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Motivation (MagLIF)

* In a z-pinch, electrical currents are axially driven through
conductors (often axis-symmetric annuli called liners).

* Selfsgenerated magnetic fields radially compress (via
JXB forces) conductive material (and entrained matter)
Into a high energy-density state on axis.

* MagLIF! involves filling the liner with DT fuel and
compressing it to conditions suitable for fusion.

 When the low-density magnetic field accelerates the
high-density metal, they slip through each-other in what
is called the Magneto-Rayleigh Taylor (MRT) instability.

* MRT sections the liner and disrupts compression. Sea
monster of nuclear fusion. Represents a significant
MagLIF threat.

1Slutz (2010)
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The MRT Instability

(a) 3.170 5x50 5x100um 6x200um

* You would expect to see the
same ratio between
perturbations if growth were *
linear to initial perturbations.?

. Dist. (mm)

Horiz

* Highly azimuthally correlated
but surprisingly not with
residual lathe structure.?

* So therefore everybody looked
for another, earlier instability
that generates azimuthal
density perturbations capable
of ‘seeding’ the liner for MRT.

1Sinars (2010) *McBride (2012)
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Electro-Thermal Instability (ETI)
Origins

e Suspicion came to rest on fast thermal
instabilities that grow after melt.? _
Striation vs filamentation. Strata more |, |
readily couple to MRT than filaments. —

oT : d
* If: CoP o7 = nj* andn = n, +a—ZT

* Then: 8T = §Tye?* wherey = J= on

* The hypothesized evolution is 6T —
Op — 6p, which carries the imprinted
azimuthal symmetry into the
compression phase.

peterson (2012)
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Thin-Wire ETI is analytically treatable:

* Where T* depends
quadratically on ¥ and
contains EOS parameters
specific to material.

* The hydro version predicts
that 6T ~ i 6p, so troughs are
hotter than peaks.!

* This term is also called the
electrochoric instability (ECI).?

* ETlis predicted to grow With { jzg—¥+%<cv%—€ —jza_”) — K2k
'}/ f—

fastest when conductor is a veredmamie ot P
liquid-vapor bi-phase. If you g
can keep material out of this

regime it is less dangerous.

10Oreshkin (2008)
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Application of EOS tables w/out hydro

to thin-wire case implies ETI
wavelengths grow in time.

* The Wiedemann-Franz relation, Liquid Aluminum Thermal
2 COI’]dUCtIVIt VS. Tem erature2
nNK _ kb 577 600 y T P T
= 5,2 issuitable for ——in the Al 52,35 glom? 1
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Given an initial axisymmetric

perturbation in p or n (i.e. consider
2-D thick ETI with hydro)

J travels as close to
the surface as
magnetic diffusion
permits.

Per axial unit length, I must be
the same for each section, so J
must be smaller when it has a
radial component and larger at
smaller radii.

Finally, Jis also
smaller at larger
radii due to
Ampere’s Law.

‘ ‘Natma!
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ETI/ECI drives deepening
axisymmetric groves

Since Jis larger here, n1j? is larger. Consequently, the
temperature grows faster and results in

(for dn/0T > 0) more resistive and if after melt
(since dn/dp < 0) less dense material.

Less dense material means flux
penetration depth is greater,
and Jis larger (i.e. J “dips’
Q inwards to take a lower
resistance path (even if

inductance goes up marginally))

Since vZ ~ p~1, low density material can
Q/ correlate most quickly, so w/out axisymmetry,
‘B-hernias’ azimuthally correlate fastest here.

Result is large-amplitude high-
density perturbations suitable

for MRT initialization. vac @mm
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Dielectric Coatings suppress Sp

* Dielectric coatings are theorized to constraining mass redistribution and therefore

MRT seeds.
L, 0 P aT
2 vl 1,2
J aT+T*<Cv ot ) kK
Y = D
CypP + W

* Coatings affect MRT in two intertwined but distinct ways:
1. Dielectric inhibits Sp, suppressing the , the so-
called Electrochoric Instability (ECI).?

