1 —Ek2sin?q)3/2

(17)

= D(k) (18)

and

" i (k)
/0 (1—Kk2sinZ¢)3/2 1 — k2 (19)

We now use the identity D(k) — B(k) = k>C(k)[1] for evaluating B, (see Eq. 10). In terms
of C(k), the expression for B, becomes

__modoa [ k3 K
B.(r,z) = - [D2C(k2) ch(kl) (20)

The above expression for B, avoids the explicit factor of 1/r appearing in equivalent ex-
pressions for B, in many papers and textbooks (see, for example Ref. [2]) and, as shown
in a following section, also allows evaluation of B, /r without an explicit factor of 1/72.

The integral for B, (Equation 11) can be rewritten in such a way that the elliptic
integrals are split into separate terms containing elliptic integrals of the first and third
kinds:

podoa 1 [ ug [/? di w2 di
B.(r,z) = 5 12 D, izt
T 20| D2Jo (11— K2sin?y) DiJo (1 k2sin?y)
Gl i :
a+r) D2 Jo (1 —a?sin? ) (1 — k3sin? ) 1/2

a—r\ u [™? ap }
w . (21
<a—|—r> D1 /0 (1 — a2sin?v) (1—k%sin21/1)1/2 =

This gives

_ podoa 1 { U2

B, (r,2)

7 2a | Dy

B K (k) - UK () + (‘L - T) {Wn(oﬁ,kg) - EH(QQ,kl)} } ,(22)

D1 a+r D2

When the elliptic integrals of the third kind in Eq. 22 are evaluated numerically for the two
endpoint u values, they become increasingly large as r approaches a, but usII(a?, ko) /Dy —



u1I1(a?, k1)/ D1 must approach a finite value. Indeed, the algorithm for B, in Garrett’s
1963 paper [2], which is equivalent to the algorithms described in a following section that
use the Bulirsch algorithm cel[3], fails for » = a, independently of z. When r is close to
a, many iterations are required for convergence and the finite value computed for B, is
the difference of two increasingly large numbers, which results in loss of precision and/or
increased computation time. This feature is mentioned in Garrett’s paper, but no explicit
method for dealing with it is given. A remedy for this problem is described in the following
section.

4 Use of an addition theorem for II(a? k) to eliminate the
fictitious singularity at » = a in computation of B,

This section describes an expression for B, that eliminates the fictitious singularity that
appears when r = a and |z| > b. As far as the author knows, the expression has not been
previously published.

The new expression for B, is based on an addition theorem for complete elliptic integrals
of the third kind [4]:

1/2
o o2 /

M(a®, k) + TI(k*/a®, k) = K (k) + 5 1= a?)(aZ— 52

(23)

Equation 23 is valid when 0 < k? < o? < 1, which is true here. When we multiply the
addition formulas for II(a?, ko) and II(a?,k;) by factors (o — k3)%/2 and (a? — k?)'/2,
respectively, and subtract, the result is

(02 = 3)?TI(0?, k2) — (0 — ) /?II(2, ky) = (02 — )2 [K (ka) — TL(K} /0, k)] —
(02 = )2 [K (k) — TL(K} /0, k)] (24)

We see that the elliptic integrals of the third kind on the right-hand side of Eq. 24 depend
on the new moduli k% /a? and k% /a2, neither of which approaches unity as r approaches a,
provided that u; and ue are non-zero. Therefore all of the elliptic integrals on the right-
hand side are well-behaved as 7 approaches a. Using the definitions of k%, k3, and o2, we
can write

1/2 _ 2(‘“")1/2|U1‘

(o” — kf) (a+7)Dy "’

(25)

and

1/2 _ 2(C”")1/2|U2‘
((L + ’I”)DQ ’

We now apply Eqs. 23-25 to the last two terms in Eq. 22. The resulting expression for
B,, valid for any r, including r = a, but only for |z| > b (i.e. u1 <0 and ug <0 or u; >0

(o — k3) (26)



and ug > 0) is

1
Ba(r,2) = poJoa { U

e K (k) — K (k)

Dy

a—r U2 2/, 2 U1 2/ 2
K(k II(k ko)| — — |K (k1) — II(k k 2
(550 |32 (k) - 0302, k)] = - [0 - G0 0) || 21
In practice, Eq. 27 is used to compute B, only when |z| > b and 0.8 < r/a < 1.2, and Eq.
22 is used everywhere else.

5 Elliptic-integral expressions for the vector potential

Having the capability of computing numerical values of the vector potential for an axisym-
metric magnetic field is useful in fluxline plotting and in computing the canonical momen-
tum in numerical trajectory integration with Hamiltonian dynamics of charged particles.
For fluxline plotting, we note that as a consequence of Stoke’s theorem, the magnetic flux
® passing through a circular disk of radius r centered on and perpendicular to the axis of
symmetry at axial position z is given by ®(r, z) = 27rAy(r, z). Fluxlines in the r, z plane
are contours of constant ®(r, z).

