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Summary and Conclusions

The Bernoulli CUSUM (BC) provides a moving window 
of process performance and is the quickest control chart to 
detect small increases in fraction defective. Bernoulli 
CUSUM designs have been developed that require 2, 3, or 
4 failures in a moving window to produce a signal. The run 
length distribution provides insight into the properties of 
the BC beyond the Average or Median Run length. A 
retrospective analysis of electrical component pass/fail data 
using the BC suggested that a problem may have been 
present during prior production. The BC was implemented 
for ongoing production.

Introduction

In probability and statistics, a Bernoulli Process is a 
sequence of independent binary random variables X1, X2, 
X3, …, that take on the value 0 or 1. The random variable 
Xt takes on the value 1 with probability p and takes on the 
value 0 with probability (1-p). In manufacturing, we can 
think of a sequence of manufactured parts as being 
assigned the value 1 if the part is defective, and the value 0 
if the part functions properly. Then p represents the 
manufacturing fraction defective. It is of interest to 
monitor the fraction defective and provide timely feedback 
to the process engineers if the fraction defective is believed 
to have increased.

The Bernoulli Cumulative Sum (CUSUM) is a statistical 
process monitoring technique that is used to detect changes 
in the fraction defective p, from a nominal value p0 to an 
unacceptable level p1. It “cumulates” the number of defects 
that occur in a manufacturing window and provides an 
ongoing test of whether the fraction defective has 
increased. The Bernoulli CUSUM chart has appeared in 
the recent statistical process control literature, used 
primarily for high quality, high volume processes. Our 
challenge has been to modify and use the chart for high 
quality processes with somewhat lower volume.

In this paper, we will give an overview of the Bernoulli 
CUSUM (BC), discuss the properties of the BC by 
examination of the run length distribution, and make 

recommendations to the practitioner regarding the design 
of the BC. We will also present a case study of the 
Bernoulli CUSUM applied to a high reliability electrical 
component.

Several control charts are traditionally recommended for 
monitoring processes with pass/fail data. The p-chart is 
most frequently suggested for this problem. The p-chart 
monitors the fraction defective in successive samples, with 
a minimum recommendation of 25 to 50 parts per sample. 
Other control charts suggested for this problem include the 
Binomial CUSUM, applied to the number of failures per 
sample, and the Geometric CUSUM, applied to the number 
of good parts between failures.

A primary advantage of the Bernoulli CUSUM is that the 
BC statistic is calculated after each part is inspected. 
Because of this property, it has been shown to have the 
best statistical properties for detecting increases in fraction 
defective for high quality processes (Szarka, 2011). By 
“best statistical properties” it is meant that this type of 
control chart will detect increases in fraction defective 
more quickly than competing control charts.

The upper one-sided Bernoulli CUSUM statistics, Bt, t = 1, 
2, . . ., are

Bt = max(0, Bt-1 + Xt − r),

where B0 = 0 and r is a small constant greater than zero but 
less than one. The Xt’s represent the random Bernoulli 
sequence of 0’s and 1’s. An alarm is produced if Bt  H, a 
threshold value that is chosen, along with r, as part of the 
CUSUM design. The Bernoulli CUSUM is related to the 
Likelihood Ratio Test for testing a simple hypothesis of p0

vs. p1. This relationship is discussed in Reynolds and 
Stoumbos (1999).  

The measure of performance often used to evaluate the 
Bernoulli CUSUM is the Average Run Length (ARL), the 
number of parts produced until the threshold H is 
exceeded. This provides a warning alarm that the process 
fraction defective may have increased. An investigation of 
the process would follow any such alarm.  

Because the Run Length distribution is highly skewed, we 
will instead use the Median Run Length (MRL) as the 
primary measure of performance.  This same measure is 
used to determine the best possible design for the CUSUM 
chart in terms of choice of H and r. 

