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Abstract—At roughly kT energy dissipation per operation, the
thermodynamic energy efficiency “limits” of Moore’s Law were
unimaginably far off in the 1960s. However, current computers
operate at only 100-10,000 times this limit, forming an argument
that historical rates of efficiency scaling must soon slow. This
paper reviews the justification for the ~k7 per operation limit in
the context of processors for von Neumann-class computer
architectures of the 1960s. We then reapply the fundamental
arguments to contemporary applications and identify a new
direction for future computing in which the ultimate efficiency
limits would be much further out. New nanodevices with high-
level functions that aggregate the functionality of several logic
gates and some local memory may be the right building blocks
for much more energy efficient execution of emerging
applications—such as neural networks.

Keywords—logic-memory integration; processing in memory;
thermodynamic limits of computing; superconducting circuits

[.  INTRODUCTION

In 1965, Gordon Moore observed that the number of
components per integrated circuit was increasing exponentially
and predicted that this trend would continue [1]. Together with
corresponding increases in the energy efficiency and
performance per unit cost of digital logic circuits, this trend
enabled exponential growth in the capability, economic utility,
and ubiquity of computing systems over the ensuing half-
century. However, many observers believe this growth trend
will soon slow down or stall due to CMOS approaching
physical limits to its energy efficiency [2].

In considering strategies for avoiding this, it is important to
distinguish between processing and memory functions.
Nonvolatile memory technologies (e. g. flash memory) require
no power to simply retain stored data, so simply stacking up
more layers of memory on a chip will be able to raise the
effective areal density of digital storage for some time to come.
Moreover, as storage sizes continue to increase, one can co-
locate a proportional amount of processing circuitry for an
almost negligible extra cost—as long as most of this circuitry
is turned off (i. e., not dissipating any power) most of the time.
When some local transformation of data is needed, it can
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happen locally, minimizing the energy cost incurred for data
movement in contrast to the traditional approach of a von
Neumann computer where the overall system is divided into
separate processing and memory subsystems with a long path
between them that must be used every time data is accessed.

Provided that integration of logic and memory can
minimize energy dissipation for data movement, the problem
of how to minimize the energy dissipation for the logic itself
remains. Landauer [3] observed that there is a fundamental
thermodynamic limit of energy dissipation for logically
irreversible operations (those that cause a merging of digital
states) of a magnitude that is proportional to the reduction in
Shannon entropy of the digital state ensemble. For the class of
“typical” operations that Landauer studied in detail, namely,
traditional Boolean logic operations with unknown (and
equiprobable) inputs that are not preserved, the minimum
dissipation is on the order of k7, where k is Boltzmann’s
constant and 7 is the temperature of the system’s thermal
environment. In the case of the irreversible erasure of exactly
one bit of information that is equally likely to have been in the
0 or 1 state before erasure, the limit comes out to k7" In 2. This
formula is frequently cited as constituting a general limit on
energy dissipation for digital logic operations, but this can be
misleading for two reasons:

First, the exact magnitude of the Landauer limit depends on
the type of logic operation being considered. For example,
reversible operations do not reduce the entropy of the digital
state ensemble at all, and theoretically do not require any
minimum energy dissipation; yet they are still computationally
universal [4]. Unfortunately, pure reversible computations
generally incur some algorithmic overheads [5].

Second, even in the case of operations that are not perfectly
reversible, the exact magnitude of the Landauer limit depends
on the probabilities that states will be merged and thus also on
the relative probabilities of the wvarious inputs. These
considerations should be taken into account when considering
the Landauer limit in new contexts.

It is often argued that these fundamental thermodynamic
limits are not practically relevant, because the energy
efficiency of logic will plateau long before the fundamental
limits are reached unless formidable practical challenges are
met. However, if these challenges are successfully met, and
efficiency continues scaling at near historical rates, a gap of
100-10,000x between fundamental and practical limits will
close within a few decades.



