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ABSTRACT 

Process instrumentation channels in nuclear 
power plants are usually calibrated at each 
refueling outage. The calibrations are 
currently performed manually and are time 
consuming, costly, and in some cases involve 
radiation exposure to test personnel. In 
addition, the hands-on calibrations can wear 
out the instruments and cause premature aging 
and failure. Therefore, the nuclear industry is 
interested in automating the calibration of the 
instruments and has sponsored a number of 
research projects to determine the validity of 
automated calibrations. This report provides 
the key results of one of these projects. 

This project was conducted over a three-year 
period under a contract with the NRC. It 
involved both experimental and theoretical 
work. The experimental work included 
laboratory and in-plant validation tests on 
typical nuclear plant instrumentation systems. 
The theoretical work involved empirical and 
physical modeling and neural network fitting 
techniques to separate process effects from 
sensor effects, account for common mode 
problems, and improve the reliability of 
automated calibrations. 

The conclusion of this project is that the 
normal outputs of instrument channels in 
nuclear plants can be monitored over a fuel 
cycle while the plant is operating to determine 
calibration drift in the field sensors and 
associated signal conversion and signal 
conditioning equipment. The plant computer 
or a dedicated on-line monitoring system can 
be used to obtain the test data. The advantage 
of automated calibrations is that they provide 
the opportunity to test the calibration of 
instrument channels on a continuous basis. 
This improves the safety and efficiency of the 
plant while reducing the cost of the 
calibrations and eliminating much of the 
personnel radiation exposure associated with 
conventional calibrations. 

The procedure for on-line calibration tests 

involves calculating the deviation of each 
instrument channel from the best estimate of 
the process parameter that the instrument is 
measuring. Several methods are available and 
were evaluated in this project for determining 
the best estimate of the process. These 
methods are: (1) simple and weighted 
averaging of redundant signals, (2) empirical 
and physical modeling, (3) neural networks, 
and (4) a reference channel that is calibrated 
before and after each fuel cycle. The 
deviation of each signal from the best estimate 
of the process is updated frequently while the 
plant is operating and plotted as a function of 
time for the entire fuel cycle. This provides 
time history plots that can reveal channel drift 
and other anomalies. Any instrument channel 
that exceeds the allowable drift or the channel 
accuracy band is then scheduled for calibration 
during a refueling outage, or sooner if 
necessary. 

The above procedure provides calibration test 
results at the process operating point. This is 
one of the most critical points of the channel 
operation, and should suffice for most 
narrow-range instruments. However, it is 
often necessary to verify the calibration of 
some instruments at other points throughout 
their calibrated range. This may be 
accomplished by sampling the channel outputs 
during plant startup and shutdown periods and 
evaluating the adequacy of the data for wide- 
range calibration verification. 

It should be pointed out that the calibration of 
some process signals such as the high pressure 
coolant injection flow in BWRs, which are 
normally off-scale during plant operation, can 
not be tested on-line. Therefore, the 
instrument channels for these signals must 
continue to be calibrated manually using the 
conventional procedures. However, the 
number of instrument channels that cannot be 
tested on-line is much smaller than the number 
of instrument channels that are testable during 
plant operation. 
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1. INTRODUCTION 

Critical process sensors and associated 
instrumentation in nuclear power plants are 
usually calibrated at each refueling outage. 
The calibrations are performed manually and 
involve two steps; each of which requires 
essentially the same work. The two steps are: 

1. DETERMINE IF CALIBRATION IS 
NEEDED. Thh step is perfomzed by 
providing the instrument with a series of 
known inputs covering the operating 
range of the instrument. The output of 
the instrument is recorded for each input 
and compared with the acceptance 
criteria for the instrument. 

2. CALIBRATE IF NEEDED. If the 
instrument does not meet its acceptance 
criteriu, it is calibrated by providing the 
same series of input signals as in Step 1 
while adjusting the output to meet the 
acceptance criteria. 

The first step can be automated and 
performed while the plant is operating. This 
approach is therefore referred to as on-line 
calibration monitoring, on-line calibration 
testing, or on-line drift monitoring. It involves 
tracking the output of instrument channels 
over the fuel cycle to identiij drift, bias errors, 
noise and other anomalies. The advantage of 
this approach is that it identifies calibration 
problems as they occur, accounts for 
installation and process condition effects on 
calibration, and prevents unnecessary 
calibration of instruments that have maintained 
their calibrations. Furthermore, it can include 
most components of an instrument channel in 
the calibration test as opposed to the 
conventional procedures which require some 
components to be calibrated individually. The 
method may be used for pressure, level, flow, 
temperature, neutron flux, and other process 

instrumentation channels including both safety- 
related and non-safety related channels in the 
primary and secondary systems of nuclear 
power plants. 

This report presents the results of a research 
and development project to determine if 
on-line calibration monitoring is as effective as 
manual calibrations in identimng the 
instruments which have suffered a significant 
change in calibration. The project involved 
laboratory and in-plant tests and analysis. The 
laboratory tests were performed in a test loop 
instrumented with sensors and signal 
conditioning equipment of the types used in 
nuclear power plants. The loop served to 
prove the test principles and validate the data 
acquisition and data analysis software 
packages. The in-plant tests were performed 
at the McGuire Nuclear Power Station Unit 2. 
This is a pressurized water reactor (PWR) 
operated by Duke Power Company who served 
as the host utility for this project. A data 
acquisition system was installed at McGuire in 
March 1992 to monitor the outputs of nearly 
170 instrument channels in the primary and 
secondary systems of the plant. These 
included temperature, pressure, level, flow, 
and neutron flux signals. To date, the system 
has collected data for two fuel cycles. At the 
end of each fuel cycle, the on-line monitoring 
results were compared with the results of the 
hands-on calibrations that are normally 
performed during refueling outages. In 
addition, the on-line monitoring results were 
evaluated against the allowable drift bands for 
each instrument channel and the channel 
statistical accuracy band. These efforts have 
successfully demonstrated the feasibility of the 
on-line monitoring approach for instrument 
calibration verification in nuclear power plants. 

This project has led not only to the 
development of a system for automating 
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testing of calibration of instrument channels in 
nuclear power plants, but also for on-line 
monitoring of performance of other plant 
equipment such as the emergency diesel 
generators, turbine generators, etc. For 
example, diesel generator parameters such as 
oil temperature and pressure, coolant water 
temperature, air pressure, and many other 
signals can be monitored to ensure that the 
engine will operate properly if it is needed for 
emergency power. 

The on-line monitoring system can be fitted 
with transient data acquisition and data 
analysis modules to provide on-line capability 
to perform reactor diagnostics, measure core 
barrel vibration frequency and amplitude, 
estimate fluid flow rates and detect 
flowblockages and flow anomalies in the 
reactor coolant system, measure moderator 

temperature coefficient while the plant is 
operating, perform vibration and loose parts 
monitoring, sensor response time degradation 
testing, etc. It is envisioned that by the turn 
of the century, nuclear power plants and other 
power generation facilities and most process 
industries can be equipped or retrofitted with 
on-line monitoring systems to perform static 
and dynamic performance tests to aid in 
predictive maintenance, verify the performance 
of plant equipment, and automate the 
maintenance efforts currently performed by 
hands-on procedures. 

In addition to nuclear power plants, the 
on-line monitoring system described in this 
report will have applications in chemical, 
petrochemical and other process industries, 
manufacturing facilities, aviation and 
aerospace, etc. 

Copyright0 by Analysis and Measurement Services Corporation (AMs), 1995. 
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2. HISTORICAL BACKGROUND 

The interest in implementing on-line 
monitoring techniques for instrument 
calibration testing in nuclear power plants 
peaked in the late 1980s following nearly a 
decade of research and development efforts in 
the area of signal validation. These efforts 
were sponsored by EPRI, Department of 
Energy (DOE), and nuclear utilities. The 
EPRI efforts were carried out by various 
contractors, and the DOE efforts were camed 
out mostly by the Argonne National 
Laboratory (ANL) and the University of 
Tennessee. These efforts are summarized 
below. 

2.1 Electric Power Research 
Institute 

In the early 1980s, EPRI sponsored a number 
of projects in the signal validation area in 
support of the Safety Parameter Display 
System (SPDS), digital control systems, and 
other applications for nuclear power plants.('82) 
These efforts not only helped SPDS, digital 
control, and other system developments, but 
also laid the foundation for on-line calibration 
testing in nuclear power plants and gave rise 
to the EPRI's instrument calibration 
reduction/extension programJ3s4) This 
program, which was initiated in the late 1980s, 
was originally referred to as the Instrument 
Calibration Reduction Program (ICRP) and 
subsequently renamed to Instrument 
Calibration and Monitoring Program (ICMP). 
The new name reflects the fact that on-line 
calibration monitoring amounts to an increase 
in the calibration frequency of instruments, 
rather than a decrease. 

In addition to sponsoring R&D efforts in this 
area, EPRI has taken a leading role in seeking 
NRC approval for nuclear utilities to use on- 
line drift monitoring as a basis for determining 

which instrument channels should be manually 
calibrated. In a draft report released for NRC 
review in August 1995, EPRI has addressed 
the technical and regulatory issues for the 
implementation of on-line performance 
monitoring techniques in nuclear power 
~1ants.c~) 

2.2 Argonne National Laboratory 

ANL in both Idaho (ANL-West) and in 
Illinois (ANL-East), have worked in the signal 
validation area and on the development of 
new methods for on-line calibration testing of 
instrument channels in nuclear power plants. 

At ANL-West, an on-line monitoring system 
called the System State Analyzer (SSA) was 
developed in the early 1980s using the pattern 
recognition techniques described later in this 
report.@) This system was successfully tested 
at the Experimental Breeder Reactor 
(EBR-II) in Idaho in the mid-1980s. 

At ANL-East, the well-known Sequential 
Probability Ratio Test (SPRT) has been 
successfully implemented for determining 
instrument channel anomalies in nuclear power 
plantsJ79 *) 

2.3 University of Tennessee 

In addition to ANL, DOE has sponsored 
research at the University of Tennessee (UT) 
on the signal validation and on-line calibration 
testing areas. The UT work, which was 
performed over a three-year period between 
1986 and 1989, involved empirical, physical and 
neural network model development and 
testing.cg* lo) In particular, UT developed a 
number of advanced signal processing 
techniques that are useful for instrument fault 
detection and isolation. These techniques are 
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descnied in numerous reports written by UT 
for DOE. AMs has taken advantage of UT'S 
work in implementing the analytical techniques 
used in th% project. 

2.4 Nuclear Utilities 

One of the first implementations of the on-line 
monitoring approach for instrument calibration 
verification in a commercial nuclear power 
plant occurred in 1987 at the Millstone 
Nuclear Power Station Unit 3. This is a four- 
loop Westinghouse PWR operated by 
Northeast Utilities. As a part of its 
Emergency Response Facility, which was 
established in the aftermath of the Three Mile 
Island accident, Millstone 3 used EPRI's signal 
validation technologies to develop their SPDS 
which included a module called the Off-site 
Facility Information System or OFIS. As its 
name implies, this system was used off-site at 

the engineering offices of Northeast Utilities 
and remotely interfaced with the Millstone 
plant computer to store operational data and 
plot them in a variety of formats for analysis of 
both normal and off-normal conditions. It was 
also used to monitor the outputs of redundant 
instrument channels for drift and other 
anomalies. In fact, it was the OFIS data which 
helped reveal the now well-known "oil-loss" 
problem in some models of Rosemount 
pressure transmitters in 1987.(") 

Since 1987, several utilities have tested a 
number of on-line monitoring systems for 
instrument calibration verification in nuclear 
power plants. These include V.C. Summer 
and South Texas Project which are 
Westinghouse PWRs and San Onofre Units 2 
and 3 and Millstone Unit 2 which are 
Combustion Engineering PWRs. 
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3. PROJECT PARTICIPANTS 

The project reported here was a joint effort 
involving the Analysis and Measurement 
Services Corporation (AMs), the U.S. Nuclear 
Regulatory Commission (NRC), and Duke 
Power Company. AMs and the NRC 
provided the funding for the project and Duke 
Power Company served as the host utility for 
the project. The involvement of each of these 
three organizations is summarized below. 

3.1 NRC 

The project reported here was partially funded 
by the NRC under the Small Business 
Innovation Research (SBIR) program. This is 
a three-phase program that is aimed at 
meeting the government's research and 
development (R&D) needs while stimulating 
innovative research in the private sector and 
commercialization of the R&D product by 
small businesses. The awards are made on a 
competitive basis to US. companies with less 
than 500 employees. 

Under the SBIR program, a feasibility study is 
first performed over a six-month period in 
Phase I to demonstrate the merit of the R&D 
and establish the qualification of the small 
business to conduct a comprehensive R&D 
effort over a two-year period in Phase II. The 
Phase I1 award is made upon succe$sful 
completion of Phase I and demonstration of 
commercial viability of the R&D product. 
During or after the completion of the Phase 11 
project, the small business is expected to use 
its own funds or secure other non-federal 
funds to launch a Phase 111 commercialization 
effort. The Phase 111 effort is expected to 
ensure that the government investments during 
Phase I and Phase 11 will result in commercial 
products in the form of equipment, services, 
training, or a combination of these for the 
benefit of both the private sector and the 

federal government. 

AMs has been active in the SBIR program 
since 1984 and has completed R&D projects 
under this program for DOE, U.S. Department 
of Defense @OD), National Aeronautics and 
Space Administration (NASA), and the NRC 
The NRC projects have resulted in a number 
of "REG/CR reports, a listing of which is 
presented in Table 3.1. 

The project reported here began at AMs in 
1992 with the award of a Phase I contract 
from the NRC. The Phase I effort was 
successfully completed in December 1992 and 
the results were documented in "REG/CR- 
5903 published by the NRC in January 1993. 
The successful completion of the Phase I 
project resulted in a Phase 11 award which 
began in early 1993. 

The Phase 111 commercialization effort began 
during Phase I by formulating a plan to 
develop commercial equipment, training, and 
services for the nuclear power industry. In 
addition, the Phase 111 commercialization 
effort has involved the publication of several 
technical papers to disseminate the details of 
the project, participation in national and 
international exhibitions and trade shows, and 
demonstration of project results to interested 
utilities and nuclear plant owners groups. 

3.2 Duke Power Company 

As a part of the Phase I project, AMs 
negotiated a no-cost contract with Duke 
Power Company to use the McGuire Unit 2 
facility as the test bed for the in-plant 
validation of the technologies described in this 
report. The McGuire plant is a two-unit site 
near Charlotte, North Carolina with two 
Westinghouse four-loop Pressurized Water 
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TABLE 3.1 

Listing of AMS Reports of R&D Work for the NRC 

Report Title 

Degradation of Nuclear 
Plant Temperature Sensors 

Aging of Nuclear Plant 
Resistance Temperature 
Detectors 

Effect of Aging on 
Response Time of Nuclear 
Plant Pressure Sensors 

Long Term Performance 
and Aging Characteristics of 
Nuclear Plant Pressure 
Transmitters 

Validation of Smart Sensor 
Technologies for Instrument 
Calibration Reduction in 
Nuclear Power Plants 

On-Line Testing of 
Calibration of Process 
Instrument Channels in 
Nuclear Power Plants 

Assessment of Fiber Optic 
Pressure Sensors 

I 

New Sensor for 
Measurement of Low Air 
Flow Velocity 

Description of ReportlProject 

These reports concentrate on 
calibration accuracy and stability 
of Resistance Temperature 
Detectors (RTDs) and describe 
the cross calibration technique for 
in-situ testing of accuracy of 
nuclear plant RTDs. 

These reports describe the 
principle of operation of nuclear 
plant pressure transmitters, and 
their failure mechanisms and 
failure modes. The reports 
concentrate on the effects of 
aging on transmitter calibration 
and response time, describe 
sensing line effects, and provide 
data on the validation of new 
methods for in-situ response time 
testing of pressure transmitters 
and detection of blockages and 
voids in pressure sensing lines. 

This project has evaluated the 
validity of on-line monitoring 
techniques for instrument 
calibration verification in nuclear 
power plants. 

The state-of-the-art in fiber optic 
pressure sensing was established 
in the Phase I project and the 
potential of these sensors for use 
in nuclear power plants was 
investigated. 

A new sensor for measurement of 
very low air flow rates was 
developed and tested. The 
sensor can provide new capability 
to establish air flow patterns to 
determine where to locate air 
samplers for more effective 
personnel radiation protection in 
nuclear facilities. 
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Reactors (PWRs). This plant was selected for 
the following reasons. 

1. AMs has had a long term relationship with 
Duke Power Company which dates back to 
the mid-1970s when personnel now 
working for AMs were provided access to 
the Oconee nuclear power station for in- 
plant validation of the Loop Current Step 
Response (LCSR) technology. This 
technology was developed under a contract 
with EPRI for in-situ response time testing 
of Resistance Temperature Detectors 
(RTDs) in nuclear power plants. 
Furthermore, in the late 1980s, Duke 
Power Company served as the host utility 
for in-plant validation of new methods that 
AMs had developed for on-line testing of 
response times of pressure transmitters and 
detection of blockages in pressure sensing 
lines in nuclear power plants. The 
validation work was performed at the 
Catawba Nuclear Power Station. The 
project was partially funded by the DOE. 

2. A large number of isolated primary and 
secondary instrumentation signals were 
readily available from the McGuire plant 
for the on-line monitoring tests. These 
signals were used by McGuire in an earlier 
project. The signals were easily connected 
to an on-line monitoring system provided 
by AMs. The system was installed at 
McGuire in March 1992. 

3. McGuire Unit 2 is a typical PWR plant. 
As such, the results of the in-plant 
validation work are equally applicable to a 
majority of PWRs. However, it should be 
pointed out that plant characteristics do 
not have a strong bearing on the on-line 
calibration results. Therefore, the 
validation work described in this report 
should be applicable not only to most 
PWRs, but also to Boiling Water 
Reactors (BWRs), Pressurized Heavy 

Water Reactors (PHWRs), Russian PWRs 
(referred to in Russian as WE& or 
WWERs), and other plants. 

4. AMs provides testing services to Duke 
Power Company on a regular basis at the 
McGuire and Catawba plants and is 
therefore familiar with Duke Power 
Company’s equipment, procedures and 
personnel. Also, many of the tests on the 
on-line monitoring project could be done in 
conjunction with other AMs service calls 
to McGuire. 

3.3 AMs Corporation 

In addition to performing the R&D, AMs has 
shared in the cost of performing the validation 
effort described in this report. 

The cost of this project was approximately 
$600,000, half of which was provided by the 
NRC, and the rest was funded by AMs. The 
motivation for AMs cost sharing has been the 
potential of the R&D for commercialization in 
nuclear power plants and other industries. It 
is expected that on-line monitoring techniques 
will have wide applications not only for 
instrument calibration verification, but also for 
a variety of predictive maintenance and 
diagnostic tests in nuclear and non-nuclear 
facilities. 

AMs is using the results of this project to 
provide commercial products for on-line 
monitoring of process instrumentation 
channels and other equipment in nuclear 
power plants, fossil power plants, process 
industries, manufacturing facilities, etc. These 
products will be provided in the form of 
hardware, software, training, technical support, 
or a combination of these as necessary to 
enable a customer to implement the 
technologies developed in this project. 
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4. INSTRUMENT CHANNELS AND THEIR CALJBRATION 
REQUIREMENTS 

4.1 Instrument Channel 

An instrument channel consists of a sensor 
that is located in the field and signal 
conversion, signal conditioning, and logic and 
trip circuitry that are located in instrument 
cabinets in the control room or cable 
spreading room areas of most nuclear power 
plants. Figure 4.1 shows typical components of 
a safety-related instrument channel in a PWR 
plant. The sensor could be a pressure, level, 
or flow transmitter, a resistance temperature 
detector (RTD) that is used for measurement 
of reactor coolant hot leg or cold leg 
temperatures, a core exit thermocouple, a 
neutron sensor, etc. The signal conversion 
equipment could be a current-to-voltage 
convertor, a voltage-to-current convertor, a 
resistance bridge, etc. The signal conditioning 
equipment could be amplifiers and filters 
which are also referred to as lead and lag 
cards, summing and isolation amplifiers, signal 
comparators, etc. The safety systems of most 
nuclear power plants have up to four 
redundant instrument channels for critical 
measurements. 

4.2 Calibration Requirements 

The current calibration requirements or 
calibration practices in nuclear power plants 
call for the sensors .and the rest of the 
instrument channels to be calibrated separately 
as described below. 