SAND2016-7395C

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability


2

As an example of how the Bernoulli CUSUM works, see 
the control chart below.
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Bernoulli CUSUM (p0= 0.01, p1= 0.06)

(H= 1.0, r= 0.04)

This example uses simulated data with an initial defect rate 
of p0= 0.01 for the first 100 observations followed by a 
defect rate of p1= 0.06 for the second 100 observations. 
The control limit is at H= 1.0 and the reference value is r = 
0.04. The Bernoulli CUSUM stays at zero until the first 
defect occurs at part number 62, where the CUSUM 
increases to the value (1-0.04) = 0.96. From that point 
forward, the CUSUM decreases by 0.04 for each part that 
passes until it reaches zero. With two failures at part 
numbers 123 and 132, the CUSUM signals because two 
failures have occurred in a relatively small window of 
parts. With H= 1.0 and r= 0.04, the CUSUM will signal 
whenever 2 failures occur within a window of 1/r= 25 
parts.

Advantages of the Bernoulli CUSUM:

1. The method has been shown to detect increases in 
the process fraction defective faster than 
competing methods, measured by Median Run 
Length. It is used to answer the question: Has the 
fraction defective increased?

2. The method has the advantage of testing for an 
increase in fraction defective after each part is 
tested. There is no need to accumulate parts 
before testing for an increase.

3. The method provides a moving window of current 
process performance.

4. The method can be used for process data, product 
acceptance data, and shelf life data. The ordering 
of the individual data values must of course be 
meaningful.

5. The method is relatively easy to explain and 
implement, and can be plotted by standard 
statistical packages such as Minitab.

The advantages listed above have led to the development 
of the Bernoulli CUSUM for the monitoring of the 
production of a high reliability, high consequence electrical 
component that will be discussed below.  The desire is that 
it provide an early indication of an increase in fraction 
defective during product acceptance testing.

Design of a Bernoulli CUSUM and Run Length 
Distribution

The recommended design of the Bernoulli CUSUM 
consists of the following steps:

1. Choose the control limit H and the reference value 
r to set the Median Run Length (MRL) at a 
desirable level when the fraction defective is at 
nominal. This corresponds to setting the “false 
alarm” rate. Choices of (H, r) can be explored via 
simulation or using tables of ARLs and MRLs.

2. For the choices of (H, r) from Step 1, evaluate the 
MRL for values of the fraction defective that are 
greater than nominal. This corresponds to 
evaluating the “time to detection” of an 
unacceptable fraction defective.

3. Iterate on the choice of (H, r) if necessary.

Tables of ARLs have been constructed for values of H and 
r such that 1.0 ≤ H ≤ 3.0 and 0.01 ≤ r ≤ 0.04. These tables 
provide a starting point for choosing H and r. Percentiles of 
the Run Length Distribution, obtained through simulation, 
are used for a more detailed analysis of the BC 
performance, and to make probability statements about 
possible outcomes.

  Example Table of Average Run Lengths for various
(H, r) combinations

p H=1.0
r=0.01

H=1.2
r=0.01

H=1.4
r=0.01

H=1.0
r=0.04

H=1.2
r=0.04

H=1.4
r=0.04

0.01 260 285 310 583 720 885

0.02 108 113 114 185 215 263

0.03 68 70 76 99 108 139

0.04 51 51 51 66 70 81

0.05 40 40 43 49 53 57

0.06 33 33 34 38 40 46

0.07 29 29 30 32 33 37

0.08 25 25 25 27 29 31

0.09 22 22 22 24 25 27

0.10 20 20 20 21 22 24
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This table shows that the ARLs increase as H increases 
(with r fixed), and as r increases (with H fixed). The MRLs 
for various choices of (H, r) can also be determined from the 
same simulations. Because the run length distribution is 
skewed, the Median Run Length is a better estimate of 
central tendency. Percentiles of the run length distribution 
can also be used to determine probability bounds on run 
lengths.

