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Motivation
Timing as a Unique Signature

Application
— Treaty verification (e.g. New START)

Requirements
— Portability

— The primary variables are mass, density,
morphology of nuclear material and
presence of shielding and moderators

Method

— Time-correlated particles are a unique
signature of the fission process and
therefore the nuclear material content

— SNM, by definition, exhibit these unique
properties




Trust, Information Barriers and Templates

« Sensitive method that can reliably catch
cheaters

« Signature that is unique to the test object

« Method can not reveal too much
information about test object

* Template approach lends itself to
application of information barriers
— Cryptography
— Zero knowledge protocol




Current Methods
Measurable Unique Signatures of Fissile Material
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Current Methods
Drawbacks and Limitations

1. Gamma spectrum
e  Attenuation and self-shielding

2. Total neutron rate
* Requires administrative controls
« Spontaneous & induced fission and (a,n)
sources are indistinguishable

3. Correlated counts

* Requires high efficiency, necessitates large
detection system

* Efficiency has to be well known

 Detector die-away time of 10-30 us
(“superfission concept”)

* Neutron energy information is lost due to
moderation

5 He-3 based
technologies




Fast Correlation Discrimination Capable Organic

Scintillators
New Approach

System advantages:

1. Can be low efficiency

2. Efficiency can beignored in
calculations

Detection systems can be portable v" PSD Capable

w

4. Neutron energy information is v Fast Timing
preserved

5. Timing is within the resolution time - ~
of a fission chain “The 8-shooter”

Potential: Array of Stillbene crystal scintillator

1. Differentiate contributions from
spontaneous fission, induced fission
(fission chains), and (a, n) sources

2. Simultaneously solve for mass,
multiplication, and shielding
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* Neutrons and gamma-rays are emitted nearly simultaneously during the fission
process.
*  Minimum multiplicity equals two:

1.

Gamma-gamma: great for timing, but a lot of detector cross talk and
uncorrelated background.

Neutron-neutron: without event by event energy, expected correlated timing is
spread on the order of the spread in fission chain dynamics.

Gamma-neutron: gamma starts precise clock, neutron creates certainty that
fission has taken place (also more penetrating).



Neutron-Gamma Correlation
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Neutron-Gamma Correlation — Fission Chain
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Experiments

Computer/digitizer Stilbene array Rate of
Distance | Total Time gamma-
(cm) (minutes) Neutron
Pairs (Bq)
BeRP 34 59 55.6
BeRP + 1
i HDPE 34 589 77.8
HEU 34 55 0.068
HEU+0.6 34 80 0.077
in Lucite
Hemi 46 499 0.096
Cf-252 36 31 10

Beryllium Reflected Plutonium (BeRP) ball
in a 1”7 shell of High Density Polyethylene




Data Analysis Methodology

Align peak to zero

— Source-to-detector
distance

Subtract background (-
1500-500 ns) 10

 Compare measurement
to template

arbitrary units
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Determine Threshold

Log Likelihood

C “ 00
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200
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* For specific dwell time throw s
10,000 random tralils 00 G 57 varis n 80 s0onds
« Calculate ROC curve | o “WW:M::_
* Increase dwell time until an ™ Target
target is met o/
.

False Positives




16

Results — Dismantlement Confirmation

« Template: Bare (non-moderated) object
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Results — I[tem Confirmation

« Templates: Non-multiplying Cf-252 and Hemi
Shells (Pu Oxide)
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Conclusions

 Demonstrated a unique signature derived from
previously studied TCPH distribution

* Applied signature with template-based approach
to determine dismantlement and item
confirmation

» Target threshold of 99% TP and <1% FP

* BeRP ball (Pu) confirmation was established
within sever seconds

« TACS HEU shells required hundreds of seconds
of dwell time and an external source (Am-Li)
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Neutron Sources in Nuclear Fuel Cycle

Spontaneous Fission
— Pu-238/240/242, Cf-252
— Energy spectrum is Maxwellian (~2 MeV mean):
« Sqrt(E) exp(-E/1.43)
Induced Fission
— U-233/235, Pu-239
— Spectrum depend on the energy of incident neutron

(alpha, n) reactions
— Alpha + O-18 - Ne-21 +n
— Alpha + F-19 &2 Na-22 + n

— Spectrum depends on target isotope to second order alpha
energy




Pulse Shape Discrimination

Bayesian Probability Map
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Measured Quantities from Organic
Scintillators

Deposited Neutron Energy Neutron-Gamma Timing
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