4.2.1 Calibration Requirements for 
Sensors 

Pressure, level, and flow transmitters 
(hereafter referred to as pressure 

transmitters) are manually calibrated in the 
field once every fuel cycle usually during a 
refueling outage while the plant is at cold 
shutdown. The calibration involves a 
pressure signal generator and a calibrated 
pressure gauge. A number of constant 
pressures covering the operating range of 
the transmitter are applied to the 
transmitter and adjustments (if necessary) 
are made to the zero, span, and/or linearity 
of the transmitter electronics to produce 
the desired output. 

There are no rigid requirements for 
calibration of RTDs in nuclear power 
plants and no consensus on how many, how 
often, and by what means RTDs should be 
calibrated. As a result, RTD calibration 
practice in the nuclear industry is sporadic 
and ranges from no calibration of any 
RTDs to in-situ calibration of all primary 
coolant RTDs in some PWRs once every 
fuel cycle. The in-situ calibrations are 
performed using the cross calibration 
technique described later in this report. 
There are abo plants which remove some 
or all of 'their primary coolant RTDs 
occasionally and calibrate them in a 
laboratory or replace them with newly 
calibrated RTDs. 

The removal of RTDs from a plant for 
calibration in a laboratory is a time 
consuming and expensive practice. It 
involves personnel radiation exposure, and 
can cause response time problems in 
thermowell-mounted RTDs every time they 
are removed and reinstalled in thermowells. 
As such, removal and recalibration of 
RTDs is practiced in only a few plants on 
an occasional basis. New RTDs, RTDs 
which have been in storage for more than 
a year, reference RTDs that may be used 
to verify the RTD cross calibration results, 
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Figure 4.1. Typical Components of a Safetyaelated Instrument Channel in a PWR 



and RTDs which are required to meet reasonable method for verifying the 
calibration requirements of better than one calibration of installed thermocouples is to 
or two tenths of a degree must, however, include them in the RTD cross calibration 
be calibrated in a laboratory. tests, if possible. 

The laboratory calibration of RTDs for Neutron detectors are not directly 
nuclear power plants is typically performed calibrated but they are sometimes tested to 
in,the range of 0 to 4OOOC (32 to 7 5 2 O F )  verify that they operate properly. For this 
and involves an ice bath and an oil bath. purpose, a neutron source is introduced in 
The RTD is installed in the bath and its the plant to verify that the sensors respond 
resistance is measured at three or more properly. 
widely spaced temperatures covering. the 

, operating range of the RTD. The 
resistance-versus-temperature data are then 
used in,a quadratic equation to produce a 
calibration table for the RTD. The 
calibration table gives the resistance of the 
RTD at any temperature within the 
calibrated range. The procedure for 
laboratory calibration of nuclear plant 
RTDs is described in detail in 
NUREG/CR-5560, including a discussion of 
the uncertainties of laboratory calibrations 

. and how these uncertainties can be 
identified and combined to assess the 

. accuracy of temperature measurements 
with. RTDs.(12) 

As in the case of RTDs, there are no rigid 
requirements for calibration of 
thermocouples. However, in some PWRs 
where the RTD cross calibration method is 
used,' core exit thermocouples are 
sometimes cross calibrated along with the 
primary coolant RTDs. 

It should be pointed out that most plants 
u s e  T y p e  K ( c h r o m e l / a l u m e l )  
thermocouples. Unlike RTDs, Type K 
thermocouples will not yield reliable 
calibration results if they are removed from 
the plant and recalibrated in a laboratory. 
This is due to two inherent effects in Type 
K thermocouples. These effects ' are 
inhomogeneity and short-range ordering.(13) 
Once a thermocouple is installed in a 
process and exposed to the high 
temperatures typical of nuclear power 
plants, their characteristics can change such 
that a meaningful recalibration would be 
difficult to perform. Therefore, the only 

The calibrations of neutron sensors are 
checked against the reactor power that is 
calculated from other measurements. The 
neutron sensor outputs are then adjusted as 
necessary to match the calculated power. 

4.2.2 Calibration Requirements for 
Remainder of Channel 

The components of instrument channels beside 
the sensors are calibrated manually during 
each refueling outage. These components are 
calibrated individually or together depending 
on the instrument channel design and the 
plant requirements. A calibration test signal is 
injected into each component or a group of 
components and necessary adjustments are 
made to ensure that the component has the 
desired output. 

In addition to full channel calibrations that are 
performed at each refueling outage, 
instrument channels (excluding the sensors) 
are surveillance tested once every month or 
once every quarter depending on the plant. 
The surveillance tests involve temporarily 
removing the channel from service while the 
plant is operating, and injecting calibration test 
signals to the channel to ensure that trip 
signals are initiated at the required levels. 

4.3 Instrument Channel 
Uncertainties 

Figure 4.2 provides a general view of an 
instrument channel and the uncertainties that 
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apply to each component of the channel. This 
is followed by Figure 4.3 which shows the 
activities that are practiced in nuclear power 
plants to verify the performance of instrument 
channels. The number of components that are 
covered by each activity is also shown in 
Figure 4.3. Besides surveillance or functional 
tests and full channel calibrations which were 
mentioned earlier, these activities include 
channel checks that are performed once every 
shift on the instrument channels which feed 
the Reactor Trip Systems and the Engineered 
Safety Feature Actuation Systems. A channel 
check is performed visually by comparing the 
outputs of redundant and related instruments 
on panel meters or other indicators to ensure 
that they are within reasonable agreement. A 
channel check covers the entire instrument 
channel (except for the actuation system) 
including the sensor. 

The components of an instrument channel that 
can be included in on-line calibration 
monitoring are also shown in Figure 4.3. Note 
that virtually all components of an instrument 
channel can be monitored together for drift 
except for the actuation system whose 
performance is verified by functional testing. 

Table 4.1 provides a listing of typical 

measurement uncertainties of an instrument 
channel in a nuclear power plant.(') Because 
of these and other uncertainties, conservative 
limits are assigned to critical process 
parameters to ensure safety. Figure 4.4 
presents a relative view of these limits. 

The "safety limit" shown in Figure 4.4 is an 
extreme that must not be exceeded to preserve 
the integrity of the plant. To ensure that a 
process parameter will not exceed the safety 
limit, a conservative limit called "analytical 
limit" as shown in Figure 4.4 is established by 
the plant safety analysis. To avoid exceeding 
the analytical limit, the plant is automatically 
tripped if certain safety-related process 
parameters exceed the trip setpoint shown in 
Figure 4.4. The trip setpoint is specified in 
the plant technical specifications based on the 
uncertainties associated with measurement of 
a critical process parameter. If the parameter 
can be measured with a small uncertainty, then 
the trip setpoint is set farther from the normal 
operating point. This leaves a larger operating 
margin and reduces the potential for spurious 
trips. If on the other hand, the process 
measurement uncertainty is large, then the trip 
setpoint is set closer to the normal operating 
point, leaving a smaller operating margin. 
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TABLE 4.1 

Typical Uncertainties of an Instrument Channel in a Nuclear Power Plant 

0 Calibration standard 
0 Calibration equipment 
0 Calibration method 

0 Reference accuracy . 0 Humidity changes 
- linearity 0 Pressure changes 
- hysteresis 0 In-service vibration 
- dead band 0 Radiation exposure 
- repeatability 0 Analog-to-digital (A-D) conversion 

0 Digital-to-analog (D-A) conversion 0 Power supply voltage changes 
0 Power supply frequency changes 
0 Temperature changes 

0 Temperature effects 
0 Radiation effects 
0 Seismichibration effects 

0 Fluid stratification 
0 Process oscillations 
0 Fluid density effects 
0 etc. 

0 Calculation effects 
0 Dynamic effects 
0 Calibration and installation biases 
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5. PROJECT GOAL AND EMPHASIS 

The goal of this project was to develop and 
validate new equipment and techniques for on- 
line testing of calibration of safety-related 
instrumentation channels in nuclear power 
plants. Although these developments can be 
applied to any proms instrumentation 
channel, the project emphasis was mainly on 
pressure transmitters that are located in the 
reactor containment or other radiation or 
hazardous areas of the plant. Other sensors 
such as RTDs, thermocouples, or neutron 
sensors are either not subject to regular 
calibration requirements or are in-situ 
calibrated by other established procedures such 
as the cross calibration method used for 
temperature sensors. Furthermore, although 
the on-line calibration techniques can include 
other components of instrument channels in 
addition to the sensors, the project emphasis 
was more on the sensors. This is because the 
balance of an instrument channel are usually 
located in instrument cabinets in mild 
environments of the plant, are easily accessible 
even while the plant is operating, and are not 
as difficult to calibrate as the sensors. 

Searches of the License Event Report (LER) 
and Nuclear Plant Reliability Data System 
(NPRDS) databases as well as an informal 
survey of the nuclear power industry 
performed by AMs for the NRC under this 
and other projects have revealed that less than 
ten percent of pressure transmitters in nuclear 
power plants have been found in the past to 
drift out of tolerance. Figures 5.1 and 5.2 
present the results of searches of the LER and 
NPRDS databases. The NPRDS sEowed 2089 
reports of failures in about fifteen years or 139 

per year, while the LER database showed 391 
reports in 12 years or 33 per year. This 
amounts to about 2.8 failures per plant per 
fuel cycle from the NPRDS database and 0.66 
failures per plant per fuel cycle from the LER 
database assuming 100 reactors and two-year 
fuel cycles. Of course, the actual number of 
failures is higher because LER and WRDS 
databases do not include all failures. 

Assuming that there are 50 safety-related 
pressure transmitters in a nuclear power plant, 
the LER database shows 1.32 percent failures 
per plant per fuel cycle while NPRDS shows 
5.6 percent failures. The difference between 
the results of the LER and NPRDS is 
probably due to the differences in reporting 
requirements for the two databases. For 
example, since 1983 when the LER reporting 
requirements were changed by the NRC, single 
event failures are not reported in LERs. In 
any event, as indicated above, these results and 
other information gathered in the course of 
this and other research projects have indicated 
less than 10 percent failure for pressure 
transmitters per plant per fuel cycle. 
Therefore, by identifying the transmitters 
which have drifted out of tolerance, an on-line 
monitoring system has the potential to save a 
majority of the efforts that are currently spent 
on manual calibrations of pressure transmitters 
in nuclear power plants. This can provide 
substantial cost savings to utilities including 
direct reductions in labor, personnel radiation 
exposure, and material and indirect savings 
from increased instrument reliability and plant 
safety, simplified outage planning and 
scheduling, etc. 
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6. PRINCIPLE OF ON-LINE CALIBRATION TESTING 

On-line testing of calibration of process 
instrumentation channels in nuclear power 
plants involves a simple procedure: monitor 
the steady-state output of each channel on a 
periodic or continuous basis throughout each 
fuel cycle and determine if the channel is 
drifting beyond an acceptable limit. Figure 6.1 
illustrates the potential outcome of such a test. 
The channel may show no drift with respect to 
the process parameter being monitored, a bias 
error, or an upward or downward drift. There 
are other possibilities, but a simple view is 
presented here to help illustrate the principle 
of the test. 

If the process parameter that is being 
monitored (e.g., pressurizer pressure, steam 
generator level, reactor coolant flow) does not 
remain reasonably stable throughout the 
on-line monitoring period, it can mask the 
instrument drift and invalidate the results of 
the on-line monitoring tests. Figure 6.2 
illustrates a situation in which a process 
parameter is shown to drift upward and. the 
instrument channel to drift downward at the 
same rate, thereby causing the channel output 
to show no drift. This simple example 
illustrates that a means must be established to 
track the process and help distinguish between 
process drift and instrument drift. 

Several options are available for tracking a 
process parameter. These options are 
(Figure 6.3): 

1. Averaging of redundant channels 

2. Process analytical modeling 

3. Using a calibrated reference channel 

These options can be used individually or 
together to obtain a "best estimate" of a 
process parameter on an on-going basis 
(Figure 6.4). The data qualification module 
shown in Figure 6.4 screens the data for 
extraneous spikes, noise, discontinuities and 
other artifacts. 

If a large number of redundant channels are 
available, then a simple average of the 
redundant readings can provide a reasonable 
estimate of the process to be used to verify the 
calibration of individual instruments. This is 
the case for the primary coolant RTDs and 
core exit thermocouples in PWRs. At 
isothermal conditions at the end of a refueling 
outage while the plant is heating up toward 
power operation, there are often 10 to 40 
primary coolant RTD elements and about 40 
to 70 core exit thermocouples in PWRs that 
are exposed to essentially the same 
temperature. Chapter 7 describes how these 
highly redundant temperature sensors are 
in-situ calibrated by a single scan of their 
readings and a simple averaging procedure. 

If the number of redundant channels is limited, 
a singIe scan and a simple averaging of 
instrument outputs cannot provide a 
reasonable estimate of the process. This is the 
case for most nuclear plant pressure 
transmitters. Therefore, in addition to 
averaging, a calibrated reference channel or 
analytical techniques should be used to 
characterize the process as described in 
Chapter 8. 
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7. IN-SITU CALIBRATION OF TEMPERATURE SENSORS 

On-line testing of calibration of process 
instrumentation channels in nuclear power 
plants requires a means to track the process to 
distinguish between process drift and 
instrument drift and account for common- 
mode effects. However, this effort may not be 
needed when a large number of redundant 
instruments are available. A simple average of 
redundant readings can usually provide a 
reasonable estimate of the process to serve as 
the basis for verifying the calibration of the 
individual instruments. Referred to as the 
cross calibration test, this approach is 
successfully used in PWRs for testing the 
calibration of primary coolant RTDs and core 
exit thermocouples (CETs) while they remain 
installed in the plant (in-situ testing). 

Cross calibration tests are performed at 
isothermal conditions either at the end of a 
fuel cycle while the plant is proceeding toward 
cold shutdown or at the end of a refueling 
outage during plant heatup toward power 
operation. At isothermal conditions, all 
primary coolant RTDs and CETs can be 
assumed to be exposed to the same 
temperature. The temperature readings of the 
narrow-range RTDs are then averaged and the 
average temperature is assumed to represent 
the "true" temperature of the process. The 
deviation of each sensor from this average is 
then identified and compared against an 
acceptance criteria. A typical acceptance 
criteria for narrow-range RTDs in the primary 
coolant system of PWRs is f 0.5OF. The 
acceptance criteria for wide-range RTDs and 
CETs are normally less stringent than narrow- 
range RTDs. For example, wide-range RTDs 
are often expected to have deviations of less 
than f Z0F, and CETs are generally expected 
to meet a f 5°F requirement. 

Table 7.1 shows typical results of a cross 
calibration test of twenty-four narrow-range 

RTDs. The first column identifies the number 
of RTDs that were tested followed by four 
columns of repeated temperature 
measurements for each RTD. The 
temperature is obtained by measuring the 
RTD resistance and converting it to equivalent 
temperature using the most recent calibration 
table for the RTD. The four temperatures 
given in each row are averaged and listed in 
column six. The temperatures in column six 
are then averaged and this average is 
subtracted from the temperature indication of 
each RTD. The results are recorded in the 
last column as the RTD deviation. This 
column represents the results of the cross 
calibration test. The test can be repeated at 
several temperatures during plant heatup or 
cooldown to veri@ the calibration of the RTDs 
over a wide temperature range. Furthermore, 
the resistance-versus-temperature data at three 
or more widely spaced temperatures obtained 
during plant heatup can be used to generate 
new calibration tables for any outliers; 
provided that the number of outliers is small 
compared to the number of RTDs that are 
cross calibrated. This effort amounts to in-situ 
recalibration of those RTDs which do not 
meet the acceptance criteria. 

The wide-range RTDs and CETs are typically 
calibrated using the average temperature 
indicated by the narrow-range RTDs. This is 
because narrow-range RTDs in nuclear power 
plants are usually subject to more stringent 
performance requirements than wide-range 
RTDs and CETs, and are therefore more 
accurate. Tables 7.2 and 7.3 show cross 
calibration test results for a number of wide- 
range RTDs and CETs in a PWR. 

These sensors were scanned along with the 
narrow-range RTDs, but were not used in 
obtaining a best estimate for the process 
temperature. The data for the wide-range 
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TABLE 7.1 