2. Dielectric limits MRT initialization amplitudes by constraining 6p — 6p evolution
independent of ETI/ECI growth rates.

10reshkin (2008) & Peterson (2012, 2013, 2014) 2Pecover (2015)
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Important unknowns remain

* Thin wire experiments demonstrate that dielectric
overcoats suppress plasma formation, inhibiting the
current from shunting and permitting greater energy
deposition in the wire.! Analytic thin-wire theory implies
that %reater energy deposition rates mean faster
instability growth, so must the theory be inapplicable for
the thick-wire case since an applied dielectric reduces
instabilities??

* Oreshkin and Pecover argue in opposition whether
conductor strength is relevant for ETI growth.

* Experiments have verified that on Z, the dielectric carries

sufficient current to implode with the liner,? but .
simulations do not predict an imploding dielectric.? This
disparity motivated the experiments we have performed.

1Sinars (2010b) & Sarkisov (2004) 2Awe (2016) & Peterson (2014) 3Peterson 6 ﬁjﬂ m
(2014). & 1) Laboratories



"""

/ebra Pulsed Power Accelerator

e Zebrais a Marx-configured 1 MA driver at UNR. Chamber is return
can, so optical ports are >13” from TCC.

 Bank stores 150 kJ, and delivers in 100 ns via a transmission
impedance of 1.9 Q) to our ~m() loads. Given the impedance
mismatch, small variations in load resistance do not affect
accelerator performance.

* We define 500 kA to be at 100 ns: Zebra --> 11 kA/ns (~ 3-8 T/ns)
linear current until 0.9 M A.

Diagnostic Access

Spark gaps Gas Water Load Vacuum
\ switch  switches chamber
| - A==l |
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Intermediate storage Pulse forming line ] \ﬁ E i : m National .
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| 0oad hardware reproducibly
mitigates non-thermal breakdown

e Region of Interest
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Buried knife-edge contacts
mitigate arcing/break oxide layer,
and smooth electrode transitions
inhibit avalanche breakdown.

Cathode
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Tested Load Types and Surface
Features well characterized

(CM) Eleven Conventionally Machined Pulse-Oxide Electropolished @ 974 + 9 um :: Machining is consistently 5.1 + 0.2 um
(CH) Five CM then had 70 + 5 um Parylene-N Chemical Vapor Deposited

CM Scanning Electron Micrograph SE Preshot Backlit Optical Micrograph

CM White Light Interferogram
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Shadowgraph Diameters -> Expansion

* Experimental CH expansion speed is

2.1+ 0.27 pm/ns. +is due to T e —
linear regression fitness. T ] |

* Expansion speeds have previously P
been measured for uncoated o %//
aluminum are 3 ym/ns using the A b
same method.? //%

* This reduction in expansion speed is of %/
consistent with hydrodynamic }@ }
tamping of expanding low-density B w w e w W m
vapor. o

1 Awe, T. Dissertation pg. 209.
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VIS‘Radiometry for CH Loads -> initially

hotter, then cooler emitter

* Literaturel?suggests breakdown is correlated with a rapid increase in VIS
emissions, which we see for uncoated (~140 ns) but not coated loads. Available
implication is plasma doesn’t form.

* During the ‘ramp’ section of 95-125 ns, the ratio of coated to uncoated emissions is
a nearly constant 2.7 + 0.1 (taking into account T, = 85%))

 Thattheratiois > 1 is consistent with thin-wire
experiments in that the dielectric overcoat
increases energy deposition (therefore radiance).

CH Average
CM Average
Zebra Current [MA]
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Then across 5 %
coated here 4
and 6 uncoated
Avg. across 4 shots here
elements

ILlindemuth (2010) 2Raizer (1991)
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PO X
Dielectric Strongly Modifies Evolution
of VIS

5
LJ

Uncoated

Coated

Uncoated display: dots --> strata --> filaments. Filamentary plasma emissions rapidly overwhelm
strata that ALEGRA suggests grows underneath.
Coated display: strata throughout. CH load-averaged emissions are greater than uncoated load-

averaged emissions until these uncoated loads form filaments.
0 @
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The coated relationship between
machining and self-emission evolution is

clear qualitatively

Self-Emission Self-Emission Self-Emission
Pre-shot SEM: SE 525+ 33 kA 738 + 33 kA 837 + 33 kA
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Plank’s Law