In the usual gauge, the vector potential for a solenoid in cylindrical coordinates r, 0, z

is given by W A
1 Mo Joa T
/ / = w’ dz'd¢ (28)

As before in the derivation of the field components, 7 is the field point, 7’ the source point,
and the current density vector is Jy¢. The vector potential from Equation 28 has only a 6
component, given by

,uo Joa cos ¢ dude
Afrz) = 158 [0 / — , (29)
[r? 4+ a

— 2ar cos ¢ + u2]"/?

where again u; = z — b and ug = z + b. Performing the integration over u gives

Ag(r,z) = ,quoa/ cos ¢ log
2T 0

ug + (u + A)'?
uy + (u? +A)1/2

do, (30)

where again A = a? + 172 — 2ar cos ¢. Although at first glance the right-hand side of Eq. 30
does not appear to be an elliptic integral, it can be transformed by means of integration
by parts into an integral that is manifestly an elliptic integral, plus terms that vanish at
the endpoints 0 and 7 of the angular integration. The result is

/LoJoCLQ’I“ i
A =
9(r7 Z) 27T /0

ug sin? ¢ wy sin? ¢
A3+ A" A2+ 4)'

1/2

do, (31)
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Equation 31 is derived in Ref. [5], but later in that note Ay is evaluated by use of the
Heumann lambda function. Here we derive algorithms based on cel. As before, the
change of variables ) = m/2 — ¢/2 is used in the integrals of Eq. 31 and we get

/2 in2 2
Aolr,z) = L0, [ [ ot ety
0

w Dy L - a2sin®y)(1 - k3 sin” ¢)1/2

ur /“/2 sin? ¢ cos? ¢ dip
Dy Jo (1 —a2sin?4)(1 — k2sine)1/2 |’

(32)

where o?, Dy, D>, k:%, and k:% have the same definitions as in Sections 3 and 4. We see that
due to the presence of the factor of 1/(1 — a?sin?1)), the integrand for Ay has the same
singularity as that for B,, and the addition theorem for II will be used in a similar way to
eliminate the fictitious singularity for r = a, |z| > b.

Except for an overall multiplicative factor, Eq. 32 is the same as the equation for
the mutual inductance between a circular loop and a solenoid given in Ref. [6]. This
correspondence is pointed out in Garrett’s paper [2].

A first step in reducing Eq. 32 to standard form is to elimininate the sin? factors in
the numerators, with the result

Agfr, 2) = podoa [ uz /W/2 cos? ¢ dip B
CT T  De |y (1= a2sin?9)(1 — k2 sin2 )1/

/”/2 cos® 1 dip _ur /”/2 cos® v dip _
o (L—Ek3sin?29)1/2| Dy |Jo (1 —a2sin?4)(1 — kfsin?qp)1/2

/2 cos® 1 dip
- sinw)m] } (%)

The integrals in Eq. 33 can be evaluated in terms of D, I, and K as follows:

Aalr.2) = 2220 L2 [ - (150 1 ) — K (k)| -

™
2

%11 [D(k:l) - <1 ;f ) [TI(a®, k1) —K<k1>}]} (34)

Equation 34 could be used for numerical evaluation of Ay except for the cases r ~ a, |z| > b
where there is the fictitious singularity, and r ~ 0, where the 1/a? factor becomes large.
However, it will not be used directly for computing Ag in the algorithms described in this
note, but rather as a starting point for applying the addition theorem.

Dealing first with the case r ~ a, |z| > b, we use the addition theorem for II (see Eq.
24) as before in evaluation of B,. This gives



Aot = 2o {22 [t ngi . ) + Dk | -

2
%11 [Wﬂ(k%/az,kl) +D(k1)]} (35)
In order to reduce roundoff error, the ratio (1 —a?)/a? in Eq. 34 has been replaced by the
equivalent ratio (a — r)2/(4ar).

In practice, Eq. 35 is used to compute Ay only when |z| > b and 0.8 < r/a < 1.2, and
in order to avoid the factor of 1/a? in Eq. 34, Eq. 33 (with the integrals evaluated directly
by cel) is used everywhere else.

6 Field-component derivatives

Field-component derivatives are needed, for example, in tracking neutral particles that are
subject to spin-field gradient forces. Since the geometry of the problem is axisymmetric, the
0 derivatives are zero and we are left with the four derivatives 0B, /0r, 0B,/0z, 0B,/0r,
and 0B./0z. If the field point does not lie on the solenoid itself, both the curl and
divergence of the field are zero. The zero curl condition gives 0B, /0z = 0B, /0r. The zero
divergence condition gives 0B, /0r = —0B,/J0z — B, /r. This leaves only two independent
derivatives. It is most convenient to compute the two z derivatives 0B, /0z and 0B, /Jz and
use the zero-curl and zero-divergence conditions to compute the remaining two derivatives.
Then, for computation of 0B, /0r, the ratio B, /r is needed. For this, we go back to Eq.
20. Writing

1 1 4a
= 36
r k2(a+r)?+u? (36)
we get for B, /r
B, (r,2) uoJdoa [ 4a 4a
=— —C(ko) — —=C(k 37

We see that, since C(k) approaches a finite limit as k approaches 0, B, /r approaches a
finite limit as r approaches zero.