For the special case (H, r)= (1.0, 0.04) the run length 
distributions with p= 0.01 and p= 0.06 appear below.

Run Length Distribution with p= 0.01
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And Run Length Distribution with p= 0.06
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These histograms, each based on 10,000 simulations each, 
show how skewed the run length distributions are for p= 
0.01 and p= 0.06. The median value provides the best 
estimate of the central tendency, and the 5th and 95th

percentiles provide a 90% probability interval for the run 
length outcome.

Bernoulli CUSUM for an Electrical Component

It is desired to monitor the production of an electrical 
component that is a high reliability, high consequence, 
expensive component. The component requires some 
operator assembly, so a nominal value of p0= 0.005 is 
considered the lowest reasonably attainable fraction 
defective. One hundred percent inspection is performed 
and the most common failure mode is high voltage 
breakdown (HVB). A single component is also very 
expensive, so a timely feedback regarding any process 
problem is critical. False alarms are also costly, so a 
median run length when p= 0.005 is desired to be at least 
8000.

Because of the skewness of the run length distributions, the 
proposed Bernoulli CUSUM design strategy uses the 
Median Run Length (MRL) in the following way:

Subject to MRL ≥ 8000 when p0= 0.005,

Investigate CUSUM performance when     
p1= 0.01, 0.02, 0.03, 0.04, and 0.05.

Choose the best overall combination of (H, r).

The value p0 is the greatest allowable fraction defective. 
When the process is operating at this level or better, it is 
desirable to have a large MRL, to minimize false alarms. 
The value p1 is the fraction defective that is unacceptable 
and must be detected quickly. When the process is 
operating at this level or worse, it is desirable to have a 
small MRL.  Various combinations of (H, r) that produce 
an MRL of approximately 8000 when         p0= 0.005 were 
found via simulation techniques. These combinations 
appear in the table below.

Table 1. Combinations of (H, r) that Produce an MRL of 
Approximately 8000.

p H=2.0 
r=

0.024

H=2.2 
r=

0.020

H=2.4 
r=

0.017

H=2.6 
r=

0.014

H=2.8 
r=

0.012

H=3.0 
r=

0.0105

0.005 8000 8000 8000 8000 8000 8000

0.01 1256 1274 1153 1013 971 881

0.02 258 255 244 232 233 231

0.03 123 123 123 123 130 134

0.04 78 80 83 85 89 93

0.05 58 58 62 66 71 74

From this table we can see that the MRLs vary for each 
combination of (H, r) across the various values of fraction 
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defective p. The larger H value has faster detection for   
p= 0.01 and p= 0.02, but slightly slower detection for 
p=0.04 and p=0.05. Since we are interested in fast 
detection at p= 0.01 and p= 0.02, the recommended choice 
is to use (H, r)= (3.0, 0.0105) for the Bernoulli CUSUM. 
More percentiles of the associated Run Length distribution 
appear in the table below.

Table 2.  Run Length Distribution of Bernoulli CUSUM 
with (H, r)= (3.0, 0.0105)

p ARL 5th 25th 50th 75th 95th

0.005 11500 650 3350 8000 15500 34000

0.01 1220 164 454 881 1631 3461

0.02 285.8 69 143 231 373 687

0.03 155.9 47 85 134 200 342

0.04 108.2 35 64 93 140 227

0.05 82.9 29 52 74 103 176

This table gives the 5th, 25th, 50th (Median), 75th, and 95th

percentiles for the Run Length distribution of the Bernoulli 
CUSUM using (H, r)= (3.0, 0.0105). Looking at the row 
with fraction defective p= 0.01, we see that the Median 
Run Length (50th percentile) is 881. The 5th percentile is 
164 and the 95th percentile is 3461. These values provide a 
“best case” and “worst case” number of parts that will be 
needed to detect an increase in fraction defective to p= 
0.01.  To lower these numbers, the MRL when p= 0.005
would also have to be lowered, resulting in an increased 
false alarm rate. The choice of (H, r)= (3.0, 0.0105) is an 
attempt to balance the desire to quickly detect an increase 
in fraction defective with the desire to keep the false alarm 
rate very low.