In this paper, we identify a class of

A. Landauer's analysis of AND gate and wire (figure 5 from [3])
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distinguishable states of this device that are used
to encode data. He associated the quantity

S=-kY p,log,p, )
J

with the contribution of the information-bearing degrees of
freedom to the thermodynamic entropy of the device, where j
labels the device data states and p; denotes their respective
probabilities of occurrence. Now, if the device undergoes a
transformation that deterministically maps initial data states
having nonzero probabilities into a smaller number of final
data states, then the final entropy S} is necessarily smaller than
the initial entropy S;. Thermodynamically, Landauer argued,
this requires that the entropy of the surrounding thermal
environment increase by at least an amount S; — Sy, which in
turn requires an environmental heating of at least (S; — Sp)7 > 0.
This is Landauer’s Principle. It has become customary to
express this relation in terms of the Shannon entropy (or

Shannon “information”) of the data-state probability
distribution, expressed in units of “bits” as
H=—Zp/10g2pj. (2)
j
With this, the environmental heating is
AE, 2 (kTIn2)(H, - H ). (©))

This is the “Landauer limit,” as it is most commonly known. It
specifies a lower bound on the dissipative cost of “A7T In 2 per
lost bit” in logically irreversible (many-to-few)
transformations, and specifically as “AT In 2 per erased bit” for
erasure (many-to-one) transformations that map all initial states
into a single final state (so Hy = 0). (It should be noted that

Fig. 1. Example from [3].

“bit” is used here as a unit of information, and may be
fractional.)

For illustrative purposes, we consider evaluation of the
Landauer “limit” in detail for a specific example—one from
Landauer’s original paper [3]—that involves a common
Boolean operation (AND). The truth table, rendered in the
visually distinctive white characters and black background of
[3], is shown for in Fig. 1A for this circuit (diagram in Fig. 1B
inset). The truth table is represented in a new form in Fig. 1B
that better highlights the initial-to-final state mergings that
occur in this logically irreversible transformation. Probabilities
pj, the entropies S;, Sg, and their difference (S; — Sp) (in units of
k) are all tabulated for the case where the eight possible input
vectors are equiprobable—also as assumed by Landauer. The
entropy change is S; — S = 0.824 k =~ k, corresponding to a
lower bound on the energy dissipation of ~kT.'

We emphasize that, as is clear in Fig. 1, the value of ~kT
energy dissipation per use obtained for this example is as much
a result of the assumed input probability distribution as it is of
the state mapping implemented by the gate. Some groups of
input states merge into a single output state whose probability
is equal to the sum of the probabilities of the contributing input
states: the three input combinations pg=00, 01, and 10 to an
AND gate merge into the single output state r=0, which
lowers the entropy, whereas only the pg=11 input state yields
the =1 output state, and so does not contribute to the entropy
change. Thus, we can say that although the particular
transformation in Fig. 1 is not fully logically reversible, it is
partially or conditionally reversible (a notion elaborated upon
n [7]); that is, there is a certain precondition on the inputs
(here pg=11) under which no state mergings will occur. In the
general case, the entropy reduction associated with the full
transformation depends on the input probabilities, which

! Landauer’s original paper miscalculated the entropy difference of
this example as 1.18 k. This was later corrected in [6].



“prescale” contributions from all of the various inputs—those
that satisfy the precondition as well as those that do not.

The assumption of a uniform input distribution, almost
ubiquitous since Landauer, is entirely reasonable for common
Boolean gates and logic circuits operating as they might in an
unspecified general-purpose machine executing an unknown
computational task. Uniform probabilities are assigned when
there is no reason to expect otherwise. Under this assumption,
the information loss for most common Boolean logic gates is
H; — H;~ 1 bit per use, yielding a Landauer limit of ~kT energy
dissipation per use for uniformly distributed inputs. Since
Boolean gates have been the established building blocks of
digital computers for over half a century, and since the
ubiquitous assumption of uniform probabilities has seemed
reasonable for gates and logic circuits in the kinds of digital
computers that have been in use during this period, the
Landauer limit is often interpreted as a dissipation bound of at
least “kT In 2 per use” (or “kT In 2 per operation”). This is a
useful shorthand under the assumptions that justify it, but only
under these assumptions.

In cases like those of interest in this paper, where input
probabilities are expected to be highly skewed, Landauer’s
original argument must be revisited if it is to be properly
applied. In such cases, evaluation of the Landauer limit can
yield dissipation bounds much lower than A7 In 2. This
obviously conflicts with the “shorthand” Landauer limit of kT
In 2 energy dissipation per use, but not with the “actual”
Landauer limit of kT In 2 per lost bit calculated as above for
nonuniformly distributed inputs. There is no contradiction—far
less than one bit per use can be lost on average when the input
distribution is highly skewed and the information loss is H; —
Hy <H; < 1 bit.