To get the derivative 0B, /0z, we go back to Eq. 5. Since u in the integrand is a dummy
variable, the z derivative involves only the limits, for which du;/9z = Qus/0z = 1, and we

get
0B, woJoa 4 cos ¢ g cos ¢
(r.2) = w [ e [ (38)
0 2r o [+ A 0 [uf+A]*




Using the change of variables ¢ = /2 — ¢/2 now gives

OB, (r7) = 1o Joa { s /0”/2 (sin?¢) — cos® ) dyp

r,z -2
0z T | D3 (1 — k2 sin? )/

u /W/2 (sin® ¢ — cos? 1)) dip (30)
DY Jo  (1-k2sin2y)*? |’
The integrals in Eq. 39 can be evaluated in terms of the elliptic integrals £ and D:
837« ,U,()Joa u9 E(kz) U1 E(kl)
= — —2D(ko)| — = —2D(k 40
g, A= D3 [1- k2 (k2) D} [1-k2 (k) (40)

For 0B, /0z we differentiate the right-hand side of Eq. 6 with respect to z, and we get

OBZ(’ ) = toJoa {/0” (a —rcosp)dp 7r(a—rcosqﬁ)alqﬁ} (a1)

0z 7" Tom g+ A S w2t 4]

The change of variables ¢ = 7/2 — ¢/2 gives

(1—kZsin2¢)®?  Di

0B, podoa | 1 [T [a—r+2rcos?p)dy 1 (™2 [a—r+ 2rcos? ] dy
= 42
(r.2) {Dg / / (42)

rz)= —

. 3/2

9z i (1 — k% sin? ¢) /
The two elliptic integrals in Eq. 42 can again be evaluated in terms of E and D:

0B. quoa{ 1 [(a—r)E(kg) 1 [(a—r)E(kl)

9z ¢ r \D}| 1-& or -

+ QTD(k‘Q)] + 2rD(I<:1)] }(43)

7 Numerical evaluation of field components, vector poten-
tial, and field-component derivatives using Bulirsch’s cel

The Bulirsch algorithm cel [3] evaluates a generalized complete elliptic integral of the form

(a cos? 1) + bsin? w) dy
cos? ¢ + psin® ) (cos? ¢ + k2sin? 1)) 1/2

w/2
cel(ke,p,a,b) = /0 ( (44)

The quantities k. and p in Eq. 44 are sometimes called the complementary moduli and
are defined to be k. = (1 — k?)"/2 and p = 1 — o®. We rewrite the expressions for the
complementary moduli in order to reduce roundoff error:

(@ —1)? —i—u%

(a+71)2+u? (45)

2 _
kc,l -
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2 (a—7)*+u3

kio = m (46)
_ (a— r)?
~ (a+7)? (47)

In order to compute II(k?/a?, k1) and T1(k3/a?, ko) with cel, we will need p; = 1 — k?/a?
and py = 1 — k3/a?. In order to reduce roundoff error, we use for them the expressions

—1-kja?=— 1 48
p1 1/ (a+71)2+u? (48)
and
—1—k2/a2—u—% (49)
bz = 2 (a2 ud
From Eq. 44 we see the standard elliptic integrals K, E, II, B, and D are given by
K(k) = cel(k.,1,1,1), (50)
E(k) = cel(ke, 1,1, k2), (51)
(a? k) = cel(ke,p,1,1), (52)
B(k) = cel(k.,1,1,0), (53)
and
D(k) = cel(ke,1,0,1). (54)

When evaluating Ay for points outside of the zone of the fictitious singularity, we use cel
directly to evaluate the elliptic integral in Eq. 33, since this avoids the problem of the 1/a?
factor in Eq. 34. This gives

Ji
Ag(r,2) = “Oﬂoa {;;22 [cel(ke,p, 1,0) — cel(kea,1,1,0)] —
% [cel(ke1,p, 1,0) — cel(kei, 1,1, 0)]} . (55)
1

Although C(k) as defined by Eq. 17 is not of the form of Eq. 44, it is shown in Ref.
[7] that C'(k) can be computed with the older Bulirsch algorithm cel2, as follows:

2%/ 2
= cel2
C(k) = ce (1 n kc,(), i kc)3> (56)

It turns out that the newer Bulirsch algorithm cel, used everywhere else in this note, can
also be used to compute C(k):

2k

2
C(k) = cel <1+]€c’ 1,0, W) (57)
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If only B,, B,, and Ay are required, the number of calls to cel required is 8. If the
field derivatives are also required, a total of 10 calls to cel are required when r of the field
point is in the fictitious singularity region r ~ a, |z| > b. Since, as previously mentioned,
the region outside of the zone of the fictitious singularity includes the region of small r
(small o?), Eq. 55 is used in that region. The total number of calls to cel is then 12.
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