This design was used in a retrospective analysis of 
electrical component pass/fail data. 

Bernoulli CUSUM of Electronic Component Pass/Fail 
Data

The CUSUM analysis suggested a process problem 
occurred around test number 1800. The Bernoulli CUSUM 
was implemented to monitor ongoing production.
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Appendix- Tables of ARLs for the Bernoulli CUSUM

H= 1.0 to 3.0 in increments of 0.20

r= 0.01, 0.02, 0.03, and 0.04

p= 0.01, 0.02, …, 0.09, 0.10

p
H=1.0                     
r=0.01

H=1.2
r=0.01

H=1.4
r=0.01

H=1.6
r=0.01

H=1.8
r=0.01

0.01 260 285 310 368 446

0.02 108 113 114 135 153

0.03 68 70 76 79 90

0.04 51 51 51 55 63

0.05 40 40 43 43 49

0.06 33 33 34 35 39

0.07 29 29 30 29 32

0.08 25 25 25 25 29

0.09 22 22 22 23 24

0.10 20 20 20 20 21

p
H=1.0
r=0.02

H=1.2
r=0.02

H=1.4
r=0.02

H=1.6
r=0.02

H=1.8
r=0.02

0.01 362 415 500 620 850

0.02 131 145 159 185 220

0.03 77 81 90 100 118

0.04 54 54 61 67 76

0.05 42 45 45 50 58

0.06 34 36 36 40 45

0.07 29 29 31 33 38

0.08 25 25 26 27 33

0.09 22 23 24 24 28

0.10 20 20 21 21 24

p H=1.0
r=0.03

H=1.2
r=0.03

H=1.4
r=0.03

H=1.6
r=0.03

H=1.8
r=0.03

0.01 463 540 680 890 1360

0.02 155 170 210 248 330

0.03 87 93 110 128 157

0.04 59 67 70 78 93

0.05 45 48 52 58 70

0.06 36 38 41 45 51

0.07 30 32 35 36 43

0.08 26 27 29 31 36

0.09 23 24 24 27 31

0.10 20 21 22 24 27
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p H=1.0
r=0.04

H=1.2
r=0.04

H=1.4
r=0.04

H=1.6
r=0.04

H=1.8
r=0.04

0.01 586 720 885 1235 2190

0.02 185 215 263 330 480

0.03 99 108 139 162 210

0.04 66 70 81 98 119

0.05 49 53 57 64 81

0.06 39 40 46 54 63

0.07 32 33 37 40 48

0.08 27 29 31 34 42

0.09 24 25 27 31 35

0.10 21 22 24 25 30

p H=1.0
r=0.04

H=1.2
r=0.04

H=1.4
r=0.04

H=1.6
  r=0.04

H=1.8
r=0.04

0.01 586 720 885 1235 2190

0.02 185 215 263 330 480

0.03 99 108 139 162 210

0.04 66 70 81 98 119

0.05 49 53 57 64 81

0.06 39 40 46 54 63

0.07 32 33 37 40 48

0.08 27 29 31 34 42

0.09 24 25 27 31 35

0.10 21 22 24 25 30

p H=2.0
r=0.02

H=2.2
r=0.02

H=2.4
r=0.02

H=2.6
r=0.02

H=2.8
r=0.02

0.01 1355 1730 2150 3015 4100

0.02 300 325 400 440 518

0.03 150 155 167 197 217

0.04 93 97 109 119 126

0.05 67 70 77 86 93

0.06 55 58 61 68 74

0.07 44 48 50 55 59

0.08 38 40 41 45 49

0.09 35 35 36 40 42

0.10 30 31 32 35 39