Nonuniform input distributions can thus yield dissipation
bounds lower than A7 In 2 per use with no violation of the
Landauer limit as defined above. We should emphasize that
although some have questioned Landauer’s assumptions and
his application of equilibrium thermodynamics to this problem,
his essential result—a dissipative contribution of &7 In 2 per bit
of irreversible information loss—is upheld in a wide variety of
proofs and derivations that sidestep these objections and even
quantify information differently (e.g. [8], [9], [10]). We should
also note the distinction between information loss reductions
resulting from skewed input distributions, which reduce the
probability of state mergers overall, and elimination of
information loss by eliminating state merging altogether as in
reversible computing [4]. Finally, we note that acceptance of
the Landauer limit does not amount to a claim that it can be
achieved. We discuss both Landauer limit reductions in
scenarios with heavily skewed input distributions and the
achievability of these reduced limits in the following sections.

III. A SIMPLE LEARNING MACHINE

We now apply the analysis of [3] to a device with a
functionality and input environment inspired by emerging
applications such as neuromorphic computing. Instead of an
AND gate with uniform inputs, we will consider an artificial
synapse of sorts with a nonuniform input distribution and show

that the minimum energy dissipation per operation can be
much less than £T.

While learning is essential, most experiences do not cause a
given synapse to change state. We will exploit the low
probability of actual learning to lower minimum energy. For
example, readers of this paper will have already learned the
alphabet as a child. By now, there is nothing more to learn by
seeing the letter “L” one more time. However, seeing the letter
“JI” may invoke learning and cause synapse changes for
readers who are unfamiliar with the letter equivalent to “L” in
Russian (Cyrillic). This will be a rare event.

We consider a single simplified artificial synapse as the
machine in our example, and analyze a system comprising an
array of these machines. The system is a functionally enhanced
memory tasked with learning or creating a model of a slowly
changing environment from partial observations. The
environment comprises of an array of nxn (here n=3) data
items or pixels that take the values —1 and +1. We will
ultimately analyze two different scenarios for the environment,
one where all the pixels are spatially independent and the other
where the pixels in a row are perfectly correlated. Observations
are of one pixel (or row) at a time, with probability p that a
specific pixel (respectively, row) is observed in each step in
cases of spatially independent (respectively, correlated) pixels.
The system has an internal nxn array of functionally enhanced
storage cells and shift registers that drives both the row and
column of the internal array with the observed pixel value of
—1 or +1. When the selected cell receives (—1, —1) or (+1, +1),
it remembers the stimulus value. Each pixel in the environment
changes with time at a rate corresponding to a probability g of
a change per observation. The system will be modeled in
steady state, so an initial condition is not needed. Table I is an
example data set corresponding to the problem description
above. The system could drive multiple rows and columns at
once and include both —1 and +1 data values in the same
observation, but this will not be considered here.

An implementation of the example system is illustrated in
Fig. 2A, which is an nxn array of the synapse machines in a
framework that transmits data in Table I past the array as
shown. The function being analyzed will be just one of the
synapses in the array, which is modeled as a magnetic core.
Magnetic cores are used as a behavioral illustration at this point

TABLE I: DATA TO BE LEARNED

Step Row Column Response
1 —1 onbottom | —1 on left Learn —1
2 —1 onmiddle | —1 on left Learn —1
3 +1 on bottom | +1 on center Learn +1
4 —l onbottom | —1onleft | —I already learned

many repetitions with no learning

n-3 —1 onbottom | —1onleft | —1 already learned
n-2 —lonmiddle | —lonleft | —1 already learned
n-1 +1 on bottom | +1 on center | +1 already learned
n +1 on bottom | +1 on left Learn +1




because readers are likely to be

- - - ) A. Learning machine (cores)
familiar with their operation,

but we will mention a ¥ = O
nanodevice (MeRAM) before g & 7 £ 2 &
the end of this section that is = ¢ 5 = % =
compatible with the same Ljojop-rjogo
analysis. +1lolofo]+1]o0
The system monitors a ol-1lof-1]o]o
stream of 2n parallel data
. . +1{ofOo[+1] 0[O
inputs from the environment

(one for each row and column),
which is assumed to be
ongoing and which is not
destroyed or erased by the
system. For the case of single
pixel observations, the stream
provides a single nonzero, *1,
stimulus on each set of 2n data
inputs as shown in Fig. 2A to
write into the corresponding

Of+1{oOf+1]0fO

continues indefinitely

-

B. MeRAM equiv.

core. (In the case of the
spatially correlated
environment, the stream

contains multiple £1 inputs to
update an entire row of cores
with the same value.) As the
data flows downward through
the 2n shift registers, the values
on the bottom row are translated into current in the blue and
red wires. The wires become rows and columns of an array
tilted at 45° where the row-column intersections each flow
through the center of a core. Each core flips to align with its
magnetic field, but only if the field is above a threshold and a
core will not flip if it is already in the correct
state. The system would be engineered to flip
magnetization at +1.5 units of current flowing

Fig. 2: Two versions of system

lower bounds on the energy dissipation for this machine.

