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Summary and Conclusions

The Bernoulli CUSUM (BC) provides a moving window
of process performance and is the quickest control chart to
detect small increases in fraction defective. Bernoulli
CUSUM designs have been developed that require 2, 3, or
4 failures in a moving window to produce a signal. The run
length distribution provides insight into the properties of
the BC beyond the Average or Median Run length. A
retrospective analysis of electrical component pass/fail data
using the BC suggested that a problem may have been
present during prior production. The BC was implemented
for ongoing production.

Introduction

In probability and statistics, a Bernoulli Process is a
sequence of independent binary random variables X}, X5,
X;, ..., that take on the value 0 or 1. The random variable
X, takes on the value 1 with probability p and takes on the
value 0 with probability (1-p). In manufacturing, we can
think of a sequence of manufactured parts as being
assigned the value 1 if the part is defective, and the value 0
if the part functions properly. Then p represents the
manufacturing fraction defective. It is of interest to
monitor the fraction defective and provide timely feedback
to the process engineers if the fraction defective is believed
to have increased.

The Bernoulli Cumulative Sum (CUSUM) is a statistical
process monitoring technique that is used to detect changes
in the fraction defective p, from a nominal value p, to an
unacceptable level p;. It “cumulates” the number of defects
that occur in a manufacturing window and provides an
ongoing test of whether the fraction defective has
increased. The Bernoulli CUSUM chart has appeared in
the recent statistical process control literature, used
primarily for high quality, high volume processes. Our
challenge has been to modify and use the chart for high
quality processes with somewhat lower volume.

In this paper, we will give an overview of the Bernoulli
CUSUM (BC), discuss the properties of the BC by
examination of the run length distribution, and make

recommendations to the practitioner regarding the design
of the BC. We will also present a case study of the
Bernoulli CUSUM applied to a high reliability electrical
component.

Several control charts are traditionally recommended for
monitoring processes with pass/fail data. The p-chart is
most frequently suggested for this problem. The p-chart
monitors the fraction defective in successive samples, with
a minimum recommendation of 25 to 50 parts per sample.
Other control charts suggested for this problem include the
Binomial CUSUM, applied to the number of failures per
sample, and the Geometric CUSUM, applied to the number
of good parts between failures.

A primary advantage of the Bernoulli CUSUM is that the
BC statistic is calculated after each part is inspected.
Because of this property, it has been shown to have the
best statistical properties for detecting increases in fraction
defective for high quality processes (Szarka, 2011). By
“best statistical properties” it is meant that this type of
control chart will detect increases in fraction defective
more quickly than competing control charts.

The upper one-sided Bernoulli CUSUM statistics, B, t =1,
2,...,are

Bt = maX(O, Bt—] +)(t - r):

where By =0 and r is a small constant greater than zero but
less than one. The X;’s represent the random Bernoulli
sequence of 0’s and 1’s. An alarm is produced if B,> H, a
threshold value that is chosen, along with r, as part of the
CUSUM design. The Bernoulli CUSUM is related to the
Likelihood Ratio Test for testing a simple hypothesis of p,
vs. p;. This relationship is discussed in Reynolds and
Stoumbos (1999).

The measure of performance often used to evaluate the
Bernoulli CUSUM is the Average Run Length (ARL), the
number of parts produced until the threshold H is
exceeded. This provides a warning alarm that the process
fraction defective may have increased. An investigation of
the process would follow any such alarm.

Because the Run Length distribution is highly skewed, we
will instead use the Median Run Length (MRL) as the
primary measure of performance. This same measure is
used to determine the best possible design for the CUSUM
chart in terms of choice of H and r.


http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability

As an example of how the Bernoulli CUSUM works, see
the control chart below.

Bernoulli CUSUM (p0= 0.01, p1= 0.06)

(H=1.0, r=0.04)

Cumulative Sum
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This example uses simulated data with an initial defect rate
of py=0.01 for the first 100 observations followed by a
defect rate of p;= 0.06 for the second 100 observations.
The control limit is at H= 1.0 and the reference value is r =
0.04. The Bernoulli CUSUM stays at zero until the first
defect occurs at part number 62, where the CUSUM
increases to the value (1-0.04) = 0.96. From that point
forward, the CUSUM decreases by 0.04 for each part that
passes until it reaches zero. With two failures at part
numbers 123 and 132, the CUSUM signals because two
failures have occurred in a relatively small window of
parts. With H= 1.0 and r= 0.04, the CUSUM will signal
whenever 2 failures occur within a window of 1/r= 25
parts.

Advantages of the Bernoulli CUSUM:

1. The method has been shown to detect increases in
the process fraction defective faster than
competing methods, measured by Median Run
Length. It is used to answer the question: Has the
fraction defective increased?