Typical Cross Calibration Results for a Group 
of Narrow-Range RTDs 

1 540.5665 540.8777 540.8827 541 .I 903 540.879 0.153 

2 540.5785 540.8797 540.8983 541 .I 944 540.888 0.1 61 

3 540.4254 540.71 35 540.7447 541.0252 540.727 . 0,001 

4 540.4356 540.71 56 540.7589 541.0293 540.735 0.009 

5 540.4429 540.71 62 540.7762 541.0425 540.744 0.01 8 
~~ ~ ~ ~ ~ ~ ~ ~ ~~ 

6 540.4592 540.7221 540.7901 541 .W80 540.755 0.029 

7 540.3988 540.6256 540.6724 540.9132 540.653 -0.074 
~ ~ ~ ~ 

540.4016 540.6221 540.6684 540.9066 540.650 -0.077 

11 9 I 540.3969 I 540.6180 I 540.7062 I 540.9279 I 540.662 I -0,064 
~~~~ ~ ~ ~ ~ ~ ~ ~ 

10 540.4097 540.61 66 540.71 13 540.9258 540.666 -0.060 

11 540.3959 540.601 0 540.7048 540.91 18 540.653 -0.073 

12 540.4047 540.5971 540.71 49 540.9048 540.655 -0.071 

11 13 I 540.4563 I 540.6306 I 540.7449 I 540.9327 I 540.691 I -0.035.. 
~~ 

14 540.4992 540.661 9 540.7843 540.9631 540.727 0.001 

15 540.5001 540.6587 540.7907 540.9912 540.735 0.009 

16 540.5072 540.651 7 540.7943 540.9872 540.735 0.009 

17 540.4202 540.5598 540.731 1 540.8808 540.648 -0.078 1. 18 540.4475 540.5749 540.7536 540.8906 540.667 -0.060 

19 540.7500 540.8649 541.0600 541 .I 860 540.965 0.239 I 20 540.61 76 540.71 88 540.9238 541.041 1 540.825 0.099 

21 540.4661 540,5607 540.7765 540.8786 540.670 -0.056 

22 540.4544 540.5380 540.7601 540.8578 540.653 -0.074 

23 540.5428 540.6097 540.8499 540.9133 540.729 0.003 

24 540.5397 540.5972 540.8421 540.8961 540.71 9 -0.008 

Average Temperature Indicated by Narrow-Range RTDs: 540.726OF 



I I 
TABLE 7.2 

Typical Cross Calibration Results for a Group of 
Wide-Range RTDs 

I I 

I I 

1 540.0240 540.0829 540.2940 540.3598 540.190 , -0.536 

2 539.9838 540.0231 540.2863 540.3384 540.158 -0.568 

3 540.5137 540.5539 540.8250 540.8563 540.687 -0.039 

4 540.2070 540.231 6 540.51 15 M0.5371 540.372 -0.355 

5 540.4871 540.5021 540.7723 540.7889 540.638 -0.089 

6 540.5501 540.5601 540.8533 540.8639 540.707 -0.01 9 

7 

8 

9 

10 

11 

12 

13 

14 

541.3847 541.4781 541.51 95 541 S708 

539.5880 539.6675 539.71 07 539.7680 

540.6260 540.6905 540.7257 540-7779 

540.1 643 540.2307 540.2730 54O.3213 

541.0316 541.1171 541 .I 603 541.2085 

541.2609 541 3354 541.381 7 541.4330 

540.6287 540.6969 ti40.7425 540.7959 

540.5922 I 540.6750 I 540.7162 - 1  540.7535 

541 -488 0.761 

540.705 -0.022 

540.248 -0.479 

541.130 0.403 

541.353 0.626 

540.71 6 -0.01 I 

Average Temperature Indicated by Narrow Range RTDs = 540.726OF 
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TABLE 7.3 

Typical Cross Calibration Results for a Group of 
Core Exit Thermocouples in One of Four Quadrants in a PWR 

ll 

12 541.0404 541.0982 541.1 462 541 2242 541.127 0.400 

13 540.8296 540.8507 540.9914 540.9801 540.912 0.1 85 

Average Temperature Indicated by Narrow Range RTDs = 540.726OF 
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RTDs were analyzed using the same procedure measurement equipment, the stability and 
as for the narrow-range RTDs. The data for uniformity of the plant temperature during the 
thermocouples were converted from voltage tests, the measurement precision, etc. These 
readings to temperature using generic uncertainties should be identified and 
calibration tables available for Type K statistically combined to assess the accuracy of 

. thermocouples. the cross calibration results. 

A detailed description of the cross calibration 
technique is provided in the NUREG/CR-5560 
report.(12) This report also includes research 
results which show that a group of 
temperature sensors generally drift in a 
random fashion and common-mode drift is not 
usually a problem. Previous research had 
shown that thermal and vibration aging usually 
cause an RTD's resistance to increase. As 
such, RTDs have often been suspected of 
common-mode drift. Although this is generally 
true for Standard Platinum Resistance 
Thermometers (SPRTs), industrial RTDs of 
the types used in nuclear power plants are 
generally immune from. this problem as. 
indicated by the results in NUREG/CR-5560. 
The sensing elements (a pure platinum wire) 
in SPRTs are designed to have unrestricted 
support as opposed to being secured to a 
support structure. This helps prevent 
interaction between the element and the 
support structure. Under vibration stress, 
however, the unrestricted element in the 
SPRT can experience cold working which can 
result in an increase in resistance. It is for this 
reason that SPRTs are annealed to relieve the 
mechanical stress before they are recalibrated. 
The sensing elements in industrial RTDs are 
not free to move as in SPRTs. Rather, they 
are secured to a support structure. As such, 
the common-mode drift that may occur in 
SPRTs is not prevalent in industrial RTDs. 

The accuracy of the cross calibration results 
depends on the number of temperature 
sensors that are cross calibrated, the number 
of outliers, the accuracy of the sensor 
calibration tables used to convert the sensor 
output to equivalent temperature, the accuracy 
and stability of resistance and voltage 

Another method called "Johnson Noise" has 
been studied for in-situ calibration of nuclear 
plant RTDs.(I4) This method is based on 
measurement of a small noise voltage 
(microvolt) or current (nanoamp) that is 
produced naturally in any passive resistor such 
as the sensing element of an RTD. This noise 
voltage or current is a function of the RTD's 
resistance and temperature by the following 
equations: 

- 
V 2 = 4 k T R A f  (7.1) 

y2= 4 k  T A f  
R (7.2) 

- 
where k is the Boltnnann constant, is the 
mean-squared open-circuit noise voltage in the 
bandwidth Af (Hertz) across a resistor of R 
(Ohms) at an absolute temperature of T 
(Kelvin); and I is the short-circuit noise 
current. The frequency band (Af) at which the 
Johnson noise voltage is measured is in the 
kilohertz (KHZ) range; typically about SOKHz. 

These equations can be used to identify the 
absolute resistance or absolute temperature of 
the RTD element as follows: 

T = ( f i ) / 4 k  A f  (7.3) 

c 
R = m  (7.4) 

The Johnson Noise method requires 
sophisticated equipment, procedures and 
expertise to measure the small noise voltage or 
current at the end of several hundred feet of 
wire from the field to where the RTD 
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extension leads are terminated. As such, the 
method is not currently used in nuclear power 
plants especially since the cross calibration 
method can provide the desired in-situ testing 
capability with a simple set of equipment and 
a straightfonvard procedure; 
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8. ON-LINE CALIBRATION TESTS OF PRESSURE TRANSMIT'IXRS 

Chapter 7 described how redundant 
temperature sensors are cross calibrated by a 
single scan of the sensors and simple 
averaging. When a large number of redundant 
sensors is not available, a single scan of 
sensors is not sufficient for calibration testing. 
The instruments must be scanned repeatedly 
over a long period of time and their deviations 
from a best estimate of the process plotted to 
verify their calibrations based on whether or 
not they have exhibited a significant or 
consistent drift. 

Except for primary coolant RTDs and core 
exit thermocouples (CETs) in PWRs, there are 
usually no more than four redundant sensors 
in nuclear power plants for most 
measurements. Therefore, the calibration of 
these instruments must be tested using a 
different procedure. The procedure calls for 
the cross calibration tests to be performed on 
the instruments on a periodic or continuous 
basis throughout each fuel cycle, and the 
deviation of the instruments to be plotted as a 
function of time and examined for evidence of 
drift. Figure 8.1 shows typical results of this 
procedure for four redundant signals from the 
McGuire nuclear plant. Note that the signals 
do not show a significant drift, but there are 
steady-state (bias) differences between the 
signals. These biases are generally due to 
normal calibration differences between 
instruments, different tap locations, etc. The 
deviation plots can be made to all begin at the 
same point on the vertical axis by removing 
the bias differences to show only the drift of 
the signals. Figure 8.2 shows the drift plot for 
four McGuire signals with the bias differences 
removed. 

Figure 8.3 shows a raw data and a deviation 
plot for five signals from laboratory tests 
including a calibrated reference signal. Note 
in the raw data that although the five signals 

commonly drift, the deviation plot shows 
norinal results. If the reference sensor was 
not included in this test, then it would have 
been difficult to determine whether the drift 
was due to the sensors or the process. The 
sensors could have all been drifting together at 
the same rate resulting in a deviation plot that 
only indicates that the sensors agree with each 
other, but no information to detect any 
common-mode drift. That is, the deviation 
plot alone cannot reveal common-mode drift. 
An independent means is needed to determine 
any significant drift. A calibrated reference 
instrument can provide the capability to 
distinguish between process drift and 
instrument drift. The reference instrument in 
the example of Figure 8.3 shows the same drift 
as the redundant instruments meaning that the 
common-mode drift is due to the process. For 
in-plant tests, the reference channel could be 
one of the redundant channels that is manually 
calibrated before and after each on-line 
monitoring period. A good practice would be 
to calibrate one of the redundant channels on 
a rotational basis at the end of each fuel cycle 
so that all channels are manually Calibrated 
after a few fuel cycles whether or not they 
have drifted. 

Analytical modeling of the process can be used 
in lieu of or in addition to a reference channel 
to characterize the behavior of the process. 
Both physical and empirical modeling 
techniques can be used; however, empirical 
models are more practical and advantageous 
than physical models and were therefore used 
in almost all of the analytical work performed 
in this project. 

Neural networks, which are a form of 
empirical modeling, can also provide a means 
to obtain a best estimate of the process to be 
used for drift monitoring. Figure 8.4 shows 
empirical modeling and neural network results 
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for laboratory data which involved a drifting 
sensor. As shown in this figure, the empirical 
model and neural network techniques 
estimated the process as being stable. 
Therefore, the drift observed here is due to 
the sensor and not the process. This example 
shows that analytical techniques such as 
empirical modeling and neural networks can 
help identiij drift in even a single sensor or 
instrument channel. If redundant instruments 
are also available, a good approach is to 
estimate the process by averaging the 
redundant instruments, empirical modeling, 
neural networks, and other valid process 
estimation techniques. The results of these 
techniques can then be averaged together as 
was shown earlier in Chapter 6 to provide a 
"best estimate" for the process. 

Figure 8.5 shows an example of process 

estimation results from simple and weighted 
averaging, empirical modeling, and neural 
networks. These results are from three years 
of on-line monitoring data collected at the 
McGuire nuclear plant over two consecutive 
fuel cycles. The process estimation results in 
Figure 8.5 are reasonably close to one another, 
and an average of the four traces could 
provide a %est estimate" for the steam 
generator level process. 

A description of empirical models, neural 
networks, and other analytical techniques for 
process estimation and on-line drift monitoring 
is presented in Chapter 9. In Chapter 15, 
laboratory validation results are shown in 
which redundant signals were artificially drifted 
one at a time to demonstrate how simple and 
weighted averaging as well as empirical and 
neural network modeling can identm drift. 

, 

! 
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9. PROCESS ESTIMATION TECHNIQUES 

During the Iast fifteen years, a number of 
advanced signal processing methods have been 
developed for a variety of applications 
including on-line monitoring for instrument 
calibrationverification in nuclear power plants. 
The methods that may be used for on-line 
calibration monitoring are summarized in this 
chapter, and the details of some of these 
methods are presented in Appendices A 
through E. 

9.1 Pattern Recognition 

This method is used to identify the deviations 
of signals from their normal or historical 
behavior. It is a vaIuable tool in processes 
where there is a large database from which to 
develop the baseline behavior or normal 
pattern of the process. The method does not 
depend on analytical models. Rather, it uses 
matrix manipulation of a large number of 
signals to establish “patterns” representing best 
fits to previous operations. A list of signals 
which have a relationship to the signal of 
interest is used to establish the baseline 
patterns. 

The first use of pattern recognition in a 
nuclear facility occurred at the Experimental 
Breeder Reactor (EBR-11) in Idaho to provide 
estimates of the reactor power level, reactor 
outlet temperature, etc.(”) Once the 
parameters of interest are chosen, the next 
step is to select periods of reactor operation 
that are typical for the plant conditions of 
interest. These periods of operation are used 
to “teach” the system what to expect from each 
of the signals involved. For example, to 
estimate the power level at EBR-II, 129 
signals were used in learning the necessary 
patterns. If any of the related signals exhibited 
unusual behavior relative to the others, its 
behavior was flagged. For example, when a 

reactor coolant outlet temperature sensor at 
EBR-11 drifted, giving an incorrect reading, the 
pattern recognition method was able to predict 
the temperature with a reasonable accuracy, as 
shown in Figures 9.1 and 9 2  

9.2 Parity Space 

The parity space technique is one of several 
methods that can be used to determine the 
consistency of redundant signals and identify 
weighing factors based on the consistency of 
the signals. References 1 and 2 provide 
detailed descriptions of the parity space 
technique and how the technique may be used 
to identiQ faulty signals. 

9.3 Generalized Consistency 
Checking 

Like the parity space method, the Generalized 
Consistency Checking (GCC) method is used 
to track redundant signals and identi@ 
inconsi~tencies.(~) An inconsistency counter is 
employed in the GCC method to record the 
number of times that a signal is found to be 
inconsistent. After excluding the signals with 
maximum inconsistency indices, the best 
estimate of the process at any time is 
computed as a weighted average of the 
remaining signals. The procedure is illustrated 
in Figure 9.3. Three signals are compared two 
at a time to determine if their differences lie 
within a pre-determined acceptance criteria. If 
the acceptance criteria is satisfied, then the 
two signals are said to be consistent. 
Otherwise, the signals are inconsistent and 
must be compared with other signals to 
determine which of the two signals is 
inconsistent. Alternatively, analytical models, 
as described below, can be used to track the 
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process and compare the individual signals 
with the process estimate to identify the 
inconsistent signals. 

Figure 9.4 shows two examples of inconsistent 
signaIs which were identified and flagged in 
laboratory demonstration tests of the GCC 
method. 

9.4 Analytical Redundancy 

Analytical redundancy is the general term for 
most techniques which combine equations and 
operating data to characterize the behavior of 
a process. As such, empirical and physical 
modeling, pattern recognition, neural 
networks, and other mathematical techniques 
are subsets of analytical redundancy. 

Analytical redundancy is a term that is used as 
opposed to hardware redundancy. When a 
sufficient number of redundant channels are 
not available to be intercompared, hardware 
redundancy is said to be inadequate and 
analytical techniques are thus used to create 
redundant signals. The word "analytical" is 
used because the method creates new signals 
from results of calculations using data-driven 
physical or empirical models. A model is a set 
of mathematical equations that are developed 
based on the laws of physics (physical model) 
or experience with the process (empirical 
model). Models are used to calculate a process 
parameter from measurements of other 
parameters that have a relationship with the 
process parameter of interest. 

In addition to instrument calibration 
verification in nuclear power plants, the 
analytical redundancy approach has been used 
in the development of "fault tolerant" systems 
so that signal loss due to an instrument failure 
cannot have a significant effect on the process 
operation. The lost signal is replaced by a 
calculated signal that is obtained from a model. 

The constants in physical models are identified 
from material properties, dimensions, and 

other known characteristics of the plant. The 
constants of empirical models, on the other 
hand, are identified by fitting the operational 
plant data to the empirical model. As such, 
these and most other analytical modeling 
techniques are somewhat specific to the 
process for which they are developed. Also, 
the analytical techniques are generally 
dependent on the operating state of the 
process and the same model that is designed 
and optimized for an operating condition may 
not be suitable for other operating regimes. A 
description of physical and empirical models 
and neural networks follows. 

9.4.1 Physical Models 

In closed loop systems such as nuclear power 
plants, many process parameters are related to 
one another. Therefore, each parameter can 
usually be estimated from measurement of 
other parameters. A simple example is from 
BWRs in which the reactor coolant 
temperature can be determined from a 
measurement of pressure and vice versa. 
Similarly, in a PWR, steam temperature can be 
estimated from measurement of steam 
pressure. In these examples, the physical 
model is a simple thermodynamic relationship 
between two parameters. However, most 
process parameters cannot be estimated from 
a simple relationship and a single signal. Two 
or more signals and several relationships are 
often needed to relate the parameter of 
interest to the measured signals. An example 
of a physical model that may be used for 
on-line calibration monitoring is shown by 
Equation 9.1 on the next page. 

Equation 9.1 represents one of many 
differential equations that must be solved to 
model a process. For example, a physical 
model, attempted in this project, for a steam 
generator involved 24 differential equations 
and 30 process parameters. As such, physical 
modeling of nuclear plant parameters requires 
an extensive amount of analytical work, 
computing time, and computing power. Thus, 
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where: 

water level in the pressurizer 
vapor density in the pressurizer 
cross-sectional area of the pressurizer 
effective pressurizer length 
water density in the pressurizer 
pressurizer pressure 
idout surge flow rate 
condensation/evaporation flow rate in 
the pressurizer 

physical models are not generally as 
convenient as other analytical techniques for 
estimating a process parameter, and we are 
therefore not including much test data in this 
report involving physical models. 

9.4.2 Empirical Models 

Empirical models are linear or nonlinear 
equations that are written based on 
assumptions made regarding the form of 
relationships between the variables of the 
modeled process. An example of an empirical 
model that may be used in process estimation 
for drift monitoring is given below: 

y = AX: + Bx, + CX, x, + D%2 + Ex, + F (9.2) 

where: 

y = Pressurizer Level 
x, = Pressurizer Pressure 
x, = Hot Leg Temperature 
x, = Reactor Coolant System Pressure 

The following are the constants of this 
equation which were obtained by fitting 
operational data from the McGuire nuclear 
plant to Equation 9.2. 

A = 2 . 8 1 ~  10" 

C = - 1 . 3 4 ~  lo6 
D = 5 . 0 3 ~  10" 
E = 4.56 x 
F = 1 . 2 3 ~  16 

B = -1.25 

Figure 9.5 provides a comparison of empirical 
and physical modeling results for a McGuire 
pressure signal. The measured pressure signal 
is also shown in this example indicating that 
the modeling results are in reasonable 
agreement with the measurement. 

9,4.3 Neural Networks 

The advantage of empirical models over 
physical models is that empirical models do not 
require a knowledge of material properties, 
geometry, and other characteristics of the 
plant. They are identified by fitting plant 
operational data to an equation that represents 
a plant subsystem and determining the 
constants of the equation. This fitting process 
is often referred to as "learning." Neural 
networks can help facilitate and expedite the 
learning process involved in empirical 
modeling. 

Neural networks are generic empiriqal models 
which use iterative fitting techniques to 
establish the nominal relationships between 
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inputs and outputs of a system at a given 
operating condition. Once the nominal 
relationship is identified, the neural network 
can track outputs of the system and reveal if 
they are deviating from the nominal condition. 
The advantage of neural networks is that they 
do not require any knowledge of the system 
being monitored, nor do they require the user 
to define the specific form of the empirical 
model. 

Neural networks can take the place of 
empirical modeling and pattern recognition in 
applications such as on-line drift monitoring 
discussed in this report. They are easy to 
employ and can be used to identi@ the drift of 
most process parameters under a variety of 
operating conditions; provided that the neural 
network is sufficiently trained with appropriate 

leaving only the noise. The noise should have 
a Gaussian distribution given by: 

Where p(x) is the probability density function 
of the noise signal {x), and p and (T are the 
mean and the standard deviation of the noise 
signaI, respectively. 

The term "sequential probability" or SP in the 
SPRT is derived fiom the fact that the 
probability of obtaining the sequence of 
measurements x,, x, x,, . . ., x, is equal to the 
product of probabilities of attaining each 
measurement. That is: 

input/output I data. The training involve 
feeding the input(s) and output(s) of the P(XlY XZY x3, .e- x13 = P(XJ.P(XJ.P(X3) - - b'P(%) (9.4) 

system to a neural network to establish the 
input/output relationship. If at a later time, an 
input to the system drifts, or experiences other 
anomalies, neural networks can identify the 
problem by revealing a change in the 
inputloutput relationship that was established 
during training. 

The term "ratio test" or RT in the SPRT 
comes from the ratio of two probabilities: the 
probability that something is wrong divided by 
the probability that the signal is normal. 
Something is said to be wrong if p or cs exceed 
an acceptance criteria defined by the user. 
The signal is said to be normal if p is near 
zero and (T is within an acceptable range 
during the monitoring process. 9.5 Sequential ProbabiIity Ratio 

Test If pgmd and are the acceptable limits for 
the mean and standard deviations and pbad and 

SPRT was developed by Wald in the 1940s (Thad represent values that deviate from the 
and has been adopted in the recent years for acceptance criteria, the probability ratio 
analysis of on-line monitoring data for mentioned above may be written as: 
detecting drift and other anomalies in nuclear 

probability that the measured noise has plant ins&uments.(l6) The method is applied to 
a random signal that is derived from a bad distribution characterized by p, and a, 
measurements. The following procedure RT = 
illustrates the principle of the SPRT method 
using pairs of redundant signals. One of the 
two signals is first subtracted from the other. 
This usually leaves a steady-state difference or 
bias between the two signals plus random The above ratio is calculated and compared 
fluctuations (noise) which normally exist at the against an acceptance criteria to determine if 
output of process instruments when the plant the results are normal, abnormal, or in 
is operating. The bias is then subtracted out between. The acceptance criteria for the 

probability that the measured noise has a 
good distribution characterized by yd and oKd 
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SPRT are selected so that the results of the 
SPRT applications are not so sensitive to 
produce "false alarms" or so weak to result in 
"missed alarms." 

9.6 Process Hypercube 
Comparison 

This method is similar to pattern recognition 
with an improved data storage ~apability.(~~*'~) 
As with pattern recognition, the state of the 
process is "learned using plant operational 
data. All possible states within the normal 
operating region of the process are stored. If 
in the future, a state is identified that has not 