IV. DISSIPATION ANALYSIS FOR THE LEARNING MACHINE

In this section, we obtain lower dissipation bounds for the
learning machine of Sec. III, Each magnetic core behaves as a
finite-state automaton, as does the entire learning machine. We
consider both of the scenarios for the pixel environment and
the input streams mentioned in the previous section. We will
start with a limiting dissipation analysis of a single core, which
will apply equally to both cases. We will then calculate the
limiting dissipation of the entire learning machine and
elucidate the differences in the dissipation for the two cases.

Dissipation bounds are obtained from a fundamental
physical description of Finite State Automata (FSA) driven by
Independent Identically Distributed (IID) information sources
[11], extended for the present paper to accommodate FSA
driven by inputs with temporal correlations and thus for
learning scenarios in changing environments. Landauer’s focus
was combinational logic, but his analysis can be applied a
manner that yields the same result for the case at hand (see Fig.
3).

The FSA description of each core is as follows: The FSA
state s corresponds to the current magnetization state of the
core. FSA inputs / and r correspond to the current states in the
blue and red wire respectively. The next state of the core s’
depends upon its current state s and the input values on the
wires. We use the random variables S, S’, L and R for a
statistical description of the current and next state of the core,
and for the two inputs, respectively. Assuming that the
magnetization states of the core are perfectly distinguishable,
the minimum energy dissipated into the environment as the

Learning Machine (Synapse) s /| r
Probability of seeing learnable data (+,+ or -,- 0.0100
Probability data has changed since last learne 0.0100

Notes: r and
[ are trits &

through each core. Thus, a core exposed to +1 on  P(null) 0.9900 )
the row wire and +1 on the column wire will have P(reinforce) 0.0099 5.5 Tare
total current +2 and would flip magnetization to P(new data) 0.0001 § state
the green state provided it was not in the right Si terf“s o1 1 h
state already. Vice versa for —1 and a red state. ~ PreP: (nkis) left right field Sfterms
Magnetic cores dissipate energy when they 000495 002631 1 -1 -l left right field Prob. in (k's)
change state, but nearly zero energy otherwise. 0.09900 0.2290 ] -1 0 | -1 0.0050 0.0265
Unless the two currents are in the same direction,  0.09900 0.2290 | 0 -1 -1 0.0990 0.2290
the total current will be below the threshold and 19900 02290 | 0 o | -1 0.0990 0.2290
there will no state change and no energy
dissipation associated with core state changes. 0.09900 0.2290°1 0 1 L 0.0990 0.2290
0.09900 0.2290 1 0 -1 0.0990 0.2290
Fig. 2A illustrates the system processing the 0.00005 0.0005 | 1 ] B 0.0990 0.2290
data in Table I, specifically at the processing of ’ ' ’
step 7. Steps 1-3 cause the system to learn pixels, 0:00005 000051 -1 -1 1 0.0990 0.2290
setting the three non-white cores shown in Fig. 0.09900 0.2290 | -1 0 1 0.0990 0.2290
2A; the white cores are irrelevant to the ¢.09900 02200 o @ -1 1 0.0990 0.2290
discussion and cogld be either red or green. The ) 19000 02200 [ o 0 ] 0.0990 0.2290
system then experiences a long sequence of steps
containing repeating known pixels. In the last row 0.09900 022901 0 L ! 0.0990 0.2290
of Table I, the learning machine observes a 0.09900 0.2290 ] 1 0 1 0.0050 0.0265
change in the external data set. The {bottom, left}  0.00495 0.0263 | 1 1 1 St (k's): 2.3425
pixel changes from —1 to 1 and is recorded as the S 23431 k Si-Sf(k's): 0.0006

leftmost core in Fig. 2A flips. We now consider

Fig. 3. Analysis method of [Landauer 61] applied to synapse function



core (in steady state) undergoes a transition from s to s’ is AE,,,
> kT In 2 [H(S|LR) — H(S'|LR)] per operation where H(S|LR)
and H(S'|LR) are the conditional Shannon entropies of the core
state distribution given the inputs, before and after the state
transition respectively. The inputs (/, ») = (+1, +1) and (/, r) =
(-1, —1) write +1 and —1 into the core states respectively,
regardless of the previous state. This merging of the core states
for certain / and r inputs is the source of the irreversibility and
energy dissipation into the environment.