2. The method has the advantage of testing for an
increase in fraction defective after each part is
tested. There is no need to accumulate parts
before testing for an increase.

3. The method provides a moving window of current
process performance.

4. The method can be used for process data, product
acceptance data, and shelf life data. The ordering
of the individual data values must of course be
meaningful.

5. The method is relatively easy to explain and
implement, and can be plotted by standard
statistical packages such as Minitab.

The advantages listed above have led to the development
of the Bernoulli CUSUM for the monitoring of the
production of a high reliability, high consequence electrical
component that will be discussed below. The desire is that
it provide an early indication of an increase in fraction
defective during product acceptance testing.

Design of a Bernoulli CUSUM and Run Length
Distribution

The recommended design of the Bernoulli CUSUM
consists of the following steps:

1. Choose the control limit H and the reference value
r to set the Median Run Length (MRL) at a
desirable level when the fraction defective is at
nominal. This corresponds to setting the “false
alarm” rate. Choices of (H, r) can be explored via
simulation or using tables of ARLs and MRLs.

2. For the choices of (H, r) from Step 1, evaluate the
MRL for values of the fraction defective that are
greater than nominal. This corresponds to
evaluating the “time to detection” of an
unacceptable fraction defective.

3. [Iterate on the choice of (H, r) if necessary.

Tables of ARLs have been constructed for values of H and
r such that 1.0 <H <3.0 and 0.01 <r <0.04. These tables
provide a starting point for choosing H and r. Percentiles of
the Run Length Distribution, obtained through simulation,
are used for a more detailed analysis of the BC
performance, and to make probability statements about
possible outcomes.

Example Table of Average Run Lengths for various
(H, r) combinations

p H=1.0 H=1.2 H=1.4 H=1.0 H=1.2 H=1.4
r=0.01 r=0.01 r=0.01 r=0.04 r=0.04 r=0.04
0.01 260 285 310 583 720 885
0.02 108 113 114 185 215 263
0.03 68 70 76 99 108 139
0.04 51 51 51 66 70 81
0.05 40 40 43 49 53 57
0.06 33 33 34 38 40 46
0.07 29 29 30 32 33 37
0.08 25 25 25 27 29 31
0.09 22 22 22 24 25 27

0.10 20 20 20 21 22 24



This table shows that the ARLs increase as H increases
(with r fixed), and as r increases (with H fixed). The MRLs
for various choices of (H, r) can also be determined from the
same simulations. Because the run length distribution is
skewed, the Median Run Length is a better estimate of
central tendency. Percentiles of the run length distribution
can also be used to determine probability bounds on run
lengths.

For the special case (H, r)= (1.0, 0.04) the run length
distributions with p=0.01 and p= 0.06 appear below.

Run Length Distribution with p=0.01

Histogram of Run Length Distribution
(Bernoulli CUSUM with H= 1.0, r= 0.04, p= 0.01)
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And Run Length Distribution with p= 0.06

Histogram of Run Length Distribution
(Bernoulli CUSUM with H= 1.0, r= 0.04, p= 0.06)
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These histograms, each based on 10,000 simulations each,
show how skewed the run length distributions are for p=
0.01 and p= 0.06. The median value provides the best
estimate of the central tendency, and the 5™ and 95"
percentiles provide a 90% probability interval for the run
length outcome.

Bernoulli CUSUM for an Electrical Component

It is desired to monitor the production of an electrical
component that is a high reliability, high consequence,
expensive component. The component requires some
operator assembly, so a nominal value of p,= 0.005 is
considered the lowest reasonably attainable fraction
defective. One hundred percent inspection is performed
and the most common failure mode is high voltage
breakdown (HVB). A single component is also very
expensive, so a timely feedback regarding any process
problem is critical. False alarms are also costly, so a
median run length when p= 0.005 is desired to be at least
8000.

Because of the skewness of the run length distributions, the
proposed Bernoulli CUSUM design strategy uses the
Median Run Length (MRL) in the following way:

Subject to MRL > 8000 when p,= 0.005,

Investigate CUSUM performance when
p=0.01, 0.02, 0.03, 0.04, and 0.05.

Choose the best overall combination of (H, r).

The value p, is the greatest allowable fraction defective.
When the process is operating at this level or better, it is
desirable to have a large MRL, to minimize false alarms.
The value p; is the fraction defective that is unacceptable
and must be detected quickly. When the process is
operating at this level or worse, it is desirable to have a
small MRL. Various combinations of (H, r) that produce
an MRL of approximately 8000 when po=0.005 were
found via simulation techniques. These combinations
appear in the table below.