existed before, the responsible signal(s) are 
searched for and identified. 

The Process Hypercube Comparison (PHC) 
technique derives its name from the fact that 

the learned process states are stored in a 
hypercube data structure. The structure 
contains a history of valid process conditions. 

Consider a system in which only three 
variables (x, y, z) are monitored. Suppose that 
the range of each variable is divided into five 
intervals. Also, suppose that all possible states 
of the process lie on the diagonal of the three- 
dimensional cube that is formed by the three 
variables (Figure 9.6). The cells shown in 
Figure 9.6 should be numbered (l,l,l), (2,2,2), 
. . . , (535) .  Now while monitoring the 
process, suppose that a new state is seen at 
(1,1,5) as shown in Figure 9.6. It is obvious 
that both the x and y have been observed 
together before in this combination but that z 
was observed in a different state @e., z=1 
instead of z=5). Thus, the true state is 
probably (l,l,l) and the variable z is in error. 
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10. UNCERTAINTIES OF PROCESS ESTIMATION TECHNIQUES 

Process estimation techniques such as simple 
and weighted averaging, empirical modeling, 
pattern recognition, and neural networks have 
uncertainties which depend on many factors 
such as the number of redundant signals, 
frequency and length of data collection, 
measurement uncertainties, model order and 
convergence criteria for data fitting, reliability 
of input signals, etc. These factors can make 
it difficult to determine the overall 
uncertainties of process estimation results. 
However, process estimation uncertainties may 
or may not play an important role in 
determining the drift of instrument channels. 
Figure 10.1 illustrates two columns of plots, 
each with three plots showing the following 
cases: an instrument channel or sensor that is 
drifting, an estimate of the process parameter 
that is being measured, and the channel 
deviation from the process estimate. The 
column on the left shows the situation 
assuming that the process estimation result has 
no uncertainties. In this case, of course, the 
instrument drift which is the slope of the 
deviation. plot is identified exactly. 

The column on the right shows the situation 
assuming that the process estimation result has 
an uncertainty denoted as fx. If the 
uncertainty is constant throughout the on-line 
monitoring process, then the drift (i.e., the 
slope of the deviation plot) can be identified 
correctly in spite of the uncertainty. However, 
if the uncertainty is not constant, then the drift 
results may be affected by the process 
estimation uncertainty. 

Although process estimation uncertainties may 
be difficult to quantm, it is reasonable to 
assume that their values, whatever they may 
be, remain constant throughout the on-line 
monitoring process and that drift results from 
on-line monitoring of instruments are not 
generally affected by the uncertainties of 
process estimation techniques. The process 

. estimation uncertainty does, however, affect 
the ability to determine when the deviation of 
an instrument channel is unacceptable. 

Another concern with the use of on-line drift 
monitoring is often expressed as follows. If 
the process is noisy and the noise level is 
larger than the instrument drift, then the noise 
could hide the drift. Figures 10.2 and 10.3 
show two series of McGuire plant data which 
illustrate that signal drift and even sudden 
changes in the signals can be recovered from 
the noise. In Figure 10.2, a three-month 
record of three flow signals is shown. It is 
apparent that the spikes and noise in the raw 
data are larger than the slow changes in the 
signal levels. Nevertheless, as shown in the 
filtered data, the average changes in the signal 
can be readily extracted from the noise. The 
drift is a low frequency phenomenon that can 
be extracted from noise using a low-pass filter. 
A window-averaging algorithm was developed 
in this project and successfully tested for 
removing the extraneous spikes and noise from 
the raw data. The algorithm functions as a 
digital low-pass filter which is implemented 
during the data qualification process. 

Figure 10.3 shows another example in which 
the raw data experiences a sudden shift. The 
shift is not much larger in amplitude than the 
noise of the signal. Nevertheless, it is easily 
recovered from the noise. Figure 10.3 also 
shows the deviation plot for the four signals. 

In Figure 10.4, the same signals of Figure 10.3 
are shown without filtering. Although the 
.deviation plot indicates a smaller level of noise 
than the raw data, it is not as desirable as the 
clean deviation plot shown in Figure 10.3 for 
which the data was first filtered. This 
illustrates the benefit of the filtering and 
points out that the noise in the raw data is not 
cancelled out in the deviation plot. 
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1L ACCEPTANCE CRITERIA FOR ON-LINE MONITORING RESULTS 

On-line monitoring can identify drift in a 
sensor such as a pressure transmitter or an 
entire instrument channel (except for the 
actuation system) depending on where the on- 
line monitoring system is connected to the 
instrument channel. The next step after 
identiwng the drift is to determine if the drift 
is acceptable and to set alert and alarm limits 
for corrective action as necessary to remedy 
the drift problem or mitigate its consequences. 
An alert limit is a conservative band that may 
be used to identifj the onset of a potential 
drift problem, and an alarm limit is a band that 
may be used to identify the point at which 
corrective action should be initiated to prevent 
a channel from exceeding its drift allowance. 

also referred to as bias errors. The words 
uncertainty, error, and accuracy are used 
interchangeably.) 

If the uncertainties are random, then they are 
squared and the square root of the sum of the 
squares (called RSS error) is calculated and 
added to the sum of the biases to yield the 
total uncertainty for the channel as shown in 
Equation 11.1 below. Note, in this equation 
that the errors that are dependent are first 
added together and then squared in calculating 
the RSS error.(lg) 

The total channel uncertainty calculated from 
Equation 11.1 is often referred to as the 

(11.1) 

1Ll Instrument Channel 
Uncertainties 

Table 11.1 shows typical sources of 
uncertainties and their corresponding values 
for most of the services that were monitored at 
the McGuire plant. Some columns in Table 
11.1 are left blank because they do not apply 
to the McGuire signals monitored in this 
project. They were, nevertheless, included in 
the table because they generally play a role in 
arriving at instrument channel uncertainties in 
nuclear power plants. 

The uncertainties listed in Table 11.1 are 
defined in Table 11.2. These uncertainties are 
combined in a manner which depends on 
whether they are random or systematic, 
dependent or independent. (The random 
uncertainties are also referred to as accidental 
errors, and the systematic uncertainties are 

channel statistical accuracy or channel 
statistical allowance (CSA). The CSA is a 
parameter of interest in determining the trip 
setpoints for the plant. A larger CSA means 
that there is more room for instrument drift, 
but a smaller margin for trips, and vice-versa. 
Therefore, a plant would normally desire as 
small a CSA as possible to allow operation 
with as much margin as possible. 

For a more detailed description of setpoints 
and CSA methodologies for nuclear power 
plants, the reader may consult references 19 
through 21 listed at the end of this report. In 
this report, a general View of setpoint 
information is provided using some of the 
McGuire instrument specifications as an 
example to illustrate how the uncertainties of 
individual components of a channel may be 
combined to determine the acceptance criteria 
for on-line monitoring results. 
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VI 
P 
I 

Service PMA PEA 

Feedwater Flow 0.00 0.25"' 

TABLE 11.1 

SCA SMTE SD SPE STE RCA RMTE RCSA 

0.10 0.30 0.56 0.10 1.50 0.00 

Pressurizer Level 

Steam Generator 1 2.00'" 1 I 0.50 I 
Level 

2.00'2' 0.50 1.00 0.50 0.50 0.50 0.35 

1 1-00 I 0.30 1 0.50 I 0.50 I 1 0.48 

Wide Range 
Pressure 

Reactor Coolant 
Flow 

0.00 0.50 1.50 0.00 0.50 0.50 0.35 
1 

1 0.60 I 0.00 I 0.00 1 0.30 I 1 0.17 

Pressurizer 
Pressure 

0.00 0.50 1.00 . 0.00 0.50 0.50 0.35 

Containment 
Pressure 0.00 0.50 1.00 0.00 0.80 0.50 0.35 

Power Range 

lncore 
Thermocouples 

Steam Pressure I 0.20'6) I 1 0.50 I I 1.73 I 0.00 I 1.12 I 0.50 I I 0.35 

~ - 

4.17 4.17 0.00 0.00 0.00 0.50 0.25 

0.00 7.20 10.00 0.00 2.30 6.90 0.00 

Turbine Impulse 
Pressure 1 0.00 1 I 0.50 1 1 0.63 I 0.00 I 0.72 I 0.50 1 I 0.00 

Footnotes: 1. 0.25% represents uncertainty in flow measurements due to flow orifice 
2. 2.00% represents uncertainty in level measurements due to the density of water 
3. 0.33 of this 1.4 is uncertainty in flow measurements due to the density of water 
4. 0.05% is bias due to tap location 
5. 1 S O %  bias represents thermal non-repeatability 
6. 0.20% is due to water leg compensation 

I PWR Plants 

- 
RD RTE EA BIAS 

1.00 0.50 0,OO 

1.00 0.50 0.00 

0.60 0.30 0.05") 

1.00 0.50 0.00 

1.00 I 0050 1 1 0.00 

1.50 I 0.50 I I 0.00 

2.30 11.50 0.00 

I 

, -  

I ,  

I 

Above are bias terms that are common to redundant sensors. Thus, they were not included in calculating the 
process estimation uncertainties presented in this chapter for the McGuire instruments. 



I 

VI 
VI 

I 

PMA 

PEA 

SCA 

SMTE 

SD 

TABLE 11.2 

Process measurement accuracy. Inherent noise in the process. PMA sources are listed as Water Leg Correction, Elbow Tap 
Error, Streaming & Thermal Mismatch (Power Range Detectors), For the RC Flow Channel, PMA is a RSS combination of 0.33 
for Density, 0.30 for noise, and 1.33 for calorimetric uncertainties. This RSS combination equals to 1.4%. 

Primary Element Accuracy. Represents the error due to the use of a metering device like a flow orifice, etc. 

Sensor Calibration Accuracy. Inherent accuracy of the sensor at reference conditions; typically vendor supplied. 

Sensor Measurement & Test Equipment. McGuire calculation assumes 0.0 for SMTE because equipment used in this plant 
meets 4:l accuracy ratio. 

Sensor Drift. Observed change in sensor accuracy as a function of time; typically supplied by the vendor. 

SPE 

STE 

RCA 

RMTE 

RCSA 

RD 

RTE 

EA 

BIAS 

Sensor Pressure Effects 
- 

Sensor Temperature Effects 

Rack Calibration Accuracy 

Rack Measurement & Test Equipment. McGuire calculation assumes 0.0 for SMTE because equipment used meets 4:1 
accuracy ratio. 

Rack Comparator Setting Accuracy 

Rack TemDerature Effects 

Environmental Allowance. Represents the change in the instrument channel’s response due to accident environmental 
conditions. McGuire calculation uses 0.0 for EA because these are normal CSAs rather than accident CSAs. 

For the RC Flow channel, this represents the flow measurement error for the elbow taps, 



112 CSA Band and Drift Band 

An instrument channel is said to be in 
calibration if the difference between its input 
and output is less than the CSA or if its drift 
is contained within the drift allowance for the 
channel. For on-line calibration monitoring, 
the channel output is subtracted from the best 
estimate of the process input and the results 
are plotted over the entire fuel cycle to check 
for drift and other problems. Figure 11.1 
shows the results of this exercise for two 
services at the McGuire plant. The results in 
this figure are shown in terms of the deviation 
of each signal from the average of the 
redundant signals. Also shown in Figure 11.1 
are the CSA bands. A discussion on how the 
CSA band may be determined is given later in 
this chapter. 

Figure 11.2 shows the same data as in Figure 
11.1 except that in this case, the signals are 
biased as necessary to start them at zero on 
the vertical axis. Appropriate drift bands for 
these signals are also shown on the figure. 
The drift band is calculated by squaring the 
sensor drift (SD) and rack drift (RD) terms, 
adding the two results, and calculating the 
square root of the sum. The result is then 
multiplied by (n-l)/n to account for the 
number of redundant signals that are 
intercompared on the same plot. Following is 
the equation for the drift band 

DRIFT BAND = dSD2 + m2 (n-1) (11.2) n 

where n is the number of redundant signals 
that are intercompared on the same plot. If 
analytical methods are used for process 
estimation instead of averaging methods, then 
the above equation for drift band does not 
need the (n-l)/n term. 

Drift band is a simpler means than the CSA 
band for determining the calibration 

acceptability of instrument channels. In using 
the drift band, one assumes that all channels 
agree with each other when the plant starts 
from a refueling outage. This assumption is 
valid because redundant instrument channels 
are all manually calibrated with the same 
procedure during a refueling outage and they 
should thus agree with each other. If they do 
not agree, however, it could be due to 
inherent uncertainties involved in the 
calibrations. These uncertainties only affect 
where the signals may start on the on-line 
monitoring plot, but have no bearing on how 
much the signals may drift from the beginning 
to the end of a fuel cycle. Ideally, after a full 
channel calibration which is performed during 
a refueling outage, and when the plant is at 
full power, there should be no deviation 
between a process estimate and the 
corresponding instrument channel output. If 
there is, the difference represents a bias. This 
bias can be subtracted from the deviation plot 
and the residual deviation attributed to drift. 
With this approach, the acceptance criteria 
can be defined in terms of an allowable drift. 

Furthermore, drift is the only component of 
CSA which drives the requirement for manual 
calibrations. As such, it is reasonable to 
monitor for drift to determine if an instrument 
channel needs a manual calibration. 

lL3 Procedure for Calculating the 
CSA Band 

A conservative procedure is outlined below for 
determining the CSA band for four steam 
generator level signals using the information 
given in Tables 11.1 and 11.2. 

1. Combine the accuracies of the 
components that were included in the 
on-line monitoring of the channel. At 
McGuire, all components listed in Table 
11.1 for the steam generator level 
channel were included in the on-line 
monitoring except for the comparator 
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whose error is designated in the table 
under the column marked RCSA. 
Therefore, the CSA is calculated as 
follows: 

that are not included in the on-line 
monitoring (e.g., RCSA). For steam 
generator level transmitters, the common 
bias is 2.0% due to uncertainty of water 

(11.3) 

CSA = d ( 2 . 0 ) ’  + (1.5)’ + (0.3)’ + (0.5)’ + (1.5)’ + (0.5)’ = rt3.01 % of span 

Figure 11.3 illustrates how the CSA band density. Therefore, the uncertainty of each 
would have been used if only one signal steam generator level signal is calculated 
was involved in the on-line monitoring. using Equation 11.1 but excluding not only 
However for four signals to be the RCSA, but also the PMA term as 
intercompared on the same plot, the CSA shown in Equation 11.4 below. 
band is reduced by (n-l)/n, where n is the 
number of signals that are intercompared 
on the same plot. 

(11.4) ai = (/(SCA + S D ) ~  + (SPE)~ + (STE)~ + (RCA + RD)’ + ( R T E ) ~  

2. The uncertainty of process estimation must 
be subtracted from the CSA calculated in 
step 1. This uncertainty may be calculated 
as shown in Figure 11.4 and is described 
below assuming that simple averaging was 
used as the process estimation technique. 

For a conservative treatment of the 
uncertainties, we assumed that each of the 
four steam generator level signals have an 
uncertainty (q) which is calculated using 
Equation 11.1, but excluding the following 
terms: (1) the effect of common biases (if 
any) given in the footnotes of Table 11.1, 
and (2) error terms for the components 

As shown in Figure 11.4, the uncertainty of 
the process estimation using the average of 
the four redundant steam generator level 
sensors is: 

(4) (ai) (11.5) = 1.13 ?i of span 
4 

a =  

3. This uncertainty must be subtracted for the 
CSA band calculated in step 1 to account 
for the uncertainty of the process 
estimation results. Figure 11.5 shows (by 
dashed lines) the CSA band that is used for 
intercomparing four signals. 
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11.4 CSA and Drift Bands for 
McGuire Signals 

Table 11.3 shows drift and CSA bands 
calculated as outlined above for nine of the 
McGuire instrument channels. The CSA 
bands in this table are arrived at as follows: 

CSA Band = (CSA -a) *(n-l/n) -0.05 (11.6) 

The 0.05 percent subtracted in the equation 
above is to account for the measurement 
uncertainties associated with the on-line 
monitoring system. This value was obtained 
from the specifications of the components in 
the on-line monitoring system that was 
developed in this project and used at the 
McGuire plant. 

If analytical techniques such as empirical 
modeling or neural networks are used for 
process estimation, then the term (n-l)/n is not 
needed in Equation 11.6. 

Although the drift and CSA bands described in 
this chapter are for use with the results of 
averaging techniques, they can also be used 
with the results of analytical techniques. The 
drift and CSA bands for averaging techniques 
should be more conservative than those that 
would be obtained for analytical techniques. 
This is because the uncertainties of averaging 
techniques are generally larger than analytical 
techniques, thus, their drift and CSA bands are 
larger. 

There are some arguments against subtracting 
the CT from CSA (see Figure 11.5) to arrive at 

the CSA band given in Equation 11.6, and 
there is no consensus as to what constitutes a 
reasonably conservative CSA band to be used 
with the results of on-line calibration tests. 
Table 11.3 includes a column listing CSA 
bands without the effect of process estimation 
uncertainties. The CSA bands that werk used 
in this report, however, are those which 
include the effect of process estimation 
uncertainties. 

As indicated before, a drift band is less 
ambiguous and more straightforward than CSA 
for determining the calibration status of 
instrument channels. Nevertheless, discussions 
of the CSA band were presented in this 
chapter in addition to drift band to provide a 
better picture of the options that are available. 
The disadvantage of a CSA band is that it can 
produce false alarms depending on where a 
signal starts on the deviation plot. Figure 11.6 
shows three signals and the corresponding 
CSA band. Note that one of the signals 
exceeds the CSA band from the beginning of 
the cycle even though the instrument channel 
for this signal was manually calibrated during 
the preceding refueling outage. This is 
because redundant signals cannot be expected 
to all start on the same point at the beginning 
of a cycle even if they are all manually 
calibrated prior to starting the cycle. The 
normal uncertainties in the manual calibrations 
can cause bias differences between the 
redundant signals. 

It should be pointed out that the drift bands 
and CSA bands used with the results presented 
here are especially conservative and should not 
be used to draw conclusions about the 
acceptability of instrument channel calibrations 
at the McGuire plant. 
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TABLE 11.3 

Representative CSA and Drift Bands for Representative Instrument Channels 
at the McGuire Unit 2 Plant 

PO of Span) 

I 

52 
I 

- Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Channel 

Feedwater Flow 

Steam Generator 
Level 

Reactor Coolant 
Flow 

Pressurizer Level 

Wide-Range 
Pressure 

Pressurizer 
Pressure 

Containment 
Pressure 

Steam Pressure 

Turbine Impulse 
Pressure 

Number Of 
Signals 

2 

4 

3 

3 

2 

4 

3 

3 

2 

Drift Band 

0.52 

1.06 

0.57 

0.94 

0.90 

1.06 

0.94 

1.53 

0.59 

CSA Without 
Uncertaintv(') 

1.33 

2.26 

1.23 

2.03 

1.30 

2.81 

1.55 

2.1 6 

1.04 

CSA 
With Uncertainty(2) 

0.34 

1.36 

0.58 

1.10 

0.33 

1.92 

0.60 

0.86 

0.25 

(1) CSA band without uncertainty is calculated from Equation 11.3 and then multiplied by (n-l)/n, where n is 
the number of redundant signals that are intercompared on the same deviation plot. 

(2) CSA band with uncertainty is calculated from this equation: CSA Band = * [(n-l)/n] [CSA-01 -0.05, 
where ~7 is the uncertainty of process estimation technique. 
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12. TECHNOLOGY DEVELOPMENT AND VALIDATION 

The on-line monitoring system development 
and validation conducted in this project 
involved two steps as follows: 

1. On-linemonitoringsystem development 
to include the following: 

0 Data acquisition hardware and 

Development of data analysis 

software development 

algorithms and software packages 

0 Preparation of procedure for in-plant 
tests and interpretation of test results 

0 Development of procedures for quality 
assurance tkting and calibration of 
on-line monitoring system and 
documentation of test results 

2. Validation of on-linemonitoring techniques 
to include the following: 

0 Laboratory demonstration tests 

0 Software verification and validation 

In-plant demonstration tests 

0 Documentation of validation results 

The above steps are described separately in 
the next two chapters of this report. 

It should be pointed out that on-line drift 
monitoring is a simple task which does not 
require sophisticated equipment, algorithms, or 
procedures, A variety of data acquisition 
equipment and software packages are available 
from a number of suppliers that can be used 
for on-line monitoring tests. 

The analytical techniques that are needed for 
process estimations associated with on-line 
monitoring tests have been developed by a 

number of organizations and most of the 
information is available in open literature. In 
particular, neural networks, which are shown 
in this report to be very useful for on-line drift 
monitoring, are described in numerous 
publications not only in the field of nuclear 
engineering, but also in other engineering, 
scientific, and industrial reference publications. 
The references listed at the end of this report 
identify a few of the publications which 
contain most of the necessary information on 
analytical techniques for on-line calibration 
tests in nuclear power plants. 

The interpretation of results is probably the 
only area of an on-line drift monitoring 
program that may need special expertise and 
in-depth training. Whether the data is 
analyzed by simple or weighted averaging 
techniques or analytical methods such as 
empirical modeling, neural networks, or 
pattern recognition, there are peculiarities that 
would require experience to understand to 
interpret the results. 

Automated drift monitoring equipment 
incorporating expert systems that can analyze 
the data and interpret the results will 
eventually be deployed in the nuclear industry, 
but adequate experience does not currently 
exist to develop an expert system. On-line 
drift monitoring as a replacement for manual 
calibrations has not been in routine use in 
nuclear power plants. Upon NRC approval, it 
is expected that utilities will adopt the method 
and the necessary experience will begin to 
accumulate in order to develop an expert 
system for this application. 

In addition to on-line calibration testing in 
nuclear power plants, an on-line monitoring 
system can be used for predictive maintenance 
tests and performance monitoring of 
equipment and systems in a variety of nuclear 
and non-nuclear applications. 
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13. ON-LINE MONITORING SYSTEM DEVELOPMENT 

On-line drift monitoring requires a 
multichannel data acquisition system and a 
data analysis and plotting software. The 
requirements for the data acquisition system 
depend on the source of the data. The 
sources from which the data are available in 
nuclear power plants often varies from one 
plant to another and the same on-line 
monitoring system will not be suitable for all 
plants. For example, in some plants, the data 
may simply be acquired from the plant 
computer, and in others, a dedicated data 
acquisition system may have to be installed to 
interface with the plant instrumentation 
cabinets through isolation devices. Other 
sources of process instrumentation data 
include SPDS, patch panels, and plant-wide 
information systems. Also, plants that are 
retrofitted with new computers may include 
provisions to allow on-line drift monitoring 
without a need for additional hardware. 

To acquire data from the plant computer, a 
number of commercial software packages are 
available. These packages can be used to 
obtain the data and process them as they are 
collected, or store them on computer disks, or 
other storage media for subsequent analysis. 
A small computer such as a desktop or laptop 
personal computer may be used to transfer the 