We have calculated the limiting dissipation for the learning
machine with p = 0.01 and ¢ = 0.01. Recall that p is the
probability of seeing learnable data, i.e. the probability of
seeing the inputs (/, ) = (+1, +1) or (/, ) = (-1, —1). ¢ is the
probability that given the presence of learnable data, the data
value changes in the environment since the last time that data
was observed. The input probabilities are functions of p, ¢, and
the steady state core state distribution is P(S =+1) =P(S=1) =
0.5. The lower bound on energy dissipation calculated for a
single core of the learning machine—both from the FSA
description and the modified Landauer-like analysis of Fig. 3—
is AE,,, > 0.0006 kT per operation. The 1,000x difference
between the limiting dissipation for the magnetic core and the
“kT In 2 per operation” rule of thumb stems largely from the
input probabilities selected for this learning example, which
correspond to learning with a slowly-changing environment.

We now extend our analysis to the entire learning machine
for the two scenarios introduced in the previous section. The
magnetic cores are assumed not to interact with one other. In
the first case, the pixels in the 3x3 environment are spatially
independent and the cores updated one at a time randomly. The
limiting dissipation bound for the entire learning machine will
be equal to the sum of the dissipation bounds for the nine
individual cores. For p = 0.01 and ¢ = 0.01, we have the lower
bound on the energy dissipated into the environment for the
nine-core learning machine to be AFE,,, > 9 x 0.0006 kT =
0.0054 kT. In the second case, updating an entire row with
correlated inputs, will produce correlations between the cores
of each row. As a result, the limiting dissipation of the entire
learning machine will be < 9 times that of a single core. Using
the same values for p and ¢ as before, we have the lower bound
on the energy dissipation of the learning machine of AE,,, >
0.00168 kT. Thus, the limiting dissipation values for variations
of the learning machine can vary significantly, depending upon
the characteristics of the input environment and the updating
scheme employed, even for a fixed limiting dissipation values
for the individual cores.

We next consider the principle of aggregation, which we
will define as follows: The minimum energy dissipation of a
function will always be less than or equal to the minimum for a
realization as a disaggregated group of lower level (often non-
optimal) primitives. To illustrate, consider the magnetic core
from the learning machine. Each of the nine magnetic cores is
functionally equivalent to the logic circuit in Fig. 3 comprised
of NAND primitives (two of which use three-valued inputs). A
dissipation analysis of this circuit using the same input
distribution as the magnetic core implementation, and
assuming that the gate operations are not conditioned upon /
and 7 inputs, gives a dissipation bound of AE,,, > 2.8939 kT.

This is > 0.0006 kT, the large difference attributable to a
highly non-optimal disaggregation of the logic function using
gate-level primitives. This dramatically illustrates both the
aggregation principle and the need for careful analysis and
interpretation.

We reiterate that the behavior of a magnetic core is well
known to engineers due to its historical use in computers, and
thus serves as a suitable example device to illustrate
aggregation. However, legacy core memory cells are
macroscopic devices and their practical dissipation would be
orders of magnitude above the dissipation limits obtained here,
both because of dissipation associated with changes in the core
magnetization and that associated with generation of the
required wire currents on each use.

A MagnetoElectric RAM (MeRAM) [12] is a modern
nanodevice that exhibits similar behavior, but with currents
replaced by voltages. The MeRAM equivalent of the learning
machine’s array is shown in Fig. 2B, using the MeRAM
schematic symbol and limiting the diagram to cell writing (the
device terminal needed for reading is not connected). An
MeRAM-based implementation of our synapse would provide
an aggregated realization of the function and have a much
lower dissipation than a macroscopic core, while still being
over the theoretical minimum. We will see how minimal
dissipation might actually be approached in an already-
available technology in the following section.

V.  APPROACHING FUNDAMENTAL LIMITS

The Landauer limit is a lower bound on dissipation per
operation that will be approachable to varying degrees in
various technology contexts. We considered an example above,
inspired by learning applications, for which the Landauer limit
evaluated for individual devices is kT per operation. We now
consider the physical possibility of approaching this limit.