Table 1. Combinations of (H, r) that Produce an MRL of
Approximately 8000.

p H=2.0 H=2.2 H=2.4 H=2.6 H=2.8 H=3.0
= = = = = =

0.024 0.020 0.017 0.014 0.012 0.0105

0.005 8000 8000 8000 8000 8000 8000
0.01 1256 1274 1153 1013 971 881
0.02 258 255 244 232 233 231
0.03 123 123 123 123 130 134
0.04 78 80 83 85 89 93
0.05 58 58 62 66 71 74

From this table we can see that the MRLs vary for each
combination of (H, r) across the various values of fraction



defective p. The larger H value has faster detection for
p=0.01 and p= 0.02, but slightly slower detection for
p=0.04 and p=0.05. Since we are interested in fast
detection at p= 0.01 and p= 0.02, the recommended choice
is to use (H, r)= (3.0, 0.0105) for the Bernoulli CUSUM.
More percentiles of the associated Run Length distribution
appear in the table below.

Table 2. Run Length Distribution of Bernoulli CUSUM
with (H, r)= (3.0, 0.0105)

p ARL 5" 25™ 50™ 75" 95

0.005 11500 650 3350 8000 15500 34000

0.01 1220 164 454 881 1631 3461
0.02 285.8 69 143 231 373 687
0.03 155.9 47 85 134 200 342
0.04 108.2 35 64 93 140 227
0.05 82.9 29 52 74 103 176

This table gives the 5™, 25, 50" (Median), 75", and 95™
percentiles for the Run Length distribution of the Bernoulli
CUSUM using (H, r)= (3.0, 0.0105). Looking at the row
with fraction defective p=0.01, we see that the Median
Run Length (50" percentile) is 881. The 5" percentile is
164 and the 95™ percentile is 3461. These values provide a
“best case” and “worst case” number of parts that will be
needed to detect an increase in fraction defective to p=
0.01. To lower these numbers, the MRL when p= 0.005
would also have to be lowered, resulting in an increased
false alarm rate. The choice of (H, r)= (3.0, 0.0105) is an
attempt to balance the desire to quickly detect an increase
in fraction defective with the desire to keep the false alarm
rate very low.

This design was used in a retrospective analysis of
electrical component pass/fail data.

Bernoulli CUSUM of Electronic Component Pass/Fail
Data

Bernoulli CUSUM of Electronic Device Pass/Fail Data

Window with 4 failures in 61 tests (6.6%). Overall failure rate 0.2%.

Cumulative Sum
~
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The CUSUM analysis suggested a process problem
occurred around test number 1800. The Bernoulli CUSUM
was implemented to monitor ongoing production.
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H=1.0 H=1.2 H=14 H=1.6 H=1.8
p r=0.02 r=0.02 r=0.02 r=0.02 r=0.02

0.01 362 415 500 620 850
Biographies
0.02 131 145 159 185 220
Appendix- Tables of ARLs for the Bernoulli CUSUM
0.03 77 81 920 100 118
H= 1.0 to 3.0 in increments of 0.20
0.04 54 54 61 67 76
r=0.01, 0.02, 0.03, and 0.04
p=10.01, 0.02, ..., 0.09, 0.10 005 42 45 45 S0 S8
0.06 34 36 36 40 45
0.07 29 29 31 33 38
0.08 25 25 26 27 33
0.09 22 23 24 24 28
0.10 20 20 21 21 24
H=1.0 H=12 H=14 H=1.6 H=1.8 p H=1.0 H=12 H=14 H=1.6 H=1.8
p r=0.01 r=0.01 r=0.01 r=0.01 1r=0.01 r=0.03 r=0.03 r=0.03 r=0.03 r=0.03
0.01 260 285 310 368 446 0.01 463 540 680 890 1360
0.02 108 113 114 135 153 0.02 155 170 210 248 330
0.03 68 70 76 L 90 0.03 87 93 110 128 157
0.04 51 s1 s1 S5 63 0.04 59 67 70 78 93
0.05 40 40 43 43 49 0.05 45 48 52 58 70
0.06 33 33 34 35 39 0.06 36 38 41 45 51
0.07 29 29 30 29 32 0.07 30 32 35 36 43
0.08 25 25 25 25 29 0.08 26 27 29 31 36
0.09 22 22 22 23 24 0.09 23 24 24 27 31
0.10 20 20 20 20 21 0.10 20 21 22 24 27
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H=1.8 p H=20 H=22 H=24
r=0.04 r=0.02  r=0.02 r=0.02
5150 0.01 1355 1730 2150
0.02 300 325 400
480
210 003 150 155 167
119 0.04 93 97 109
81 0.05 67 70 77
63 0.06 55 58 61
48 0.07 44 48 50
42 0.08 38 40 41
35 0.09 35 35 36
30 0.10 30 31 32
H=1.8
r=0.04
2190
480
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81
63
48
42
35
30

H=2.6
r=0.02

3015
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H=2.8
r=0.02

4100
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