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Multiscale modeling of localization ) e,

Connect physical length scales to engineering scale models
Investigate importance of microstructural detail

Develop scale bridging technologies for spatial multiscale/multiphysics

Developing strong, concurrent, multiphysics, multiscale coupling to understand
the impact of microstructural mechanisms on the structural scale

= Applications invoke microstructure

= Explicitly connecting scales

= Resolving strong multiphysics

= Developing discrete microstructural models

= Resolution through manycore/GPUs

Goal: Predict void nucleation at the microscale




Problems Involving Localization ) S,
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Project scope

= Strong multiphysics
=  |mplement/verify multiphysics surface elements
= Develop/implement block preconditioners for multiphysics

= Concurrent multiscale
= Couple the microstructural and structural scales w/multiphysics

= Microscale physics
= Develop/implement models for twinning in FCC and BCC systems

= Develop/Implement thermal & transport models for boundaries and twins
= Model discrete twins in grains

= New architectures
= Prototype Kokkos implementation for manycore simulations

= Applications
= Develop ensembles of microstructure for FCC austenitic stainless steel
= Develop ensembles of microstructures for BCC tantalum (Ta)
= Simulate hydrogen embrittlement of SS microstructures




Temperature/strain-rate activates ) e
mlcrostructure (Ta)

Strain rate & temperature activates
microstructure and localizes deformation

" |ncreased strain rate (103, 10%) and
decreased temperature aids twinning (nm)

= Accentuates grain boundary interactions (nm)
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Hydrogen activates microstructure ) e,
(stainless steel)
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= | ocalizes deformation (um)

= Aids deformation
bands/twinning (nm)
Accentuates boundary @ > @ oin scate evolution, —um
interactions (nm)
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premature void nucleation’

*Nibur, et. al., Acta Mater., 2009. 6
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Multiphysics: Mechanics and Diffusion

deformation twins

Microstructure impacts deformation and diffusion
Deformation alters effective diffusion constant

Diffused species affect fracture behavior

grain boundaries

mirrors grains insulates grains

Dy, = D, Dg, =1x107°D),

fast pathway
Dy, =1x10°D,




Create and Characterize
Microstructure

Kinetic Monte rIo gin
growth model

Phase Field Grain
Growth model

Rigorous statistical
quantification of
polycrystalline
microstructures

Electron back scattered
diffraction
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Distribution of grain boundary chord
lengths in a candidate microstructure
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Exploring microstructure-mechanical
property relationship using statistical

data analysis
Multiscale/multiphysics LDRD. SNL PI:
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Microstructural Parametrization ) o

Microstructural realizations from a single set of underlying
morphological statistics
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Agile components of crystal plasticity .

Physics modules twin
systems
11
localization in
tantalum
GPUs
agile, modular approach to crystal plasticity : via
Kokkos
| L1 L1 | |
L . constant or Hessian Newton
implicit slip . :
update residual tangent via via
predictor Phalanx miniSolver
11 11 11
: i rate Trust Region
Numerical modules slip + ISV independent N9
residual predictor via 7 |
miniSolver o
localization in

stainless steel

Multiple methods facilitate learning and lower the barrier for new advances.




Automatic differentiation enables rh) felm

modularity 11
= Goal: Allow users to mix and match crystal plasticity features
. implicit
= Crystal structure, flow rule, hardening law, etc. update
= Challenge: Altering the crystal plasticity equations requires difficult
changes to the model’s state update routine (implicit update) 11
= Strategy: Automatic differentiation using the Sacado package He\?isaian
Saccado

dramatically reduces the required changes to material model

minimal coding required!
|

FEM solver ..
Crystal plasticity model
Standard
constitutive model ~ mmmp Standard residual
evaluation evaluation (o )
returns stress P returns residual ™ | Residual Equation
_ Evaluates
Evaluate with Evaluate with correctness of plastic
automatic differentiation g automatic differentiation mmly slip values
returns derivative 0P returns derivative  OT \- J
information 5 k information 0~ /
12




Measuring Robustness Through Application

small medium large

Robustness suite

Single
Crystal
=
? |dealized
£ | Oligocrystal
o
(&)
2
B Polycrystal
$ (2D)
O
£
Polycrystal
‘ (3D)

Automated evaluation of model performance for various problems of interest
» Usability — Code users less burdened with implementation details
» Confidence — Verified solutions within realistic problem space
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Predictions in single crystal Ta

H,
Exponential hardening g% = Ho + H, (1 — exp(—Hae®))

S8 |

13M4j

Saturation hardening ¢% = go <

w2

Taylor hardening

(dislocation density) 7
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Eng. strain Eng. strain Eng. strain
= |ncrement physics through an array of hardening models in crystal plasticity framework
= Parameterize through BCC Ta single crystal experiments in [100] orientation
= Predict response in [110] and [111] orientations.
|

Dislocation density based Taylor hardening model most accurately reflects anisotropy. 14
I ———————




Role of Boundary Representation )iz

3D polycrystal with 30 grains generate through phase-
field modeling. Voxelated grain boundaries.