data from the plant computer and store them 
on computer disks. The advantage of using 
data from the plant computer is that no 
additional equipment such as signal isolation 
devices and analog-to-digital converters are 
required. However, the plant computer may 
not have all the plant signals in a format that 
is suitable for on-line drift monitoring. 

The advantage of using SPDS, patch panels, 
and the like is that signals from these sources 
are usually isolated and can be readily 
accessed, digitized, and used for on-line 
monitoring with no disturbance to plant 
operation. However, these sources do not 
usually provide all the redundant signals that 

are needed for on-line drift monitoring. These 
and other existing sources of plant data were 
explored during this project to determine what 
must be developed to meet the on-line 
monitoring needs of most nuclear power 
plants. This effort concluded that a dedicated 
data acquisition, storage, and analysis system 
would be needed in most nuclear power plants 
to perform on-line drift monitoring. Although 
in some plants, data can be accessed and 
recorded from existing sources, most plants are 
not configured to allow all the necessary 
signals to be obtained from one convenient 
location. 

The challenge in implementing a dedicated 
data acquisition system in a plant is that, in 
most cases, plant data are available only from 
the plant protection cabinets in the control 
room or cable spreading room area. 
Furthermore, the signals are not usually 
available through isolated outputs. Therefore, 
for independent on-line monitoring, qualified 
isolation devices may have to be installed in 
some plants to allow access to the data. 

The data sampling frequency is arbitrary as 
long as enough data points are collected at 
reasonable intervals throughout the fuel cycle 
to reveal any significant drift in the instrument 
channels. There are trade-offs in using high or 
low sampling frequencies. The advantage of 
high sampling rates (such as one sample per 
second) is that channel transients, fluctuations, 
and spikes will be captured which can provide 
diagnostics information about the channel in 
addition to drift information. The 
disadvantage of high sampling rates is that they 
increase the data storage requirements, and 
can lead to false alarms. 

If the on-line monitoring system is only 
intended to identi@ drift, then continuous data 
acquisition may not be needed as long as 
reasonable amounts of data are collected at 
the beginning, middle, and the end of a fuel 
cycle. 
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14. VALIDATION OF ON-LINE MONITORING SYSTEM 

A comprehensive validation effort was carried 
out in this project to examine the suitability of 
on-line monitoring techniques for instrument 
calibration verification in nuclear power plants. 
This effort involved both laboratory and in- 
plant tests. The equipment setup and other 
arrangements for the laboratory and in-plant 
tests are described in this chapter. Test results 
are presented in chapter 15 for the laboratory 
validation tests, and in chapter 16 for the in- 
plant validation tests. 

The term "validation tests" used in this and the 
remaining chapters of this report refers to tests 
that were conducted here to demonstrate the 
feasibility of on-line calibration testing 
techniques for individual instruments and 
sensors, or groups of instruments and sensors. 
The laboratory tests were designed to test the 
algorithms and associated software packages 
which were developed for the project and to 
gain experience on the interpretation of 
on-line monitoring results. The in-plant tests 
were designed to determine if on-line 
monitoring tests can be performed without 
interfering with the plant operation, and to 
veri@ that on-line monitoring results can 
provide adequate and useful information about 
the calibration stability of sensors and 
associated components which constitute an 
instrument channel. 

14.1 Laboratory Validation Tests 

This work was conducted at the AMs 
laboratory using a test loop developed during 
Phase 1. The loop contains a 500 GPM pump 
and a 50,000 BTulhr heat exchanger and is 
made of transparent PVC pipes. A 
photograph of the loop is given in Figure 14.1 
followed by a schematic of the loop in 

Figure 14.2. The loop can be operated at 
temperatures up to 12OoF, pressures up to 100 
PSI, and flow rates up to 20 feet per second. 
While these conditions are not close to nuclear 
plant operating conditions, they are sufficient 
for testing the on-line monitoring equipment, 
algorithms, and software packages developed 
in this project. 

The laboratory loop is instrumented with 
temperature, pressure and flow sensors and 
associated instrumentation of the types used in 
nuclear power plants. In particular, the loop 
contains nuclear grade pressure sensors and 
RTDs, and Westinghouse Model 7300 
instrumentation racks acquired from nuclear 
power plants. A photograph of the 7300 
system and the loop operations and control 
console is given in Figure 14.3. From the 
control console, the temperature, pressure, 
flow, and other parameters in the loop could 
be manipulated as necessary to provide data 
for a variety of demonstration and validation 
tests. 

In addition to the laboratory loop that was 
constructed specifically for this project, existing 
equipment available at AMs from previous 
R&D projects for the NRC and others, as well 
as AMs' own equipment were used in the 
project. This included high temperature 
laboratory furnaces for testing of temperature 
sensors, an environmental chamber for testing 
of pressure sensors, oil and ice baths for 
calibration of temperature sensors, standard 
platinum resistance thermometers for 
calibration of RTDs and thermocouples, 
voltage, resistance, and other calibration 
standards, measurement and test equipment, 
personal computers, and digital data 
acquisition systems and associated software 
packages and interface equipment. 
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Figure 14.1 Photograph of Laboratory Test Loop 

- 69 - 



AMs-DWC FL0004R 

- 
- 

Control 
Console 
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Figure 14.3 Photograph of 7300 Instrumentation System 
and Loop Operations and Control Console 
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14.2 In-PIant Validation Tests 

As mentioned before, the in-plant 
demonstration of on-line drift monitoring 
techniques was carried out at the McGuire 
Nuclear Power Station Unit 2. Data were 
recorded for two fuel cycles from 
approximately 170 signah involving eighteen 
categories of services in the primary and 
secondary systems of the plant. Table 14.1 
gives a listing of these signals followed by 
Figure 14.4-which is a simplified drawing of 
one of the four coolant loops of the McGuire 
plant showing the typical locations of the 
sensors that were monitored for this project. 

Both steady-state (DC) and transient (AC) 
data were sampled at McGuire, stored on 
computer disks, and subsequently analyzed at 
AMs. The DC data were used for validation 
of on-line calibration testing techniques, and 
the AC data were used to validate reactor 
diagnostic techniques and assess the validity of 
other dynamic tests. This report, however, is 
concerned only with the use of the McGuire 
DC data for instrument calibration verification. 
As such, no discussions are included in this 
report on the analysis of the AC data from the 
McGuire plant. 

Figure 14.5 shows a block diagram of the 
on-line monitoring system that was installed at 

McGuire, and Figure .14.6 shows how this 
system was connected to one of McGuire’s 
instrument channels. Attempts were made in 
installing the on-line monitoring system to 
include as many components of the instrument 
channels in the on-ke  monitoring tests as 
possible. Note that signals from the McGuire 
plant were already isolated before connection 
to the multiplexer unit in the on-line 
monitoring system. As such, the isolation unit 
shown in Figure 14.5 is redundant to the 
plant’s isolation devices. 

The on-line monitoring system installed at 
McGuire consisted of a data acquisition 
cabinet and a data storage computer. The 
data acquisition cabinet included a number of 
Hewlett Packard multiplexers, and a digital 
multimeter to acquire and digitize the data. 
The data were then sent to the computer via 
an EEE-488 bus where they ’were stored on 
hard disks and magnetic tapes. The data were 
then sent to AMs for analysis. 

The on-line monitoring system also included a 
constant voltage power supply with a 5 volt 
DC output which was monitored along with 
the plant signals to detect any drift in the on- 
line monitoring system itself. The calibration 
of the on-line monitoring system is discussed 
further in Chapter 18. 
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TABLE 14.1 

Listing of Signals Monitored 
at McGuire Unit 2 

- Item 

I 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 

a 

13 
14 
15 

16 
17 
18 

19 
20 

Description of Siqnals 

Steam Flow 
Steam Pressure 
Steam Generator Level 
Feedwater Flow 
Auxiliary Feedwater Flow 
Reactor Coolant Flow 
Pressurizer Level 
Pressurizer Pressure 
Wide Range Reactor Coolant Pressure 
Containment Pressure 
Reactor Vessel Level Indicating System (RVLIS) 
Turbine Impulse Pressure 

Narrow-Range RTDs 
Wide Range RTDs 
Core Exit Thermocouples 

Neutron Flux Detectors (NI Channels) 
AT signals 
Tave signals 

+5 Volt reference 
Electrical Short 

Number of 
Sianals 

8 
12 
20 

4 
12 
3 
4 
2 
3 
6 
2 

a 

16 
8 
40 

12 
4 
4 

1 
1 

Total Number of Signals Monitored 170 
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Figure 14.4 Simplified Schematic of One of the Four Coolant Loops of McGuire Nuclear Plant 
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15. LABORATORY VALIDATION RESULTS 

The purpose of the laboratory tests was to 
demonstrate that the data acquisition, data 
analyses, and the interpretation of results of 
on-line monitoring tests for the sensors in the 
laboratory test loop all occur as expected and 
thereby validate the data acquisition and data 
analysis algorithms, software packages, and the 
interpretation procedures. 

The laboratory validation tests involved 
numerous series of simple experiments. In 
most of these experiments, drift was induced in 
the sensors or the process @e., the test loop) 
to verify that: (1) the drift identified by on-line 
monitoring system compares well with the 
induced drift, and (2) the data processing 
algorithms and interpretation procedures can 
distinguish between process drift and 
instrument drift. The results of these 
experiments are discussed below in terms of 
equipment validation, software validation, 
validation of empirical models and neural 
networks, and other tests. In most of the 
laboratory tests, pressure or differential 
pressure transmitters were used as these are 
the sensors of main interest in this project. 

Validation of physical models was also 
attempted during the laboratory tests, but 
useful results to be included here were not 
obtained. As indicated earlier, it was 
concluded, through the efforts spent in this 
project, that physical models are not as 
practical and useful as empirical models and 
neural networks for on-line calibration tests. 
As such, very few results are provided in this 
report involving physical models. 

15.1 Data Acquisition System 
Validation 

Figure 15.1 shows typical results involving four 
pressure transmitters that were used in testing 

the data acquisition system developed in this 
project. Results are shown in this figure in 
terms of time history plots and bar charts. 

The time history plots in Figure 15.1 show the 
drift that was induced in the output of each 
sensor. The drift was induced by adjusting the 
zero, span, or gain of the sensor electronics or 
the signal conditioning equipment. The bar 
charts show the comparison between induced 
drift as identified by manual calibrations and 
detected drift as identified by the on-line 
monitoring system. The small differences 
between the two results verifies that the 
on-line monitoring system performs properly. 
Note that the process pressure during. the 
experiments shown in Figure 15.1 was stable as 
indicated by the reference transmitter. 

Figure 15.2 shows results from a similar 
laboratory experiment in which the process 
was drifted in addition to the pressure 
transmitters. Again, the bar charts show that 
the differences between the induced drift and 
the detected drift are small thus verivng the 
proper operation of the data acquisition 
system. Experiments of this type were 
repeated numerous times with various 
combinations of sensors to verify the validity of 
the algorithms, equipment, and software 
packages developed in this project. Figures 
15.3 and 15.4 show results for two cases where 
the loop flow was manipulated during data 
collection to generate plant-type data and 
verify the equipment operation. Data are 
shown in Figure 15.3 for two Foxboro and one 
Statham pressure transmitters and a reference 
sensor. The reference sensor is a Rosemount 
smart transmitter which provided information 
regarding the input to the transmitters under 
test. The bar charts in this figure again verify 
that the equipment and techniques are 
working as desired. Figure 15.4 provides 
simiIar data for a Barton, a Honeywell, and a 
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Rosemount transmitter. The test results are 
good except for the Honeywell transmitter. 
This is a non-nuclear grade transmitter that 
was included in the project for comparison 
with nuclear-grade transmitters. 

Figure 15.5 shows raw data for three flow 
transmitters as drift was being induced in.one 
of the transmitters. Data are shown in terms 
of both measured differential pressure and the 
deviation of individual pressure signals from 
the average of the three signals. The 
deviation plot shows that the drift in one of 
the three sensors causes the other two sensors 
to appear as if they are drifting as well. The 
drift appears until after the failed transmitter 
has been identified by a consistency checking 
algorithm and removed from the average. The 
criteria for determining when to exclude a 
sensor from the average depends on the 
application and must be specified by the user. 
It will be seen later in this chapter that the use 
of empirical models and neural networks can 
facilitate the identification of drifting 
instruments. 

In presenting laboratory test results in the 
remaining parts of this chapter, consistency 
checking or parity space techniques were not 
used. These techniques are normally used 
during the analysis of on-line monitoring data 
to exclude the signals which have a large drift. 
They were not used in analyzing the laboratory 
test data to allow us to demonstrate the 
behavior of drifting signals. 

15.2 Software Validation 

An important aspect of the laboratory tests 
was software validation and Quality Assurance 
(QA) testing. Software validation work at 
A M S  is usually performed according to formal 
software QA procedures which involve 
documentation of every step of the software 
development process and testing of the final 
software with induced (known) input data. 
Following is a partial listing of software QA 
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guides and standards used by AMs in the 
development of software products for the 
nuclear power industry. 

NUREG/CR-4640, "Handbook of 
Software Quality Assurance Techniques 
Applicable to the Nuclear Industry," 
U.S. Nuclear Regulatory Commission, 
Washington, DC, August 1987. 

ANSIDEEE Standard 730.1-1989, 
W E E  Standard for Software Quality 
Assurance Plans," American National 
Standard Institutebtitute of Electrical 
and Electronics Engineers, Inc., New 
York, NY. 

IEEE Standard 983, "IEEE Guide for 
Software Quality Assurance Planning," 
Institute of Electrical and Electronics 
Engineers, Inc., New York, NY, 
February 1986. 

IEEE Standard 1012, "IEEE Standard 
for Software Verification and Validation 
Plans," Institute of Electrical and 
Electronics Engineers, Inc., New York, 
NY, February 1987. 

Being a research and development project, the 
software QA work performed in this project 
concentrated mainly on testing the final 
software products using synthetic analog and 
digital data. The results of this work are 
discussed in the following paragraphs. 

Figures 15.6 and 15.7 show typical software 
validation results for two types of simulated 
drift in pressure transmitters tested in the 
laboratory: (1) linear drift, and (2) linear drift 
plus a step change. The results are shown in 
terms of known drift that was induced in the 
instruments and drift that was detected by the 
on-line monitoring software. 

Figure 15.6 shows results for three types of 
drift that were induced in pressure 
transmitters; small drift, medium drift, and 
large drift. In all three cases, the differences 
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between the induced drift and detected drift is 
small indicating that the software is performing 
its function properly. Note that this validation 
includes the data acquisition, data analysis, and 
data display software packages as well as the 
data acquisition hardware. Note also that the 
results in Figure 15.6 includes repeated tests 
on the same sensors to validate various aspects 
of the software or analysis techniques. This is 
the reason why the tag numbers on the 
horizontal axis of Figure 15.6 are repeated for 
some of the sensors. 

Figure 15.7 shows software validation results 
for a combination of flow transmitters and 
temperature sensors. Each instrument was 
subjected to a step change followed by a linear 
input drift. The results show that the induced 
anomaly is detected reasonably well indicating 
that the system is functioning as desired. 

Figures 15.8 through 15.10 present 
representative results for three transmitters 
that were tested individually. Each transmitter 
was given various amounts of drift through a 
sequence of test runs as shown in the three 
figures to demonstrate that the induced drift 
can be effectively detected independent of its 
magnitude and direction. One of the three 
transmitters was a smart transmitter made by 
Rosemount. This and other smart transmitters 
tested in this project often yielded excellent 
agreement between induced drift that was 
measured by manual calibrations and drift 
identified by the on-line monitoring system. 
Note in Figures 15.8 through 15.10, that the 
run numbers on the horizontal axis of these 
figures are not in sequence. These numbers 
correspond to internal tracking numbers that 
were used during the research to identi& the 
tests. As such, the run numbers do not have 
any significance. 

15.3 Validation of Analytical 
Techniques Using Differential 
Pressure Signals 

Laboratory validation of analytical techniques 
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was performed by inducing drift in one or 
more redundant sensors, as installed in the 
laboratory test loop, and plotting the raw data 
and the results in terms of deviations from the 
averaging and modeling techniques. The plots 
are shown in Figures 15.11 through 15.22 for 
a set of four differential pressure signals 
obtained across an elbow in the laboratory test 
loop. These plots are intended to show how 
the results of averaging, empirical modeling, 
and neural networks are affected by the 
number of redundant signals that are 
monitored together. The discussions that 
follow describe the results in terms of the 
number of signals that were intentionally 
drifted. 

One Signal Drifted 

Figures 15.11 through 15.13 show results for 
when one of four redundant laboratory signals 
were intentionally drifted to determine how 
the following three process estimation 
techniques reveal the problem: 

1. Simple averaging of redundant 
signals 

2. Empirical modeling of the process 
using temperature, pressure, and 
flow signals 

3. Neural networks trained with 
temperature, pressure, and flow 
signals. 

Figure 15.11 shows two plots: the raw data 
and the process estimation results. The raw 
data shows the three transmitters which follow 
each other and the one that has a constant 
drift. This experiment was conducted over a 
six-hour period. The process estimation results 
show that the simple average (SAVG) of the 
four signals is influenced by the drifting 
transmitter and therefore shows a drift, while 
the empirical model (EM) and neural network 
(NN) results correctly estimate the process as 
being stable. 
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Figure 15.12 shows three drift plots each 
providing the deviation of the signals from the 
best estimate of the process. The three plots 
correspond to the three process estimation 
techniques. Drift plbts were used instead of 
deviation plots because there were no 
significant differences between the calibrations 
of the transmitters, thus, the drift plots and 
deviation plots would be almost identical. 

techniques. 

Three Signals Drifted 

Figures 15.17 through 15.19 present test 
results for when three of the four differential 
pressure transmitters were drifted. 

Figure 15.13 shows the results of the tests in 
bar-chart format. Three plots are given in this 
figure for the three process estimation 
techniques: simple averaging, empirical 
modeling, and neural network Each plot 
shows the actual drift induced in the 
transmitter and the drift identified by the 
process estimation technique. The figure 
shows that the empirical model and neural 
network techniques identify the drift very 
accurately while the simple averaging 
technique does not perform as well, and even 
shows incorrectly that the stable sensors have 
some drift. 

Two Signals Drifted 

Figures 15.14 through 15.16 show test results 
for when two of the four transmitters were 
drifted. 

Figure 15.14 shows the raw data and the 
process estimation results, indicating that the 
averaging technique is not as successful as the 
analytical techniques. 

Figure 15.15 shows drift plots that correspond 
to the three process estimation techniques. It 
is apparent that the results of the averaging 
technique do not correctly represent the 
situation while the empirical modeling and 
neural networks provide accurate assessment 
of the problem. 

Figure 15.16 presents the test results in terms 
of bar charts of induced drift versus detected 
drift. Note that the averaging technique is not 
as successful as the other process estimation 

Figure 15.17 shows the raw data and the 
process estimation results for the three 
techniques. As expected, the averaging 
technique incorrectly shows the process as 
drifting while the analytical techniques 
correctly show that the process is stable. 

Figure 15.18 shows drift plots in which results 
are shown to point out that the three drifting 
signals are correctly identified by the empirical 
modeling and neural networks while the 
averaging technique fails as expected. 

Figure 15.19 shows the induced drift versus the 
drift as detected by the three process 
estimation techniques. A review of this figure 
along with the two bar charts provided earlier 
in Figures 15.13 and 15.16 show that averaging 
results become less accurate as more sensors in 
the group are drifted. 

Four Signals .Drifted 

Figures 15.20 through 15.22 present the results 
of laboratory tests for the case in which all 
four differential pressure transmitters were 
drifted. 

Figure 15.20 shows the raw data and plots of 
process behavior from the three process 
estimation techniques. 

In Figure 15.21, the averaging technique 
incorrectly shows no drift in any of the signals, 
while the empirical modeling and neural 
networks correctly reveal that all four signals 
are drifting together at the same rate. 

The failure of the simple averaging techniques 
is obvious in Figure 15.22. 
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In summary, the analytical techniques @e., 
empirical modeling and neural networks) 
provide accurate results if they are properly 
trained for the particular process and provided 
with adequate input. The success of the 
averaging technique depends on the number of 
redundant signals that are intercompared and 
the number of signals which are suffering a 
drift problem. Although the averaging 
technique was shown to be unsuccessful in the 
examples discussed above, it was proven to be 
useful in the analysis of in-plant data. This is 
because the in-plant data that were analyzed in 
this project for the McGuire plant contained 
very few cases where signals had any 
significant drift. Also, when parity space and 
GCC methods are used with the averaging 
technique to identify the inconsistent signals, 
reduce their weighting, or remove them from 
the average, the results of the averaging 
technique improve significantly. 

15.4 Validation of Analytical 
Techniques Using Absolute 
Pressure Signals 

A series of experiments similar to those 
discussed above were also performed using two 
absolute pressure transmitters. Test results are 
shown in Figures 15.23 through 15.28 for two 
cases. In the first case, one of the two 
pressure transmitters was drifted, and in the 
second case, both ' transmitters were drifted. 
