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Inverse Prediction

 Inferring the input factors (𝑥) of models based on responses (𝑦)

 Classical calibration – inverting forward/causal models 𝑦 ≈ 𝑓(𝑥)

 Inverse calibration – 𝑥 ≈ 𝑔(𝑦) (e.g. regularization methods: PCR, PLSR)

 Motivation of this work - analysis of nuclear materials 

 Identify the processing conditions used to manufacture interdicted material based on 

physical and chemical measurements

 Focus here is on methods based on classical calibration (inverting forward models) 

 Experimentally or scientific-based models

Inverse Prediction
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Down-Selecting a Multivariate Response

 Motivation from nuclear forensics

 Many types of physical/chemical measurements

 Constraints on the number of measurements:

 Likely a limited amount of interdicted material

 Destructive nature of some measurements

 Strategy to down-select an informative/discriminating subset of responses from a candidate set

 Informative – precise predictions (small prediction variance)

 Discriminating – effects of factors on the various responses are sufficiently dissimilar

 Depends on an assumed forward model for each of 𝑞 responses related to 𝑝 causal factors

𝑌𝑖 = 𝑓𝑖 𝛽𝑖; 𝑋 + 𝜖𝑖 , 𝑖 = 1, 2,… , 𝑞

𝑌𝑖 – 𝑖𝑡ℎ response, 𝛽𝑖 – model parameters, 𝑋 – factors, 𝜖𝑖 – mean zero error 
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Predicting 𝑋: Least Squares Accounting for Errors 

 Estimate each model:   𝑌𝑖 ≈ 𝑓𝑖 መ𝛽𝑖; 𝑋 , 𝑖 = 1,… , 𝑞

 A new observed multivariate response (𝒀∗ = 𝑌1
∗, … , 𝑌𝑞

∗ ⊤
) is used to predict unknown 

levels of factors 𝑋∗

 Goal: Find an “optimal” solution ෠𝑋∗ such that ෠𝑌𝑖
∗ ≈ 𝑌𝑖

∗ , 𝑖 = 1,… , 𝑞 where ෠𝑌𝑖
∗ = 𝑓𝑖 መ𝛽𝑖 , ෠𝑋

∗

 Prediction error at candidate solution ෠𝑋:    𝑑𝑖 = ෡𝑌𝑖 − 𝑌𝑖
∗ where ෠𝑌𝑖 = 𝑓𝑖 መ𝛽𝑖 , ෠𝑋

 Solved iteratively – requires መ𝛽𝑖, initial ෠𝑋, and ෠𝑉( ෠𝑋)

𝑌𝑖
∗ = 𝑓𝑖 𝛽𝑖 , 𝑋

∗ + 𝜖𝑖
∗ with

෠𝑋∗ = argmin𝑋 𝐷
⊤𝑉−1𝐷

𝐷 = 𝑑1, … , 𝑑𝑞
⊤

,   𝑉 = 𝑉 ෠𝑋 = 𝑐𝑜𝑣(𝐷)
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Estimating 𝑉
 To estimate 𝑉, first decompose 𝑑𝑖:

 Interpretation of components of 𝑑𝑖

 𝜆𝑖 = 𝑓𝑖 መ𝛽𝑖 , ෠𝑋 − 𝑓𝑖 𝛽𝑖 , ෠𝑋 : error due to uncertainty in model parameters

 𝜔𝑖 = 𝑓𝑖 𝛽𝑖 , ෠𝑋 − 𝑓𝑖(𝛽𝑖 , 𝑋
∗) : error due to uncertainty in the candidate solution ෠𝑋

 Assuming properly specified models and unbiased solutions:  𝐸 𝑑𝑖 = 0 and

 𝑉𝜆, 𝑉𝜔 can be estimated using first order approximations, can use residuals to estimate 𝑉𝜖
 Simplifying assumptions: 𝑉𝜆, 𝑉𝜔, 𝑉𝜖 assumed diagonal, covariance 0. 

 Solution considers the uncertainty in predicted response – switch role of 𝑋 and 𝛽, related to 

“errors-in-variables” literature

𝑑𝑖 = 𝜆𝑖 +𝜔𝑖 − 𝜖𝑖
∗ where,

𝜆𝑖 = 𝑓𝑖 መ𝛽𝑖 , ෠𝑋 − 𝑓𝑖 𝛽𝑖 , ෠𝑋 and 𝜔𝑖 = 𝑓𝑖 𝛽𝑖 , ෠𝑋 − 𝑓𝑖(𝛽𝑖 , 𝑋
∗)

𝑉 = 𝑉𝜆 ෠𝑋 + 𝑉𝜔 ෠𝑋 + 2𝑐𝑜𝑣𝜆𝜔 ෠𝑋 + 𝑉𝜖
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Variance-Covariance of Prediction

 Assume forward models are 1) Continuous functions of the factors 2) Not highly non-linear

 First-order linear approximation to 𝑌𝑖
∗ = 𝑓𝑖(𝛽𝑖 , 𝑋

∗) near 𝑋∗

 Locally linear regression of 𝒀∗ on መ𝐽𝑖𝑗 𝑋∗ leads to an estimate of the covariance of ෠𝑋∗

 Multivariate response is

 Informative if diagonal elements are sufficiently small

 Discriminating if the off diagonal elements are sufficiently small
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𝑌𝑖
∗ = 𝑓𝑖 𝛽𝑖 ,𝑋

∗ ≈ 𝑓𝑖 𝛽𝑖; ෠𝑋
∗ + σ𝑗=1

𝑝
𝐽𝑖𝑗 ෠𝑋𝑗

∗ ෠𝑋𝑗
∗ − 𝑋𝑗

∗ ,  where 𝐽𝑖𝑗 ෠𝑋𝑗
∗ =

𝜕

𝜕𝑥𝑗
𝑓𝑖 𝛽𝑖; ෠𝑋𝑗

∗ .