Phase-field microstructures

Conformal boundaries w/
focus on higher-order tets




Schwarz Alternating Method for o
Multiscale Coupling in Quasistatics

Concept of solution scheme

= Solve PDE by any method on () using an
initial guess for Dirichlet BCs on I}.

= Solve PDE by any method (can be different

£y than for (1) on (), using Dirichlet BCs on I,
that are the values just obtained for ;.

= Solve PDE using Dirichlet BCs on G, that are
the values just obtained for Q,.

= Mathematical proof of convergence for solid mechanics problem

= Allows coupling of nonconforming domains with different element types
and levels of refinement

= Information is exchanged concurrently among two or more subdomains
= Different solvers can be used for each subdomain

= Different material models can be coupled provided that they are
compatible
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Schwarz Alternating Method in Albany ().

= Schwarz method implemented in Sandia’s open-
source Albany code within the LCM project.

= Use of components in code design for rapid
development of capabilities.

= Extensive use of libraries from the open-source
TRILINOS project.

= PHALANX package to decompose complex problem into
simpler problems with managed dependencies.

=  SACADO package for automatic differentiation. The
stiffness is neither derived nor implemented explicitly.

= TEKO package for block preconditioning.

Parallel implementation uses the Data Transfer
Kit (DTK).

= All software available on GitHub.

https://github.com/ORNL-CEES/DataTransferKit
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Meso-Continuum Scale Hierarchy

Plastic dissipation Evolving hardening
DP(¢P,0) of
£8 G =1->

Evolving slip resistance
Dislocation velocity g% = Haﬁpﬁ

v*(a)

Evolving dislocation population1
P+ T - (p%v®) = s°

forest dislocations
S ‘ \1
A X XK
K UX

Peierls parallel lD] LUSCher, et. a]., Int. ] PIaStICIty, 76, 201 6, 111-129.
barrier dislocations 2].C. Simo and TJ.R. Hughes, Computational Inelasticity, 1998.




Microstructurally-Derived Constitutive 3 s
Response
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Predicting performance from measured properties requires: Logarithmic Strain s

®—e Domain

= Characterization of properties | o
= Develop microstructure metrics beyond average grain size ! o
= Characterization of response . Bl 10
= Develop metrics for heterogeneity s

= No grain experiences uniaxial stress state, but domain-
averaged response is nearly uniaxial 10
= Mapping from property metrics to response metrics . i

Block 18
=+ Block 20
Block 21

Cauchy Stress 7,3 (MPa)

- Block 15
~0.002 0.000 0.004 ~ Block3o

» Develop framework to upscale microscale response Logarithmic Strain e
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Ingredients of a Schwartz analysis

Macroscale

Mesoscale

voxelated microstructure derived
from phase-field evolution
(F. Abdeljawad)

® | oad microstructural ensembles in uniaxial stress
= Convert load/displacements to flow curves
= Fit flow curves with a macroscale J, plasticity model

cubic elastic constant : C1; = 204.6 GPa
cubic elastic constant : C15 = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

reference shear rate : 49 = 1.0 1/s 350
rate sensitivity factor : m = 20 Y A AP 4
hardening rate parameter : go = 2.0 x 10* 1/s 300!

initial hardness : go = 90 MPa Young’s modulus : E = 195.0 GPa

saturation hardness : g, = 202 MPa S L. .
) S 2501 Poission’s ratio : v = 0.3
saturation exponent : w = 0.01 P )
| o yield stress : 0o = 144 MPa
1eS ;‘"J, 200} hardening modulus : H = 300 MPa-
35
151 axial vectors 5 saturation modulus : S = 170 MPa
from 3 of the 10 150 saturation exponent : o« = 190

ensembles of
random rotations
(blue, green, red)

e o 10 CPensembles
— J2 fit

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
%.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

oy =00+ Hey, +S(1 —e )

21
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Coupling components to microstructurd” =
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Key R&D Milestones for FY17

= Strong multiphysics and concurrent multiscale
= Novel methods for multiphysics & multiscale coupling
= Extend multiscale to dynamics
= Microscale physics
= Develop/implement models for twinning
= Develop/implement thermal/transport models for boundaries/twins
= Publish developments in both physics and robustness
= Develop/implement models that capture effects of hydrogen/temperature

= New architectures
= |nvestigate/improve scalability of Kokkos in LCM

= Applications
= Model discrete twins in stainless steel
= Simulate the high-rate loading of tantalum
=  Couple microstructural scale to structural scale
= Through ensembles of microstructures, investigate void nucleation

23




Progress and future work

= Develop a more fundamental understanding of localization in
= Austenitic stainless steel structures exposed to hydrogen gas
=  Tantalum structures subjected to high rates of loading

= Discovery enabled through

Part of a top down strategy (macro to micro) to provide
context, identify disconnects, and provide drivers.

Intimate connection between structure and microstructure (Schwarz)
Strong multiphysics capable of capturing autocatalytic processes
Systematically increasing microstructural physics
Robust solution methods for increasing complexity

Extension to next generation platforms

. > . grain scale evolution, ~um