The results are discussed below. The 
experiments discussed here and those 
described in the section above provide a 
database of potential cases involving either two 
or four signals. 

One Transmitter Drifted 

' Figure 15.23 shows a raw data plot and best 
estimates of the process from three methods: 
simple averaging, empirical modeling, and 

neural networks. In this case, only one of the 
two transmitters is drifted. 

Figure 15.24 shows three deviation plots: one 
shows the deviation of each signal from the 
average of the two signals, and the other two 
plots show the deviation of each signal from 
empirical modeling and neural network 
estimates of the process. 

Figure 15.25 presents the test results in terms 
of bar charts. Note that the empirical 
modeling and neural network results show a 
small drift in the transmitter that was stable. 
That is, although these methods are more 
successful than the simple averaging technique, 
they do not provide the results as accurately as 
they did for the four pressure transmitters case 
discussed earlier. 

Both Transmitters Drifted 

Figure 15.26 through 15.28 show test results 
for two pressure transmitters that were both 
drifted. 

Figure 15.26 shows the raw data as well as a 
plot of best estimates of the process from 
three techniques. Note that the two signals 
are superimposed in the raw data plot. 

Figure 15.27 shows deviation plots for three 
process estimation techniques. The results of 
the averaging technique do not show the drift 
while the other two techniques identify the 
problem accurately. The validation results are 
quantified in Figure 15.28. 

15.5 Diagnostic Tests 

On-line monitoring data can provide diagnostic 
capabilities in addition to revealing calibration 
problems. Figure 15.29 shows on-line 
monitoring data for five pressure transmitter6 
one of which exhibited erratic behavior during 
the tests. Troubleshooting revealed the 
problem to be due to a loose wire in the 
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transmitter. The behavior of another 
transmitter with a loose lead is shown in 
Figure 15.30. Note that in this case, in 
addition to an erratic response, the transmitter 
shows a large calibration error compared with 
the other transmitters that were monitored 
along with this transmitter. 

Other interesting observations during the 
laboratory tests included a signal conditioning 
card which failed during laboratory tests as 
shown in Figure 15.31. Two views of the same 
data are shown. The important point here is 
that the card began to drift about two hours 
before it failed.. An on-line monitoring system 
could detect the onset of instrument failures 
and provide an opportunity to repair or 
replace the instrument before it fails. 

In addition to accidental failures and problems 
which were identified during the laboratory 
tests, failures and degradations were 
intentionally induced in sensors and their 
effects were recorded to determine how 
problems in sensors manifest themselves in the 
results of on-line monitoring tests. Figures 
15.32 through 15.34 show typical results of 
such tests. 

In Figure 15.32 results are shown for when the 
extension wires of an RTD were loosened. 
This caused the RTD to shift and indicate a 
higher temperature probably due to an 
increase in circuit resistance. 

In Figure 15.33, results are shown for an RTD 
that was placed under mechanical stress while 
its outpiit was monitored. The stress was 
irduced on the RTD sheath at two locations 
(A and B) as shown in Figure 15.33. The 
results show that these stresses have caused 
the RTD resistance to increase and result in a 
higher temperature indication. In a similar 
example, contrary to expectation, the RTD 
resistance dropped when it was mechanically 
stressed. Consequently, the RTD indicated a 

lower temperature as shown in Figure 15.34. 
The decrease in the RTD resistance could be 
due to a failure of insulation resistance from 
mechanical shock. 

15.6 Effects of Damping on 
Transmitter Response 

Some pressure transmitters that are used in 
nuclear power plants are equipped with a 
damping adjustment to help reduce any 
extraneous noise at the output of the 
transmitter. Figure 15.35 shows responses of 
two transmitters, one with a one-second 
damping and another without damping. Note 
that the undamped transmitter is much faster 
than the damped transmitter. The interesting 
point here is that the response time of the 
damped transmitter can be estimated from this 
data. Also, this example shows that in-plant 
monitoring data, if sampled frequently enough, 
could reveal sluggish response due to pressure 
transmitter damping, sensing line blockages, 
aging degradation, etc. 

15.7 Test Results in Environment 
Chamber 

Figures 15.36 and 15.37 show the outputs of 
several pressure transmitters while they were 
installed in an environmental chamber. 
Results are compared with the output of a 
reference sensor that was installed outside the 
environmental chamber. The results show that 
although these transmitters are temperature 
compensated, a significant amount of time is 
required for their temperature compensation 
to take effect. This indicates that if pressure 
sensors are exposed to temperature cycling, 
their steady-state output may have large errors 
depending on the magnitude and frequency of 
the temperature changes. Figure 15.36 shows 
the output of the transmitters when the 
temperature in the environmental chamber 
was increased by about 120OF. Figure 15.37 
shows that the temperature response of 
transmitters from t h r e e  different 
manufacturers are essentially identical. 
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16. IN-PLANT VALIDATION RESULTS 

The in-plant validation of the on-line 
monitoring technique was performed using 
data from two consecutive fuel cycles from the 
McGuiie Nuclear Power Station Unit 2. The 
data covered the period of March 1992 to 
December 1994. The average length of a 
McGuire fuel cycle is about 14 months. 

During the nearly thirty-three months of data 
collection at McGuire, there were plant trips 
and scheduled outages which resulted in 
discontinuities in the data as well as periods 
where on-line monitoring data could not be 
collected leaving gaps in the data. Figure 16.1 
shows a plot of the reactor power during the 
two fuel cycles that on-line monitoring data 
were collected at McGuire. The figure shows 
the periods of reactor operation and shutdown 
as well as the gaps in the data. Figure 16.2 
shows how discontinuities and gaps were 
removed in preparing the data for analysis. 

In addition to discontinuities and gaps which 
had to be removed, some of the McGuire 
signals were noisy and had to be filtered. 
Filtering was performed by moving an 
averaging window through the digitized data. 
Figure 16.3 shows a plot of three redundant 
signals before and after filtering. Appendices 
F and G include plots of raw data with and 
without filtering for sixteen McGuire services 
tested during cycle 1 (March 1992 to June 
1993) and cycle 2 (October 1993 to October 
1994). 

16.1 Model Validation Results 

Although reactor trips and refueling outages 
interrupted the on-line monitoring process as 
shown in Figure 16.1, they provided an 
opportunity to examine the calibration of 
instrument channels over a wide range from 
normal operating conditions to shutdown and 
from shutdown to normal operating conditions. 

In particular, the startup and shutdown data 
were used to validate the empirical models and 
the neural network. 

Figures 16.4 through 16.9 present typical 
results of validation of analytical estimates of 
the process during the plant startup and 
shutdown periods. The figures represent the 
following six services: feedwater flow, steam 
flow, steam generator level, steam generator 
pressure, hot leg RTDs, and pressurizer level. 
Two plots are given in each figure, one plot 
shows the results of the validation of the 
empirical model, and the other plot shows the 
results of validation of neural networks. 

The empirical models and neural networks for 
the examples given here were trained with 
on-line monitoring data during a startup 
including a period of stable reactor operation 
after the startup. The models were then used 
to estimate the process during a subsequent 
plant transient. I 

The plots in Figures 16.4 through 16.9 show 
that there is. reasonable agreement between 
the empirical and neural network estimates of 
the process and the sensor measurements. For 
the hot leg RTDs, however, only two of the 
four redundant measurements agreed with the 
empirical model and neural network estimates. 
This is probably due to the temperature 
stratification phenomenon inherent in the hot 
leg loops of PWRs. The temperature 
stratification problem is discussed in 
Chapter 17. 

16.2 Comparison of Manual 
Calibration and On-line 
Monitoring Results 

The in-plant validation tests were originally 
planned to be conducted according to the 
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following procedure: 

1. Perform on-line drift monitoring on as 
many instrument channels at the 
McGuire nuclear plant as possible and 
identQ those channels which have 
drifted. 

2. Calculate the drift of each instrument 
using the on-line monitoring results. 

3. Calculate the drift of each instrument 
using the manual calibration data. 

4. Compare the drift from on-line 
monitoring with drift from manual 
calibrations. 

Figure 16.10 shows the results of the above 
procedure for the McGuire pressurizer level 
transmitters. These results are from data 
obtained during the first of the two operating 
cycles during which this project was conducted 
at McGuire. The good agreement between 
the results of manual calibrations and on-line 
calibration tests is apparent in Figure 16.10. 
However, good agreements such as this were 
identified in only a few cases. In most cases, 
there were larger differences between the 
results of manual calibrations and on-line 
monitoring tests. Figure 16.11 shows the 
distribution of these results from both the 
averaging and analytical techniques. The 
averaging results in this figure are the average 
of both simple and weighted averaging 
techniques and the modeling results are the 
average of the empirical modeling and neural 
network results. These results show that 
differences between drift from manual and 
on-line calibration tests were less than 0.5 
percent in about 80 percent of the cases and 
that 100 percent agreement was achieved 
when the band was increased to 1.5 percent. 
These results did not appear at first to support 
the validity of the on-line calibration tests. It 
was later concluded that a comparison of drift 
from manual calibrations with that of on-line 
monitoring is not a valid comparison since the 

two tests are not performed under the same 
environmental conditions. For example, 
manual cahirations are performed during 
refueling outages when the plant is at cold 
shutdown, while on-line calibrations are 
performed when the plant is at operating 
conditions. As a result, in-plant validation of 
on-line monitoring techniques cannot be based 
on the agreement between the drift identified 
from manual and on-line calibrations. The 
preferred method for evaluating the results of 
the on-line monitoring tests is to plot them 
within drift bands or CSA bands and identify 
channels that fall out of either of the two 
bands. 

16.3 Presentation of Drift Results 

Figure 16.12 through 16.27 provide raw data 
and drift plots for the sixteen services tested at 
McGuire. Drift bands are also shown on the 
drift plots for nine services for which allowable 
drift information was available (see Chapter 
11). There are eight plots in each of the first 
twelve figures (Figures 16.12 through 16.23) 
and six plots in each of the last four figures 
(Figures 16.24 through 16.27). 

The eight plots on a page include two columns 
of plots each with four plots for cycle 1 and 
four plots for cycle 2. The four plots on each 
column include the raw data as were sampled 
in the plant, filtered data to remove the 
extraneous noise, and two drift plots. One 
drift plot is based on the averaging techniques 
and the other drift plot is based on the 
analytical techniques. The plot that is based 
on the averaging techniques is the average of 
simple and weighted averages if both methods 
were used; and the plot that is based on the 
analytical techniques is the average of results 
from empirical modeling and neural networks. 

For the four services shown in Figures 16.24 
through 16.27, there are no analytical 
techniques because independent inputs for 
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modeling were not available for these services. 

The following points are pertinent to some of 
the information presented in Figures 16.12 
through 16.27: 

I. In Figure 16.17, which presents drift 
results for pressurizer level transmitters, 
the analytical techniques failed to 
provide a reasonable estimate of the 
process. As a result, the drift from 
modeling techniques incorrectly show 
the channek as exceeding the allowable 
drift. The results from averaging 
techniques, however, are correct and 
show that the deviation of pressurizer 
level signals are within the allowable 
drift band except in a few places in cycle 
1 where the results exceed the band for 
short periods to time. Pressurizer level 
signals are generally more difficult to 
model due to plant perturbations which 
affect the inputs to the model. 

2. In Figure 16.19 where test results are 
presented for two reactor pressure 
signals, one of the signals experiences a 
sudden shift in the second cycle. The 
modeling results correctly identifies the 
signal that shifted while the averaging 
results can only show the fact that a 
shift occurred, but cannot identify which 
one of the two signals was responsible 
for the shift. ' 

16.4 Presentation of Deviation - 
Results 

Figures 16.28 through 16.43 provide raw data 
and deviation plots for sixteen services tested 
at McGuire. CSA bands are also shown on the 
deviation plots for the cases for which CSA 
bands were available. There are eight plots in 
each of the first sixteen figures (Figures 16.28 
through 16.39) and six plots in each of the last 
four figures (Figures 16.40 through 16.43). 

The eight plots on a page include two 

columns, each with four plots for each cycle. 
The four plots in each column include the raw 
data as was sampled in the plant, filtered data 
to remove the extraneous noise, and two 
deviation plots. One deviation plot is based 
on the averaging techniques and the other is 
based on the analytical techniques. The plot 
that is based on the averaging technique is the 
average of simple and weighted averages if 
both methods were used, and the plot that is 
based on the analytical techniques is the 
average of results from empirical modeling and 
neural networks. 

For the four services shown in Figures 16.40 
through 16.43, there are no analytical 
techniques because independent inputs for 
modeling were not available for these services. 

The following points are pertinent to some of 
the plots shown in Figures 16.28 through 
16.43: 

1. In Figure 16.31 which presents results 
for two feedwater flow signals, the 
signal deviations increase near the 
middle of the first cycle and almost 
reach the CSA bands plotted on the 
figure. Both averaging and modeling 
results show the problem although 
averaging results are more clear than 
the modeling results. The deviations 
remain near the bands and continue to 
do so in the second fuel cycle. 

2. In Figure 16.32, three signals are shown 
for the reactor coolant flow. One of 
the transmitters began to drift near the 
middle of cycle 1 as shown in both 
averaging and modeling results. This 
transmitter was replaced at the end of 
cycle 1. Note also in cycle 1 that 
another one of the three transmitters 
exceeds the deviation band in the 
averaging results, but is on the 
borderline in the modeling results. 

In cycle 2, the averaging results show 
one transmitter as exceeding the band, 
but the modeling results show the 
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transmitter as being well within the 
band. 

3. In Figure 16.33, results are shown for 
three pressurizer level transmitters. The 
modeling results fail as was discussed 
earlier in describing the drift plot for 
the pressurizer level. The averaging 
results show a channel that exceeds the 
CSA band in cycle 1. The channel was 
calibrated at the end of cycle 1 as 
indicated by the cycle 2 results. I 

16.5 Comparison of Averaging and 
Modeling Results 

level and a pressurizer pressure signal and 
compared with actual measurements. The 
good performance of the models is apparent in 
these data. 

16.6 Success and Failure of , 

Process Estimation 
Techniques 

Figure 16.47 shows drift plots for three flow 
signals. One plot shows the drift data 
obtained using the averaging technique and 
the other plot shows the drift data from using 
the empirical modeling technique. The drift 
bands are also shown on the figure. Note that 

Results comparing the averaging, physical 
modeling, and empirical modeling are given in 
Figure 16.44 for a steam pressure transmitter. 
The models were trained with startup data and 
used to estimate the process behavior during a 
subsequent plant transient. The data in this 
figure shows that the empirical and physical 
modeling results agree well with the average of 
redundant steam pressure channels. Although 
physical modeling has provided reasonable 
results in this case, as indicated before, 
empirical modeling, neural networks, and 

the drift band for the modeling result is larger 
than the drift band for averaging results 
because the band for averaging results is 
multiplied by (n-l)/n (where n is the number 
of signals). One of the three signals is 
exceeding the allowable drift band. The 
empirical modeling results show the problem 
earlier than the averaging results. This is 
because the averaging estimate is biased 
toward the drifting signal which diminishes the 
amount of drift compared to the model 
estimate. 

simple and weighted averaging techniques have 
proven to be more efficient and more suitable 
than physical modeling. As such, physical 
modeling was used in very few cases in this 
project. 

Figure 16.45 compares quantitative results of 
on-line drift monitoring for eight 
thermocouples. The results are shown from 
simple averaging, empirical modeling, and 
neural networks. Note that the three methods 
agree reasonably well for most of the eight 
cases shown. Thermocouples were the only 
sensors that showed enough drift to allow this 
type of comparison in this project. 

Empirical modeling and neural network results 
are given in Figure 16.46 for a steam generator 
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Figures 16.48 and 16.49 show drift results for 
three reactor coolant flow transmitters based 
on neural networks, empirical modeling and 
simple averaging of data for the two cycles 
during which on-line monitoring was 
performed at McG-uire. Figure 16.48 shows 
that the three process estimation techniques 
agree reasonably well. However, the empirical 
modeling results in Figure 16.49 do not agree 
with the neural networks or simple averaging 
results. In this case, the empirical model has 
failed because of inadequate inputs. 

The reliability of empirical modeling and 
neural networks depend on the adequacy of 
their training and the quality of the input 
signals that are given to the model. If the 
model is not trained properly for the 
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conditions at hand, then its results will not be 
reliable. Figure 16.50 shows analytical and 
averaging results for three steam pressure 
transmitters for which the empirical model and 
neural network have apparently failed due to 
improper inputs. 

16.7 Instrument Drift and Failure 
Problems at McGuire 

In the three years of on-line monitoring of 
nearly 170 signals at McGuire, there were less 
than five percent failures per fuel cycle in the 
pressure or temperature instrumentation 
channels. 

Figure 16.51 shows signals from three steam 
generator level transmitters, one of which was 
replaced in the time frame shown on the 
figure. Note, in the middle of the figure that 
two of the three transmitters rise while the 
third one remains flat. The transmitter with 
the flat response was the one that was 
replaced. The data for another transmitter 
which was replaced is shown in Figure 16.52. 
The transmitter which shows the most drift in 
this plot was replaced. 

Several non-safety related thermocouples at 
McGuire were found to have large errors. 
However, this is typical for any large group of 
thermocouples that are not normally calibrated 
or replaced. Figure 16.53 shows on-line 
monitoring traces for a group of McGuire 
thermocouples which include a failed 
thermocouple. Another temperature sensor 
whichfailed was a hot 1egRTDinLoopD. 

Figure 16.54 shows on-line monitoring results 
in terms of raw data and a drift plot. The 
RTD which failed began to drift a littIe after 
the beginning of the cycle. It then 
experienced a sudden shift which lasted until 
near the end of the cycle when the RTD 
shifted significantly. This RTD was replaced. 
This case illustrates the hcipient faiIure 
detection capability of the on-line monitoring 
system. The RTD showed erratic behavior for 
a long period of time before it failed. 

16.8 Comparison of Deviation 
PIots for Redundant Plant 
Equipment 

Figure 16.55 through 16.62 show eight 
deviation plots for redundant plant equipment. 
Two columns of four plots are shown in each 
figure. One column is for cycle 1 and the 
other is for cycle 2. Each plot shows about 
two months of data. The data are presented 
in terms of deviation of each signal from the 
simple average of redundant signals. The 
purpose of these plots is to illustrate how 
redundant signals from redundant equipment 
such as steam flow signals from the four steam 
generators (A through D) compare with one 
another. Also, these plots are provided here 
to show how the signals f'rom cycle 1 compare 
with corresponding signals from cycle 2. 

The figures show that the signals from 
redundant plant equipment have similar 
characteristics and that cycle 1 and cycle 2 
signals look much alike. 
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17. TEMPERATURE STRATIFICATION AND ITS EFFECT ON 
ON-LINE MONITORING TESTS 

Temperature stratification or temperature 
streaming occurs in PWRs during reactor 
opkration because different streams of water 
that exit the core are normally at different 
temperatures due to uneven heating in the 
core. As a result, the hot leg RTD readings 
are affected by the location and depth of the 
RTD sensing elements in the hot leg pipes 
because: (1) the hot leg RTDs are relatively 
close to the reactor, and (2) the water is not 
well mixed when it reaches the hot leg RTDs. 
Consequently, temperature differences in the 
range of about 3 to 15°F may be encountered 
between redundant hot leg RTDs in the same 
loop of a PWR. This error is dependant on 
the reactor power and is not present at the 
hot standby conditions. Figure 17.1 shows a 
deviation plot for one of the hot leg RTDs at 
McGuire as a function of reactor power. The 
on-line monitoring system collected this data 
during a plant heatup that was followed by a 
plant cool down. The deviation plot shows 
data for both the startup and the cooldown 
period. Note that the RTD shows almost the 
same deviation during the startup and the 
shutdown of the plant. 

Figure 17.2 shows on-line monitoring results 
for six hot leg RTDs at McGuire. The RTDs 
do not show a significant drift, but there are 
steady-state (bias) differences due to the 
temperature stratification phenomenon. In 

contrast, the cold leg RTDs do not show a 
significant bias as shown in Figure 17.3. This 
is because temperature stratification is not 
significant in the cold legs because the reactor 
coolant is well mixed by the time it reaches the 
cold leg RTDs. 

The temperature stratification phenomena can 
also affect the core exit thermocouples, 
however, there were core exit thermocouples 
at McGuire that had large errors in addition to 
the temperature stratification effect. Figure 
17.4 shows the deviations of eight core exit 
thermocouples at McGuire. One of the eight 
thermocouples agrees with the other seven 
when the plant is cold, but its deviation 
increases significantly with temperature. This 
indicates that thermocouples may have normal 
outputs at the shutdown temperature and 
significant differences at higher temperatures. 

Figures 17.5 and 17.6 show representative on- 
line monitoring results for hot leg and cold leg 
RTDs over the two fuel cycles during which 
data were collected at McGuire. The results 
show the following: (1) the hot leg and cold 
leg RTDs shown here have not experienced a 
significant drift, and (2) the hot leg RTD 
deviations are within a band of about f 4.S°F, 
while the cold leg RTD deviations are within 
a band of about f 1.5"F; a factor of three 
difference. , 
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1s. CALIBRATION OF ON-LINE MOMTORING SYSTEM 

The on-line monitoring system must be 