As an example of a device that could very nearly achieve
the Landauer limit in the learning machine discussed above, we
propose and partially analyze a Josephson Junction- (JJ-) based
negative-inductance Superconducting QUantum Interference
Device (nSQUID) circuit with the behavior needed for the
minimum energy model to apply. In contrast to the MeRAM,
this circuit appears to have the necessary properties to
approach the energy minimum in Fig 3. Furthermore, the key
nSQUID subcircuit has been constructed and measured in other
contexts (i.e., a shift register, not an array). The measurements
show about 1 kT per operation, which is extraordinary by most
standards yet above the sub-k7 minimum suggested by Fig. 3.

We provide an introduction to the nSQUID, but readers
will need to reference [13] for enough details to duplicate the
results. The nSQUID circuit illustrated in Fig. 4A has current
from the V. supply pass through the two branches on the left
to ground. A common mode bias current /, originates with V.
and flows through L, and L, in the same direction. Current can
also flow or circulate in opposite directions through L; and L,,
which we designate /.. Circulating current represents a 0 or 1
data value depending on whether the rotation is clockwise or
counterclockwise.



A. Circuit

B. Micrograph
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Fig.4: nSQUID circuit and layout, from [15]

The circuit is laid out with L; and L, as one-turn inductors
wrapping in opposite directions around the empty square in the
center of Fig. 4B. Due to the reversed wrapping, /. flowing
equally through L, and L, creates no net magnetic field, but
magnetic fields from the /. current representing data adds and
creates a larger magnetic field.

Quantum mechanics forces the magnetic field threading a
superconducting loop to be quantized, which impacts the
circulating current defining data bits, but has no effect on the
bias current because there is no magnetic field.

Due to both the effects of quantized magnetic field and the
classical inductance, varying the bias current smoothly shifts
the circuit from having a single potential to two potentials. Fig.
5 is a plot of the energy in the nSQUID as a function of the
current that defines the data /.. The curves vary by the amount
of common mode current /., which rises from low values at the
top to higher values as the curves move downward (however,
further increase in /; does not result in a deeper double-welled
potential). The units are not relevant to the point of this paper
but are the same as in [13].

A key step toward reaching the low energy limit is to
properly implement a protocol for erasing information when
there is an unequal distribution of 0’s and 1’s. Three
increasingly sophisticated erasure protocols will be described
below, with the last being sufficient for the purposes of this
paper.

Slowly lowering the energy barrier between data states 0
and 1 is sufficient to achieve dissipation of k7 In 2, which is the
minimum possible when p, = p; = 0.5, where p; is the
probability of a bit assuming value ;.

When p # p, entropy S is less than one bit, and it ought to
be possible to erase the information with just —7AS heat
generation. The protocol [14] is easy to explain and
understand, but achieves optimal efficiency only in the limit of
infinite time. Starting with a large energy barrier separating 0
and 1, the first step is to tilt the energy landscape so that the
less probable bit value is at a higher energy

AE=kTh =2 = kT p, )
P

where the approximation here approaches equality for small p;
this value of AE gives an equilibrium high-energy state

occupancy probability of p as per the Boltzmann distribution
for a two-state system,

1 _AEJK
p:1+eAE/kT_eAET )

where here the approximation holds for large AE. This tilt puts
the system into a thermodynamic equilibrium, yet with a high
energy barrier that prevents rapid transitions. The barrier is
then gradually lowered, which gradually causes the states to
merge. This protocol approaches minimum dissipation as the
rate of lowering becomes infinitely slow.

The protocol most applicable to this paper erases a
nonuniform bit (where py # p;) in a specified time # with
minimum heat generation given that constraint. The required
protocol was derived by Zulkowski in [15] and dissipates heat
of —TAS + O(1/ty). It should not be surprising that this exceeds
heat dissipation of the previous protocol, but is still minimal.
The first term is the cost of erasing the information and the
second term is the familiar result that the energy efficiency of
adiabatic systems varies inversely with the speed of operation.
As described in in [15], the protocol uses waveform V; for tilt
and ¥, for the height of the separating barrier. The variable V is
usually reserved for voltage, which will be confusing in
subsequent discussion because nSQUID circuits are controlled
by currents. Therefore we will call the waveforms in [15] /; and
I,. The exact waveforms depend on p,, p;, and the available
time f;, but essentially the barrier goes down then up while the
tilt goes up.