[W/m?3/str] %

Notch Filter
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MCP Gate
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Photocathode Quantum Parylene
Pellicle Efficiency Transmission
[% [% = photo-e / # photons [% Transmitted)]
Transmitted] ~ A/W]
Emitter Area
[m?]
Ya , ;
counts counts :
= 339 ——— SNL and 498 ——— UNR (typical) Note: the pellicle and
e e . quantum efficiencies will be
g = 2 ns for SNL and 3.5 ns for UNR (typical) different for SNL vs. UNR
Ey = 600%um? Cameras
P, = 10247

'

Number of
Pixels

Two Aluminum
mirrors, AR coating
and BK7 glass [%

Transmitted].
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* Cameras disagree at > eV temperatures, which we

CCD-Temp .

600 — e
Distance [um]
——

Shot #3743 || UNR Mean Temp 0.41829 eV at 104.6 ns
T R
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believe is due to reliance on mfgr. Specs. Both
cameras agree that:

dots and strata are 0.1-0.2 eV hotter than background.
Dots/strata do not appear above 0.8 eV.
Filaments are only observed 0.6 eV and hotter.

Shot #3741 || SNL Mean Temp 0.53207 eV at 117.5 ns

100

Distance [um]

400 | X Y1: [261.6 367.7)
Index: 0.4783
[R.G,B]: [0.09412 0.09412 0.09412]

500

[X,Y]: [500.9 482.1]

Index: 0.6095
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Distance [um]

Shot #3740 || SNL Mean Temp 0.77323 eV at 123.5 ns

[X,Y]: [196.5 313.8]
Index: 1.654
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[X.Y]: [330.8 406.5]
Index: 0.6073
[R.GBI: [0.1725 0.1725 0.1725]
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Shot #3771 || UNR Mean Temp 0.29039 eV at 102.6 ns o Shot #3758 || UNR Mean Temp 0.75419 eV at 130.6 ns

0 0.35
[X.Y]: [326.1 129.6] ]
Index: 0.8582
-— 100 | 4 0.3 100 | [R,G,BJ: [0.8863 0.8863 0.8863]
0 [X.Y]: [409.4 191.2]
Index: 0.7752
0.25 L

[R.G,B]: [0.8078 0.8078 0.8078] 0.7

[X.Y]: [307.9 295]
Index: 0.3082

200 R 356
3 index: 0. = _
. * 5‘ [R,G,B]: [0.8706 0.8706 0.8706] 02 g 5
g a0 ] | § g -
e 2 ¢ g
i
0.15
400 [~ 200
[X.Y]): [241.1 530.8]
Index: 0.2821
500 | [R,G,BJ: [0.7922 0.7922 0.7922]
L}

istance [um] Distance [um]

T I m e/ C U r re n t o Shot #3768 || UNR Mean Temp 0.76873 eV at 138.6 ns

[X.Y]: [347.8 73.31]
Index: 0.8831

jex: 0.
[R,G,B: [0.949 0.949 0.949]

* Strata appear with Tgg ~ 0.27 eV, which is ~0.3 BT
eV cooler than hot spots on uncoated loads at
the same, early time. The dielectric appears to
suppress hot spot formation completely .

* Filaments are not observed as late as our ICCD ST e
images have been taken, suggesting dn /0T
does not change sign and therefore that plasma
does not form.

&
Temperature [eV]
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Summary

We think do not form plasma
because:
* Shadowgrams displays no appreciable MRT

* Shadowgraph expansion speeds do not change near peak
current

* PDA never displays a sharp increase in VIS emissions.
* Filaments are not observed.

ETI persists for ~50 ns, and remain highly (but perhaps
decreasingly) azimuthally correlated. Suppression of
hot spots is consistent with hydrodynamic tamping of
ECI.

Evidence suggests dielectric does not carry current.

Consistent
with
hydrodynamic
tamp.
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