calibrated periodically to establish traceability 
to national standards and to verify that the 
system is not drifting. Since this system is used 
mostly for relative measurements to identiij 
deviations as opposed to measuring absolute 
values, its accuracy requirements do not have 
to be as stringent as a standard calibration 

' system. 

The calilration requirements for an on-line 
drift monitoring system would normally depend 
on how it is used. For example, if the system 
is used to extract digitized data from the plant 
computer, then it may not need a &%ration. 
If, however, the on-line monitoring system is 
comprised of its own data acquisition modules, 
then these modules must be calibrated at least 
once a year or at the same frequency that 
other measurement and test equipment are 
caliirated in the plant. 

The on-line monitoring system that was used 
at the McGuire plant was equipped with a 
caliirated reference source (+5 VDC) and a 
"short." The outputs from the source and the 
short were monitored continuously to detect 
any significant drift in the system. Figure 18.1 
shows the results of this monitoring. Two 
plots are shown in the figure for the 5 volt 
source. One represents the normal output of 
the source, and the other shows the drift of 
the source with respect to a straight line. It is 
apparent that although the system drifted, this 
drift has been very small compared to potential 
drift in instrument channels in a plant. 

If the on-line monitoring system is found to 
have drifted significantly, this drift must be 
accounted for in analyzing the on-line 
monitoring data to ensure that the in-plant test 
results are conservative. 

- 194 - 



GWMOO3BOlA 5 Volt Reference - Raw Data 5.050 

5.025 - 

5.000 

4.975 

4.950 

0.150 

0.000 

-0.150 

3/92 
Time 1 0194 

5 Volt Reference -Percent Deviation GWM0038-024 

, 

3192 Time 
1 0194 

Figure 181 Drift of On-Line Monitoring System 

- 195 - 



19. BENEF'ITS AND COSTS OF ON-LINE 
C m W T I O N  MONITORlNG 

On-line caliiration monitoring has the 
potential to provide substantial saving in the 
cost of instrument calibrations and associated 
personnel radiation exposure while enhancing 
the plant safety. The safety of the plant is 
enhanced because on-line calibration tests will 
reveal caliiration problems as they occur and 
wiU provide additional diagnostics. Also, 
personnel error during manual calibrationswill 
be reduced once an on-line calibration system 
is implemented in the plant. 

Figure 19.1 shows on-line monitoring results 
for four RTD signals from the McGuire plant. 
One of the RTDs had an erratic behavior as 
seen in the figure. However, the readings 
from this RTD are almost always in reasonable 
agreement with one or more of the other 
three redundant RTDs. As a result, such a 
sensor will not normally be identified by the 
plant personnel as an erratic sensor until after 
it fails or until its behavior becomes so erratic 
as to cause instrumentation alarms. With on- 
line monitoring data, an erratic sensor such as 
this is readily identified during plant operation 
and scheduled for repair or replacement at a 
convenient opportunity. 

Figure 19.2 shows another example of an 
erratic sensor at McGuire. This one is a steam 
generator level transmitter. The sensor was 
replaced after the plant personnel had enough 
information to conclude that the sensor was 
indeed erratic. With an on-line monitoring 
system, the problem would have manifested 
itself in the first few weeks of operation. 

Table 19.1 provides a listing of the advantages 
of on-line caliiration monitoring over the 
conventional calibrations that are performed 
manually. This is followed by Table 19.2 
outlining the cost benefits of on-line 
calibration tests. The direct cost savings have 

been estimated by AMs, EPRI, the nuclear 
industry and others to range from an average 
of about $50,000 to $500,000 per plant per 
fuel cycle depending on the number of 
instruments calibrated, frequency of 
calibrations, the instrument design and 
principle of operation, location, layout, etc. 

The initial and recurring costs of implementing 
an on-line monitoring system in a nuclear 
power plant are summarized in Table 19.3. 
The initial cost is estimated to have a range of 
about $250,000 to $500,000 for a typical 
installation depending on the number of 
instruments to be monitored, the complexity of 
the installation and wiring of the plant 
instruments to the on-line monitoring system, 
etc. In some plants, the necessary data may be 
available from the plant computer. In this 
case, the cost of implementing an on-line 
calibration monitoring system will be closer to 
the lower end of the range of the estimated 
costs mentioned earlier. 

Based on the estimated costs and benefits 
discussed in the above paragraph, it is 
reasonable to conclude that an on-line 
caliiration monitoring system can pay for itself 
in a relatively short period of time. 

It should be pointed out that after 
implementing an on-line monitoring system, 
manual caliirations may still be required for 
reference channels to account for 
common-mode drift and to help establish 
caliiration traceability. This is especially true 
if analytical modeling is not used. As such, in 
the recurring cost section in Table 19.3, a line 
item is included for manual caliiration of 
reference channels. 

a e  use of analytical modeling in anon-line 
monitoring system is not mandatory. However, 
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TABLE 19.1 

Performed manually and requires physical 
access to each instrument 

Performed once a fuel cycle 

Performed at refueling outages 

Comparison of Conventional Calibration Technique 
with On-line Calibration Monitoring 

Automated (computer-aided) and remote 
calibration monitoring 

Performed almost continuously 

Performed while the plant is on-line 

Identifies calibration drift only Identifies calibration drift and other 
instrument anomalies 

_ _ _ ~  ~ 

Identifies calibration problems over the 
entire operating range of an instrument 

Typically performed an one component of 
an instrument channel 

Performed at cold shutdown; thus, 
environmental effects such as temperature 
that may have an influence on calibration 
are not included. 

Detects calibration problems after they 
have occurred 

Identifies calibration problems at the normal 
operating point with the potential to reveal 
calibration problems over the entire 
operating range of instruments 

Can cover multiple components or the 
entire instrument channel (excluding the 
actuation system) 

Performed at normal operating conditions; 
thus, environmental effects are included in 
the results. 

Detects calibration problems as they occur 
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TABLE 19.2 

Potential Benefits of On-line Calibration Monitoring 
in Nuclear Power Plants ' 

ll Labor 

- Saves 500 to 1,000 hours per outage 
- Relieves personnel 

Instrumentation and Control (lac) Personnel 
Quality Assurance and Quality Control (QNQC) Personnel 
Health Physics (HP) Personnel 
Administrative Personnel 
etc. 

0 Radiation Exposure 

- Direct man-rem savings 
- Cost of dress-out to enter radiation controlled zone 
- etc. 

Reduced Outage Length and Outage Risk 1 

Simplified Outage Planning and Outage Scheduling 
Increased instrument reliability and plant safety 
Reduced human errors and plant trips associated with instrument calibrations 
Reduced potential to damage plant equipment 
Improved performance trending, incipient failure detection, and troubleshooting 
Post trip review, troubleshooting, engineering analysis, etc. 

.Consistent with the "Maintenance Rule" 
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TABLE 19.3 

Costs of Implementation of On-Line Calibration Monitoring 
in Nuclear Power Plants 

0 On-line Monitoring System Costs 
- hardware 
- software 

- technical support 
- etc. 

, - training 

0 Installation Costs 
0 Licensing Costs 
0 Procedure Preparation and QA Costs 

0 Cost to Operate and Maintain the On-Line Monitoring System 
0 Cost of data analysis, interpretation, data storage, trending, etc. 
0 Cost of manual calibration of any reference channels 
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if analytical modeling is used, then a manual 
calibration of reference channels may not be 
required. Figure 19.3 shows the drift of a 
temperature channel as identified from simple 
averaging of four redundant signals. In this 
case, analytical modeling can help verify that 
the process was not drifting and thereby 
conclude that three of the four channels show 
no drift. If analytical modeling is not used in 
this case, one of the stable channels may have 
to be caliiratixl in addition to the drifting 
channel to ensure that there is no common- 
mode drift. 

I 

I 
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20. CONCERNS ABOUT ON-LINE CALIBRATION MONITORING 

On-line calibration monitoring is mostly 
performed at normal operating conditions. 
Although, the plant operating point is usually 
the most important point of a channel 
operation, this method is often questioned as 
being a one-point calibration check. This 
question is addressed by programming the 
on-line monitoring system to sample data not 
only during normal operation, but also during 
startups, shutdowns, and plant trips. The data 
should then be evaluated to determine if they 
can be used to verify the performance of the 
instruments over a wide-range. This, of 
course, only partially addresses the question 
because data collected during startups, 
shutdowns, and plant trips do not provide for 
long term monitoring that may be needed to 
resolve subtle caliiration differences and small 
calibration drifts. Furthermore, problems such 
as differences between dynamic responses of 
redundant instruments may interfere with the 
ability to detect caliiration problems during 
fast process transients. - 

EPRI has also addressed the above question 
and indicated that changes in zero, span, 
hysteresis, and linearity of instruments 
generally manifest themselves at the normal 
operating p0intF43 That is, according to 
EPRI, on-line monitoring performed at normal 
operating conditions can reveal Calibration 
problems at other points within the range of 
the instrument. 

Another concern with the use of on-line 
calibration monitoring relates t o  
common-mode drift. If redundant instruments 
experience unidirectional drift, then their 
deviation from their average may not 
adequately show the drift. To address this 
concern, analytical modeling and/or calibrated 
reference channels must be used as discussed 
earlier to separate process drift from 
instrument drift. If analytical models are used, 

the uncertainties of process estimation using 
the model must be evaluated and accounted 
for in determining which channels need a 
manual calibration. These uncertainties would 
depend on the number and diversity of the 
inputs used, the reliability of the inputs; the 
adequacy of the model training, the validity of 
the model for the process that is being 
monitored, etc. Due to these and other 
factors, the overall uncertainties of modeling 
techniques depend on each particular process 
monitored. However, as was shown earlier, 
modeling uncertainties may not be very 
important if it can be shown that the 
uncertainties are time-imrariant. 

Noise h the output of process instrumentation 
channek in nuclear power plants is another 
problem that may interfere with the ability of 
an on-line monitoring system to recover a 
small drift. Filtering and averaging- found 
in this project to help with this problem and 
in-plant data was presented here earlier in 
which the drift of a noisy signal could miry be 
identified in spite of the noise. 

There are other questions, concerns, and 
challenges involved in implementing an on-line 
caliiration monitoring system in a nuclear 
power plant. For example, determining when 
to declare a channel as needing a manual 
calibration and what actions to take if the 
problem is identified during an operating cycle. 
These and other questions and concerns may 
have to be addressed on a case by case basis 
while experience is being accumulated with 
on-line calibration monitoring technology. 
This technology has not been used in the 
nuclear or non-nuclear industries for an 
appreciable period of time to offer much 
information on the relevant questions and 
answers. However, the technology is ready for 
in-plant use with the understanding that some 
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tuning may be necessary as experience is 
accumulated in actual practice. The 
technology is said to be ready for 
implementation in nuclear power plants 
because it has been independently examined 
by a number of organizations and consistent 
results have been obtained. 
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21. CONCLUSIONS 

A comprehensive R&D' project was 
successfully carried out to provide new 
technology for on-line monitoring of 
calibration of process instnunentation channels 
in nuclear power plants. The work involved 
hardware and software development for data 
acquisition and data processing, analytical 
modeling including physical and empirical 
models and neural networks for independent 
process estimation, laboratory and in-plant 
validation tests, searches of LER and NPRDS 
databases to examine failure rates. due to 
calibration drift, development of interpretation 
techniques, review of related R&D, 
presentation of project results to the nuclear 
power industry and the NRC, publication of a 
preliminary report (NuREG/CR-5903), and 
preparation of this final report. 

A major task in this project was the adaptation 
of existing analytical modeling techniques for 
instrument calibration verification. More 
specifically, analytical techniques were used in 
laboratory and in-plant tests to obtain an 
independent estimate for 'each process 
parameter by measurement of other process 
parameters. This is important in determining 
whether a drift at the output of an instrument 
channel is from the process or the instruments 
comprising the channel. Both physical and 
empirical modeling techniques were examined 
in this project for process estimation. 
Empirical models, especially neural networks, 
were found to be much easier to develop and 
implement than physical models. As such, very 
little work was done in the project on 
experimental validation of physical models. A 
majority of the effort in the area of analytical 
modeling was spent on verification and 
validation of empirical models and neural 
networks. These efforts showed that the 
accuracy and reliability of these models depend 
on the inputs used in training and using the 
models. If a model is sufficiently trained with 

adequate inputs at a given process operating 
condition, then it will produce accurate results 
for the particular operating condition at which 
it was trained. However, if the model is 
trained in a given process condition and used 
in another process condition, then the results 
will not be as accurate. 

Simple and weighted averaging techniques 
were found to be effective when an adequate 
number of reliable signals are available to be 
averaged and intercompared. The averaging 
techniques may be supplemented with 
analytical models to improve the accuracy and 
reliability of the on-line calibration monitoring 
results. Whether averaging or modeling is 
used, it is important to verify the validity and 
consistency of individual signals before they 
are averaged together or used as inputs to 
empirical models or neural networks. To 
accomplish this, data qualification procedures 
and algorithms must be used to screen the 
data. A variety of data qualification algorithms 
are available for this purpose. These 
algorithms can identify and remove any 
significant noise, spike, or other anomalies in 
the data, check the data for consistency, and 
reject or reduce the weighting of any signal or 
any portion of a signal that is contaminated 
with extraneous effects. Two methods called 
parity space and Generalized Consistency 
Checking (GCC) were mentioned in this 
project that could be used for both data 
qualification and interpretation of the results 
to identify the inconsistent signals. There are 
other methods that are as effective as parity 
space and GCC for data qualification. These 
methods are described in the literature in the 
areas of advanced sign'd processing, on-line 
monitoring, and predictive maintenance. Also 
described in literature are details of analytical 
methods such as pattern recognition and 
Sequential Probability Ratio Test (SPRT) that 
were only briefly reviewed in this project. 
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These methods have been independently 
developed and are commercially available for 
on-line calibration monitoring and other 
applications in nuclear power plants and other 
industries. 

The technology that was developed and 
validated in this project is commercially 
available through AMs in terms of hardware, 
software, training, technical support, and 
installation services. These products have 
applications not only in the nuclear industry, 
but also in the fossil power industry, chemical, 
petrochemical and other process industries, 
aviation and aerospace industries, defense 
industry, etc. In addition to AMs, on-line 
calibration monitoring equipment and 
techniques have been independently developed 
and successfully tested in nuclear power plants 
by other R&D organizations, vendors, EPRI, 
and nuclear utilities. 

Besides instrument calibration verification, 
on-line monitoring technology can be used in 
a variety of predictive maintenance 
applications in nuclear and non-nuclear 
industries. For example, AMs has successfully 
adapted the technology that was developed in 
this project for monitoring the performance 
of emergency diesel generators in nuclear 
power plants and other processes. The 
performance of turbine generators and other 
equipment in nuclear power plants can also be 

monitored with the products developed in tI& 
project. 

Since on-line calibration monitoring in nuclear 
power plants is a relatively new application, a 
large database is not yet available to 
objectively characterize the benefits and 
drawbacks of this technology, nor has this 
technology been used in other industries to 
help produce the database. Nevertheless, it is 
obvious that on-line calibration monitoring can 
enhance the reliability of process 
instrumentation channels and contribute to 
plant safety and availability. The technology 
has the potential to replace much of the 
manual calibrations that are currently 
performed in nuclear power plants with more 
frequent or continuous and fully automated 
monitoring of drift and other instrument 
anomalies. As such, on-line calibration 
monitoring not only contributes to plant safety 
but also helps with plant economy. More 
specifically, utilities can realize substantial cost 
saving through reduced manpower to perform 
manual calibrations and the related activities, 
shorter plant outages due to reduced number 
of manual calibrations, reduction in 
maintenance-related plant trips and damage to 
the plant equipment, and substantial reduction 
in personnel radiation exposure and related 
HP work, QNQC work, administrative work, 
etc. 
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APPENDIX A 

NEURAL NETWORK THEORY 

1. INTRODUCTION 

This appendix provides a basic discussion on the algorithms and theory associated with the 

application of neural networks to process modeling. Specifically, the topics of feedforward networks 

and backpropagation training are explored to characterize the neural network modeling techniques 

used in this research. For an in-depth study of neural networks and their applications in nucIear 

power plants, the reader may consult the following references: 

Bartlett, E.B.,' Uhrig, R.E., "Nuclear Power Plant Diagnostics Using an Artificial Neural 
Network," Nuclear Technology, Volume 97, pp. 272-281, March 1992. 

e Uhrig, R.E., "Potential Application of Neural Networks to the Operating of Nuclear Power 
Plants, Nuclear Safety, Volume 32, No. 1, January-March 1991. 

e Wasserman, P.D., "Neural Computing: Theory and Practice," Van Nostrand Reinholt, New 
York, 1989. 

e Caudill, M. and Butler, C., "Understanding Neural Networks: Computer Explorations," 
Volumes 1 and 2, MTI Press, Cambridge, MA, 1992. 

a Aly, M.N., Nagy, M.E., Shaat, M.K, Abou Bakr, A.A., "Application of Nuclear Networks to 
Signal Validation in Nuclear Power Plants," Proceedings of the 9th Power Plant Dynamics, 
Control and Testing Symposium, University of Tennessee, Knoxville, Tennessee, May 1995. 

e Ugolini, D., Saiki, A, Yoshikawa, S., Endou, A, "Enhancing Nuclear Power Plant Operations 
with the Artificial Neural Network Technique," Proceedings of the 3rd JSME/ASME Joint 
International Conference on Nuclear Engineering (ICONE-3), Kyoto, Japan, April 1995, 
Published by the Japan Society of Mechanical Engineers, Tokyo, Japan. 

Maren, AJ., Harston, C.T. and Pap, R.M., "Handbook of Neural Computing Applications," 
Academic Press, New York, NY, 1990. 

e Nelson, M.M. and Illingsworth, W.T., "A Practical Guide to Neural Networks," Addison 
Wesley Publishing Co., Reading, MA, 1990. 

Proceedings of the Joint- IEEE-INNS Neural Networks Conferences, Published by the EEE 
Neural Network Council, Ann Arbor, MI, 1992. 



2. PROCESS M0DEI;ING 

Mathematical models consist of relationships which describe how a set of input variables affect 

a set of output variables. Modeling techniques may be classified as being either physical or empirical. 

Empirical modeling has inherent advantages in simplicity of development over physical modeling. 

Neural network modeling is an empirical modeling technique which overcomes one of the limitations 
of other empirical modeling techniques by allowing complex relationships to be expressed and 
manipulated using generic algorithms. 

Physical models, or first principle based models, are derived fiom first principle balance 
equations. The models are difficult and time consuming to develop, requiring intensive analysis of 

the system being modeled. >The relationships between the system parameters are typically expressed 
in the form of differential equations. These differential equations describe all of the physical 
interactions of mass, energy, and momentum which comprise the physical system. Physical models 

often have large uncertainties due to linearized relationships, simplifications in geometry, and other 
assumptions. Another constraint on the accuracy of physical models is that some of the coefficients 
in the original balance equations may not be known precisely. If the system is sensitive to any of 

these approximations, then the model may be ineffective. 

Empirical modeling consists of assuming the form of relationships (e.g., polynomial form) 
between input and output variables, and then determining the best parameters and coefficients of 

these relationships based on numerical .regression of the measurements of the system. These 
measurements which are used to find the best model parameter coefficients are referred to as 

"training patterns" or example data. The main limitation of data-driven approaches, including neural 

networks, is that the training patterns must contain enough information to completely represent the 

physical system. All parameters which are variant and independent, and which also affect the system, 

must be supplied as inputs to the model. Additionally, all characteristics of the system must be 

demonstrated in the training data. 

Neural networks provide an alternative empirical modeling technique. They provide a very 
general and powerful modeling tool, while requiring no prior knowledge of functional forms or 
probability density functions, and involving no complicated problem-specific algorithms. Empirical 

models, in general, require some prior knowledge of or assumptions regarding the functional form 
of the relationship between the system variables (e.g., assumptions regarding a polynomial-form 
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relationship between the model output and input signals). The unique advantage of neural networks 

for complex system modeling is that they achieve an internal nonlinear representation of a modeled 
system upon merely being presented with proper input and output example data from the process. 

2.1 Feedforward Networks 
1 

A schematic of a general four layer fully connected feedforward Artificial Neural Network 

(ANN), showing the direction and path of information flow, is presented in Figure AS. The circles 
represent processing elements (PFS), also known as neurodes or nodes. The lines leading to and 
from each PE are referred to as connections. AU the connections of a feedforward nefwork are 

unidirectional, transmitting PE activations from the input layer towards the output layer. In a fully 

connected feedforward ANN, each PE receives inputs from every PE in the previous layer. More 
complex non-feedforward A N N  architectures exist which permit flow of information or feedback from 

a layer to either a previous layer or to itself. A physical analogy for the structure of a feedforward 