An nSQUID circuit has essentially the same tilt and barrier
height controls as the bit erasure protocol in [15]. Specifically,
barrier height is controlled by the current /. flowing through
the circuit in common mode, as illustrated in Fig. 4A. Tilt can
be in the form of a magnetic field covering the entire array, or
two additional wires
shown in Fig. 4A as

+¢. and -@,. Single and double well

N

-
5\\\\¥/////
=/

However, the
example in Fig. 2 also
has an array structure
with row-column
addressing. In general,
row-column addressing
means each cell
receives separate
signals from the row &
and column to which it s
is connected. These =
signals arrive in four
combinations:
unselected, half-
selected  (in  two P ;;:;:/
versions corresponding
to just the row or just |
the  column), and
selected. While the
nSQUID  has two
controls (tilt and barrier
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height), these are not combined properly for row-column
addressing. The sum of the row and column currents will
control the barrier height of the nSQUID in this paper. In a
minor variation of the problem definition, the tilt signal could
be applied globally—such as with a magnetic field enveloping
the entire array or a single current routed to every cell.

We devise a signaling protocol for both addressing and
erasure [15]. In simple words, unselected cells hold data
indefinitely. Selection occurs when the erasure waveforms are
applied to both the row and column conductors of a cell, in
which case they combine and efficiently erase the information.
Half-selected cells only get half the erasure waveform, which
by careful engineering causes the cell to retain data.

The protocol requires three common mode current levels
Leteets Thair, and 1y, (I, stands for /-hold and is the current when
unselected) for the nSQUID such that:

A. The currents are equally spaced and in a particular order,
specifically I, = Ijr + Al = e + 2AI for a current spacing Al

B. The nSQUID holds data reliably when f, ¢ < I, < I,
even when the energy landscape is tilted to the maximum
required by the protocol in [15].

C. The protocol in [15] will function properly when Zgjee; <
I(t) £ L, meaning the bit erasure protocol does not require
currents outside the range between half-selection and selection.
This lmplles [b(t) - [h < [half_ [h =—-Al

Table II shows a way to combine array addressing and
erasure; it is laid out like a 2x2 memory with the lower right
cell selected. Unselected rows receive no current and columns
receive 1, thus causing all unselected cells to hold their state.
To select a cell, the cell’s row and column each receive a
(negative) current change of 'a(Iy(f)—I,), resulting in the
selected cell being exposed to the proper waveform /y(f) for the
erasure protocol. All half-selected cells hold data reliably
because they receive a current greater than /.

TABLE II: Currents applied to nSQUID array

Unselected Selected

column column

[col = ]h ]col = Ih+1/2([b(t)'[h)
Unselected row | I.=1, I = L+%(,(0)-1)

Imw:O < Iha|f+]/2A[

L = Lt a(l(0)-1y) | 1= h-(l(0)-I) =
< hart2Al Iy(?)

Selected  row
Irow: ]/Z(Ib(t)']h)

The effectiveness of the protocol requires the nSQUID
meet requirements A-C. To show feasibility, Fig. 6 includes
curves from the nSQUID circuit equations in [13] at an
operating point that supports addressing. For addressing, we
choose current values of I, = 2.2, L; = 2.8, and I = 3.4,
which have equal spacing A/ = 0.4. Fig. 6A shows three
curves from Fig. 5 with the values specified above, plus tilt.
Two of the curves are bistable and the third is not. For
additional assurance, Fig. 6B shows a series of curves Iee <
I < Iz where the bistable well decreases in depth.

VI. TOWARDS A ROADMAP FOR SUB KT COMPUTING

The ideas above include ingredients for the design of new
kinds of computing systems with extremely low energy
dissipation. While the best CMOS today dissipates about 10"
kT per operation, the record for low-loss logic is E; = 1 kT [13].
It is reasonable to expect E, will be reduced to 0.1 £7, 0.01 kT,
and so forth—and similarly for non-logic functions like the
synapse example presented earlier. Let us outline steps for the
development of ultra low energy computing based on ideas in
the preceding sections:

A. To approach the thermodynamic limits of standard
Boolean gates in the traditional computing paradigm, it is
reasonable to assume equiprobable inputs and irreversible loss
of input information, leading to a “rule of thumb” lower
dissipation bound of “kT per operation.” For such scenarios,
this rule of thumb accurately reflects the spirit of Landauer’s
analysis of [3], but in other scenarios the dissipation bounds
must be revisited.

B. Reversible logic styles in the sense of [4], [5], [7] may
become viable in the near future. While these can have
arbitrarily low dissipation in principle, any specific
implementation technology will have some practical minimum
dissipation E; per operation. With E, = 1 kT today [13],
reversible logic is near the threshold of yielding benefit over
conventional logic for some applications.

C. A hybrid of steps A and B could lead to complete
systems. Reversible logic creates intermediate variables that
must be preserved until they can be decomputed, incurring a
cost of ~E, every time the temporary variable propagates
through a reversible gate. Reversible gates from step B could
be used when such signals need to propagate up to k7/E; steps,
otherwise Boolean gates from step A would be used.

D. Minimum energy requirements may be reduced in

B. Erasure

A. Array addressing
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Fig 6: Array addressing and erasure protocol at the same time



contexts where the probabilities of wvarious inputs are
nonuniform and known. The options below become available
once input probabilities for gates have been found by analysis
or simulation.

E. Based on section VI of this paper, the engineer could use
a technology-limited Zulkowski eraser as a primitive. While
the discussion in section VI discussed asymptotically efficient
erasure, let us assume that a real Zulkowski eraser would have
parasitic dissipation of ~E, because it uses the same technology
as reversible logic. This changes criteria C above by making it
more effective to erase a signal containing between ~E, and
~kT/E, information instead of saving and decomputing or
erasing it inefficiently.

F. More energy efficient versions of the gates in step A can
be designed with advance knowledge of their input
distributions from step D. This leads to a general class of
thermodynamically-optimized logical primitives, namely,
operations that are conditionally reversible [7] (i.e., transform
some subset of the input states reversibly). This approach could
reach the thermodynamic minimum dissipation for a logic
circuit specified in advance, but will not help design the logic
circuit in the first place.

G. As an independent research path, the strategies above
add motivation for the development of non-von Neumann
computer architectures. A well-designed CPU in a von
Neumann computer should have equiprobable input
combinations for most gates. If not, many gates will be
inefficiently used and the design could be improved
irrespective of any arguments in this paper. However, it is not
bad design for a state-containing device to be idle most of the
time because it is serving the useful function of holding
information.  Therefore, an integrated logic-memory
architecture could offer more opportunities to apply items A-F
above and thereby reduce dissipation.

H. For all the above steps, discovery of new computing
devices could improve energy efficiency through the
aggregation principle discussed in Sec. IV. The opportunity is
to seek out new electronic devices that perform more and more
sophisticated functions. For example, the magnetic core
performs an AND function, makes a decision about whether to
change the stored state, and stores state, all in one device. The
MeRAM in Fig. 2B and the handling of the 9-core array as a
single unit are examples of this principle.

I. While steps A-H merely quantify the limiting dissipation
for a design, this quantity could be used as an objective
function for design optimization. Logic design includes choices
on how to encode information on wires and states. It also
includes choosing amongst multiple gate-level
implementations of a given function. In traditional logic
design, these choices should all lead to correct designs that
nonetheless vary in terms of speed, complexity, and energy
consumption. However, the designs also differ in terms of
minimum energy. If the designer is interested in the ultimate
potential of a computing technology, the limiting dissipation
computed in the steps above could guide a search for the
design choices that yield minimum energy.

VII. CONCLUSIONS

In this paper, we have described a path to reduced energy
consumption in computers over the long term. Moore’s Law
and the principles of minimum energy for logic were properly
stated in the 1960s, yet they are often interpreted specifically in
context of CMOS microprocessors and generic Boolean logic
gates. Within this narrow context, the theoretical efficiency
limits are just 10’-10* beyond current technologies, which is
not enough headroom to continue the long-term efficiency
scaling that came with Moore’s Law.

We updated the example in Landauer’s 1961 paper from an
AND gate to a more modern synapse-like device and found a
substantially lower theoretical bound on dissipation. A key
difference is that our modern example exploits nonuniform
input probabilities. The new theoretical bound may justify the
perception that Moore’s Law (defined for energy efficiency)
can be extended further into the future than expected.

These ideas suggest research directions. One is the
continued lowering of parasitic energy losses, E; above.
Another is a search for nanodevices that perform higher-level
computations directly. These nanodevices would have lower
energy dissipation than equivalent implementations using
discrete gates, particularly if optimized for input statistics.
There will be a need for many such nanodevices.
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