ANN is the cerebral cortex of the brain. Each PE in the feedforward ANN represents a single 
artificial neuron and the connections represent the synapses between neurons. 

The input layer of a feedforward network functions as a buffer with each pro&sing element’s 

activation corresponding to one of the network‘s input variables. The range of each input variable 
is typically linearly scaled to an appropriate range such as [0.1, 0.91 to limit the resulting activations 

in the first hidden layer. The intermediate layers of the network, known as hidden layers, contain 

an internal representation of the modeled system. The activations of the PES in the intermediate 

iayer(s) between the input and output layers are normally only utilized to obtain the activation at the 

output layer. The output layer of the network functions as a buffer for the output variables. The 

activation of each particular PE in the output layer is proportional to one of the output variables. 

The output PE activations, which are scaled similarly to the input layer activations to the region (O,l), 

must be de-scaled to provide the output variables in the desired units. 

The ANN given in Figure A1 is a four layer example. This illustration may be generalized 

to represent any multi-layer feedforward network by reducing or increasing the number of hidden 

layers, Four (or more) layer networks as shown in Figure A1 are not always required. 
Kolmogorov’s mapping theorem states that any continuous function mapping n inputs onto m outputs 
may be implemented exactly by a three layer feedforward neural network with dimensions determined 

by the number of inputs and outputs. Kolmogorov’s theorem guarantees the existence of such a 
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perfect network, but with unspecified parameters. Three layer networks are usually found to be 

practical for most moheling applications. 

Figure A2 provides a more detailed diagram of a single processing element. The calculation 

of #, the activation of the j-th PE in layer I ,  is given below in terms of the activations of each of x/-I 

and the n PES of the previous layer. 

where wi]' is the weight corresponding to the connection between the 3' PE and the j-th PE of the 

previous level, and Q> is the transfer function. %'-' is a constant activation of 1.0 which is multiplied 

by the weight wd to provide a bias to the PE. 

The primary purpose of a transfer function is to limit the activation of a PE. This prevents 

any one PE from overwhelming the others in the same layer with respect td influencing PES in the 
next layer. The transfer function forces the ANN to form very distributed input-output relationships 

and use all of the processing elements. Additionally, when nonlinear transfer functions are used, the 

resultant A N N s  are able to model non-linear behavior. For this project, the transfer function utilized 

was the sigmoid function, which may be expressed as follows: 

1 @(I)=- 
1 + e -y= ' 

where y is the sigmoidal slope, and corresponds to the slope of the sigmoid at I = 0. The sigmoid 
transfer function which is shown in Figure A3 limits the activation range of a PE to (0,l). 

A constant bias of 1.0 multiplied by a variable weight is introduced to create a neural 

threshold. The bias shifts the activation of a PE toward one of the asymptotes of the transfer 

function. A large bias can effectively force the activation of a PE to either zero or one, until the sum 

of the other inputs to that PE is large enough to cancel that bias. 

2.2 Backpropagation Training 

Once the initial architectural details have been decided about an ANN (e.g., type of ANN, 

type of transfer function, number of layers, number of PES in each layer), the network has to be 
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optimized to perform the desired function. This is done by adjusting the connection weights to 

appropriate values using training data. 

A majority of all neural networks applications involve backpropagation training. This is a 

form of supervised learning which involves assigning numerical llresponsibilitytl to each individual ANN 

weight for the error in output prediction. Supervised learning techniques are distinguished from 
unsupervised learning techniques in that the desired outputs are given to the network in the training 

data. 

This "responsibility" for prediction error is obtained for each weight by taking the partial 

derivative of an error function in terms of the appropriate weight. The weights are all adjusted an 
increment in the opposite direction of the resultant error gradient. The prediction error of the ANN 

is reduced iteratively in this manner either until a minimum has been reached in the error "surface," 

and no further reduction is possible, or until the prediction error has been reduced to a predefined 
acceptance limit. This generally involves presenting all the patterns in the training data several times. 

The algorithm which is used to adjust the weights is known as a training rule. The general 

delta rule (GDR) and the cumulative delta rule (CDR), the two most commonly used training rules 

for 'backpropagation, are described below. 

The prediction error function used in GDR training is expressed as follows: 

where 5 is the desired network output for component j, and 3 is the actual activation of the j-th PE 

of the output layer. 

The weight change Awi/ is calculated as follows, at each presentation of a training pattern: 

where q is known as the learning coefficient and is set to a value contained in the interval [0,1]. 6 

may be expressed as follows for a PE belonging to the output layer: 
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(5) 65; = yx,: (l-xj 1 ( t,-xj 1 ) . 

For PES in the hidden layer(s), 6; is expressed in terms of the 62+* of the PES in the succeeding 

layer. 

In order to avoid oscillatory weight changes which may occur with some training data sets, the 
cumulative delta rule (CDR) may be used. The CDR is distinguished from the GDR in that all 

weight changes are not implemented as they are evaluated, but are instead summed over the entire 

training data set. After all of the training examples have been presented to the network once, the 
summed (or cumulative) weight change is then implemented. Each presentation of aU of the training 

examples over which the weight changes are summed is termed an epoch. The network is trained 

over many epochs to reduce the prediction error. The CDR is expressed as follows, summing the 

weight changes due io each of the individual training patterns (given above by the GDR, and indexed 

with the variable p) over the entire training epoch. 

Occasionally, the error gradient will lure the ANN'S weights into a local minimum in the error 

surface. The global minimum may be nearby in the weight-space, but the intervening error surface 

may be a steep "hill." The concept of "momentum" is introduced to allow the network to "roll" out 

of "shallow" local minima while searching for the global error surface minimum. The CDR 
incorporating a momentum term representing a fraction of the last weight change may be expressed 

as follows: 

where p, the momentum coefficient, is selected from the interval [0,1]. 
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Figure A2 Schematic of a Single Processing Element 
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Figure A3 Sigmoid Transfer Function 
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APPENDIX B 

EMPIRICAL MODELING THEORY 

1, Introduction 

In this project, the polynomial form of empirical modeling was used. An empirical model is 

created by selecting training data, deciding which variables to include as the inputs, and. limiting the 

model order and the number of terms in the model. The modeling algorithm will automatically 

determine which of the model inputs are most related to the output variable, and also the polynomial 

form of the relationship. The inputs provided to the model during training with little relationship to 

the output variable are discarded by the model creation algorithm and are not utilized. 

2. Empirical Modelinp Alporithm 

The empirical modeling algorithm creates an optimal nonlinear polynomial model based on 
a given data set. A polynomial function is determined that best describes the relationship between 

the provided inputs and outputs in the form given in Equation 1 below: 

where y = process variable estimate, - x = vector of the input signals, 
m = number of terms in the model, 

ci = constant coefficients of each term, and 
ai = single term nonlinear function of the input signals. 

An example of a empirical model of this form is as follows: 

y = -5.4 + 3x1 - 2xlx3 + 10.4~:. 

The maximum model order and maximum number of terms are specified in advance by the 

user. The algorithm then proceeds to first find the optimal polynomial-form combination of the 
provided input variables within the supplied restrictions on model order and number of terms. After 
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the optimal polynomial form has been identified, the coefficients of the terms are determined by 

least-squares linear regression. 

The number of possible ai is dependent on the maximum model order and the number of 

input variables supplied in the training data set. For example, the set of all possible Qi for a second 

order model with three inputs is (x:, xlx, x,x3, x:, xs3, x:, x,, x, x3}. Every ai is evaluated for each 
of the (m) input data vectors in the training data set. A vector v(i) with m components is formed 

from the corresponding Qi evaluated for each of the m training data points. 

A projection matrix, P(i) is generated for each v(i) from the following equation: 

The vector composed of the measured output process variable at each measurement is 
multiplied by each projection matrix, to determine the projection of the output vector in the direction 

of each v(i). 

The scalar length, or norm of each resulting vector y(i) is calculated, giving the magnitudes 
of the different projections of the output vector. The projection with the largest magnitude 
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corresponds to the ai which best fits the behavior of the output variable over the training data. This 
ai is selected as the next term for the model. 

The output vector as well as each of the vectors v(i), are projected into a vector space 
orthogonal to the vectors ai previously selected. 

1 
M= /- Z P(i) 

k=l 

- 
y =  My (7) 

The norm of the new y represents the remaining error not accounted for by the nonlinear 

terms already selected. If this error is not sufficiently small, as calculated by Equation 5, then the 

algorithm is repeated from Equation 3 until the error has either been reduced sufficiently or the 

maximum number of terms have been seIected. 

Once all of the terms ai have been selected, the coefficients ci are obtained through 

least-squares linear regression. 
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APPENDIX C 

GENERALIZED CONSISTENCY CHECKING THEORY 

Generalized Consistency Checking (GCC), sometimes also called the parity space method, is 

a technique for inter-comparing signals among a physically redundant sensor group. GCC is 

performed by comparing each signal pair combination within a redundant sensor group, and 

incrementing the inconsistency indices of the members of any pair with disagreement of more than 

a specified limit or threshold. 

n 

where 

mi = redundant measurement i, 

n = number of redundant measurements, 

The inconsistency function (f) is given by: 

where bi is the inconsistency threshold corresponding to single signal i. 

These limits are determined for each pair based on the individual sensor tolerances. After 

all of the pair comparisons (out of a set of n redundant measurements, there are n(n-l)/2 

comparisons) have taken place, those sensors with large inconsistency indices may be excluded. In 

this manner, anomalous sensors which are present, if any, are isolated. 
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The remaining sign& are averaged to provide the best estimate of the process. If a signal 

fails all of its comparisons with the other redundant signals, it will have accumulated an index of n-1. 

Such totally inconsistent signals are removed, and the consistency check is repeated. If none of the 

sensors is inconsistent, then all of the signals will have indices of zero. The terms of the average to 

provide the best estimate are weighted proportionally to the inconsistency index of each signal. 

n 
p = z q m ,  

i= 1 

where p = the best estimate, 

and ui = the weight corresponding to signal i given below: 

u, = wi(n-i -/,I 
n 
z w,(n-l 4,) 
I=1 

where wi reflects the intrinsic accuracy of a measurement (e.g., higher for narrow range sensors, lower 

for wide range), and the denominator satisfies the normalization criterion that the weights sum to 

Unity. 

At least three redundant signals must be available within a group to provide sufficient 

redundancy for GCC to achieve failure isolation. In the case of a single pair of disagreeing signals, 

the GCC, though able to detect the inconsistency, is not able to decide which signal is correct. 

Generally, GCC is only able to detect and identify drift of a sensor (or common mode drift of a group 

of sensors) when the drifting sensors make up less than half of the number of available redundant 

sensors. When a sufficient number of physically redundant signals is not available in a group, 

carefully validated and proven analytically redundant models could be used to provide process 

estimates for additional inputs. 
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APPENDIX D 

SEQUENTIAL PROBABILITY RATIO TEST 

The Sequential Probability Ratio Test (SPRT) is a technique which is used to monitor sensor 

degradation. The SPRT does not use analytical or physical redundancy directly to compare with each 

single measurement to monitor the magnitude of the deviation or discrepancy. Instead, the statistical 

properties of the deviation between a measured signal and another signal (either a redundant sensor 

signal or an analytically redundant signal generated by a model) are trended. The SPRT monitors 

the trend of accumulated information in the measurement history. 

The two main features of SPRT are that the user can specify and configure the false-alarm p 
and missed alarm probabilities and that the SPRT is mathematically defined such that it is guaranteed 

to provide results within the false-alarm and missed alarm probability limits over a shorter sampling 
period than any other method. 

The main limitation of the SPRT method is that it presumes input signals with purely 

Gaussian independent (white noise) random variable characteristics. This limitation may be alleviated 
by spectral filtering techniques to remove any serial correlations present between the input signals 

The Gaussian probability density function (PDF) of a normally distributed random variable 

may be expressed as: 
exp [ - 2 1 p(s;Crl),ao) = - /= 

where p is the probability of observing a value s, given that the signal has a mean of and a variance 

of 0:. 

Given the normally distributed measured signal m(t) at time t and the predicted signal y(t) 

at the same time t, define the measurement residual or deviation s(t) = m(t) - y(t). The mean p,, and 
the variance 02 of the residual are calculated at every time point. For a pair made up of a 

measurement and a process estimate, the mean of the residual should tend towards some constant 

! 

value with a magnitude near 0, with a small variance corresponding to noise. However, in the case 
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of a sensor suffering from a particular defect, the mean and variance of the residual would be 
expected to tend towards some other values characterizing the nature, of the sensor defect. 

The SPRT may either be used to test for a particular degradation mode, or simply to monitor 

for more than one failure criterion. In the latter mode of operation, the SPRT may be used to 

indicate when a sensor has degraded past separate threshold criteria including noise level and DC 
bias. 

The following function A,, is the logarithm of the likelihood ratio (LLR). The likelihood ratio 

is the ratio of the probability of observing the last n samples assuming that the error residual is 

normally distributed with given mean pr and variance cr12 to the probability of observing the last n 
samples assuming a measurement residual with the original "good" mean and variance 002. 

The LLR can be expressed recursively (in terms of earlier calculations), as each of the 

previous measurements may be assumed to be independent of one another. 

The LLR is compared to an upper and a lower threshold. As long as the cumulative result 

does not reach or exceed either threshold, the cumulative calculation proceeds with the next sample 

or measurement. The thresholds A c 0, and B > 0, are given below: 
I 

A =In(&) 

B = l n ( y )  

where a and p are respectively the user-specified probabilities of false and .missed alarms. The LLR 
may be expressed in different forms depending on the characteristic of the residual to be monitored. 
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If noise level degradation is disregarded, and only bias degradation is monitored, then the LLR 

reduces to the following expression: 

a, = a,,-, + 1-11 [s,- +) 
O2 

Depending on whether absolute bias or relative drift is to be monitored, the residual may be 

calculated differently. For absolute bias, the residuals si in the above equation are Aalculated as 

defined previously, s(t) = m(t) - y(t), where m(t) is the measured signal at time t and y(t) is the best 

estimate at the same time t. For relative drift monitoring, the residual is calculated similarly, except 

that the initial bias between signals m and y is subtracted away fiom the subsequent calculations of 

the residual. 

To monitor exclusively for noise level degradation, the LLR reduces to the following 

expression: 

This expression of the LLR may be used to detect high noise levels which reach a maximum 

variance limit or also noise levels less than a minimum limit (perhaps indicating dynamic response 
degradation). 
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APPENDIX E 

PATTERN RECOGNITION METHODS 

1. PROCESS HYPERCUBE 

The Process Hypercube signal validation and processing technique is based on a Cartesian 
interpretation of the plant states. This technique learns the operating states of a system from 

example data. During signal monitoring, the measurements are compared to previously observed 
measurements. The states which have been previously observed are declared normal and the signals 
are declared valid. When a measured state does not coincide with a previously observed state, either 
one or more signals are in error, or the system state is considered abnormal. 

The hypercube technique requires a previous database incorporating and demonstrating all 
of the possible acceptable states of the plant and the sensor measurements in those states. The data 
is stored in a hypercube data structure, which gives this signal validation method its name. The 
hypercube data structure allows large amounts of data to be stored (several hundred sensors stored 

regularly over months) in only a fraction of the storage space that would be necessary for a 
conventional database. As the measurements are monitored, they are compared to all of the states 
previously observed. 

The hypercube data structure may be conceived as an n dimensional histogram of the previous 
measurements obtained from n different sensors. Each process signal corresponds geometrically to 
a direction orthogonal to the all of the other dimensions, and is assigned a discrete value within the 
maximum and minimum values into a number of user-specified intervals. Each "bid' defined by the 
intervals in the n different dimensions represents a state of the system. Only those n-dimensional bins 
or states which "contain" previously observed measurements need to be stored, affecting a 
considerable storage reduction over a more conventional data structure. Those bins that contain 
relatively few observances may be eliminated, affecting another similar storage requirement reduction. 
In many applications similar to calibration monitoring, around 90% of the observed states were 
observed at most once, with the remaining 10% or so of the bins containing the vast majority of the 
system state occurrences. 

When a newly measured state agrees with none of 

hypercube methodology f i t  tests whether the number of 
the previously measured states, the 

suspected signals is greater than a 
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threshold. If so, then the process is declared abnormal. If not, then each suspected variable, and 

each combination of suspected variables, are varied until the "nearest state" in the hypercube data 
structure is found. 

This "nearest state" is not necessarily the closest in a Cartesian sense. If a particular system 

measurement does not agree with any previously observed system state, and the process is not 

declared abnormal, then the "nearest state" is the one in which the most individual signals agree with 

the new measurement. This can result, for example, in the following hypothetical situation illustrated 

in Figure E.1. 

A series of measurements of a system which consists of two different sensors is acquired. The 

hypercube of such a system would possess only two dimensions, with the axes corresponding to the 

two different sensors. Out of the entire series of data, only two distinct states (State A and State B) 

are identified. A new measurement does not happen to agree exactly with either State A or State B. 
The new measurement seems to agree well in a Cartesian manner with State A, as it occupies the bin 
one interval over in each dimension. However, although the new measurement does not agree 

similarly with State B, the system state at the time of the new measurement is identified to be 

State B. This is because one of the components of the new measurement and State B agree exactly. 
Since State B differs in only one dimension (or individual signal) from the new measurement, it is 
nearer than State A, which differs in both dimensions. 

If the process is not declared abnormal, then the hypercube is generally able to provide an 

estimate of the true process state. The hypercube is not always able to supply an estimate, as the 

newly measured state might be halfway between the two closest neighboring observed states. 

2. !3YSTEM STATE ANALYSIS AM) UNIVERSAL PROCESS MODELING 

System State Analysis may be viewed as another predictive method relying on a past history 

of "good" measurements, and incorporating pattern recognition, clustering, and modeling. A new 

measurement is first compared to past measurements. Those past.measurements which are most 

similar to the current measurement are linearly combined to obtain an estimate of the current true 

process values. 
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APPENDIX F 

RAW DATA PLOTS FOR CYCLE 1 

This Appendix contains raw data plots for the McGuire instrument channels that were 

monitored during this project. Cycle 1 data collection began in March 1992 after a refueling outage 

and ended in June 1993 when the plant was shutdown for refueling. 

The same data acquisition system and procedure was used in cycle 1 and cycle 2. However, 

the sampling rates were different. In cycle 1, the output of each instrument was sampled six times 

per hour while in cycle 2, the sampling rate was reduced to one sample per hour. The plots that are 

included in this appendix do not represent every point that was sampled. Rather, points were skipped 

in plotting the data. 

Each figure in this appendix including three plots as follows: 

1. The raw data including the spikes and gaps that represent plant trips, 
shutdowns, and periods where on-line monitoring data could not be collected. 

Data after the spikes and gaps were removed. 

Data after it was filtered to remove the extraneous noise. 

2. 

3. 
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APPENDIX G 

RAW DATA PLOTS FOR CYCLE 2 

This Appendix contains raw data plots for the McGuire instrument channels that were 

monitored during this project. Cycle 2 data collection began in October 1993 and ended in October 

1994. 

The same data acquisition system and procedure was used in cycle 1 and cycle 2. However, 

the sampling rates were different. In cycle 1, the output of each instrument was sampled six times 

per hour while in cycle 2, the sampling rate was reduced to one sample per hour. The plots that are 

included in this appendix do not represent every point that was sampled. Rather, points were skipped 

in plotting the data. 

Each figure in this appendix including three plots as follows: 

1. The raw data including the spikes and gaps that represent plant trips, 
shutdowns, and periods where on-line monitoring data could not be collected. 

2. Data after the spikes and gaps were removed. 

3. Data after it was filtered to remove the extraneous noise. 
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