መ𝐶 ෠𝑋∗ = መ𝐽𝑇 ෠𝑋∗ ෠𝑉−1 መ𝐽 ෠𝑋∗
−1

,    where መ𝐽𝑖𝑗 ෠𝑋∗ =
𝜕

𝜕𝑥𝑗
𝑓𝑖 መ𝛽𝑖; ෠𝑋

∗ .



Glass Composition Example

 Study to investigate how glass properties vary as a function of composition 

 Constituents are mole ratios: X1 = 𝑁𝑎2𝑂/𝑃2𝑂5, 𝑋2 = 𝐵𝑎𝑂/𝑃2𝑂5, 𝑋3 = 𝐴𝑙2𝑂3/𝑃2𝑂5
 Goal: Predict constituents based on six glass properties (𝑖 = 1,… , 6) 

 Use experimental data to estimate models (simple linear): ෠𝑌𝑖 = መ𝛽𝑖0 + መ𝛽𝑖1𝑋1 + መ𝛽𝑖2𝑋2 + መ𝛽𝑖3𝑋3
 Best forward models (by 𝑅2 metric) are of density and index of refraction

 Don’t depend on Na2O
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Property: 𝑖 = 1,… , 6 መ𝛽0 መ𝛽1 (𝑁𝑎2𝑂) መ𝛽2 (𝐵𝑎0) መ𝛽3 𝐴𝑙2𝑂3 ො𝜎𝜀 𝑅2

1. Coeff. of Thermal Expansion 155.8 (6.1) 70.59(10.3) ---- -216.5(31) 3.12 0.86

2. Softening Temperature 392.7(15.5) -104.7(24.6) ---- 694.6(63) 5.73 0.93

3. Glass Transition Temperature 374.8(14.7) -104.5(23.7) ---- 412.1(66) 6.39 0.82

4. Crystallization Temperature 570.5(28.9) -219.5(48.5) ---- 709.8(147) 14.7 0.74

5. Density 2.534(0.022) ---- 1.113(0.051) 0.484(0.119) 0.0119 0.97

6. Index of Refraction 1.498(0.003) 0.0097(0.004) 0.0834(0.005) 0.1036(0.0123) 0.00113 0.97



Prediction of Glass Composition
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 Multivariate response good for predicting 

𝐵𝑎0 and 𝐴𝑙2𝑂3, not as good for 𝑁𝑎20

 Strongest models don’t depend on 𝑁𝑎20

 Intuition: need strong forward models for 

inverse prediction

 Density is responsible for the precise 

predictions of 𝐵𝑎𝑂 – Barium is very dense 

compared to other constituents



Comparing Different Subsets of Responses

 Use መ𝐶 ෠𝑋∗ = መ𝐽𝑇 ෠𝑋∗ ෠𝑉−1 መ𝐽 ෠𝑋∗
−1

to estimate average prediction variance for different subsets of 

the multivariate response

 Excluding density results in ~1.5 times increase in the root prediction variance of 𝑋2
 Multivariate response is less informative for predicting 𝑋2 if density is excluded

 Excluding index of refraction is not as detrimental – despite a good forward model  
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Subset
𝑽𝒂𝒓𝒂𝒗𝒈(𝑿𝟏)

(𝑵𝒂𝟐𝑶)

𝑽𝒂𝒓𝒂𝒗𝒈(𝑿𝟐)

(𝑩𝒂𝑶)

𝑽𝒂𝒓𝒂𝒗𝒈(𝑿𝟑)

(𝑨𝒍𝟐𝑶𝟑)

All Responses 0.08 0.013 0.018

Excluding Density 0.08 0.02 0.019

Excluding Index of Ref. 0.08 0.013 0.019



Further Investigation: 16 Known Response Surfaces
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Goal: Choose a subset of the 16 response surfaces that is informative (small prediction 

variance) and discriminating (sufficiently dissimilar shapes) for prediction of 𝑋1 and 𝑋2

1-4: peaks

5-8 : hillsides

9-12: rising ridges

13-16: saddles

16 response surfaces 



Prediction St. Dev. Across Design Space

 Analytical results using  መ𝐶 ෠𝑋∗ = መ𝐽𝑇 ෠𝑋∗ ෠𝑉−1 መ𝐽 ෠𝑋∗
−1

 Two candidate sets of responses: 𝑆 = {1,2,… , 16} and 𝑆 = {9,10, 11, 12}

 𝜎1 = 𝑠𝑑 ො𝑥1
∗ , 𝜎2 = 𝑠𝑑(ො𝑥2

∗)
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𝑆 = {9,10,11,12}𝑆 = 1,2,… , 16

 Value depends on 𝑋∗. Smaller standard deviation across design space when using all 16 

responses

 Relative increase using just four responses is small across the design space



Simulation Results compared to Analytical
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𝑆 = {1,2,… , 16} 𝑆 = {9,10,11,12}
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Qualitative agreement when computing prediction variance using simulations



Quantifying Differences in Prediction Variance

 Set {9,10,11,12} is a good choice for prediction across the space of interest if 

constraints exist in obtaining new measurements

 Responses in this set complement each other well – i.e. steep contours are present in one 

or more of the responses throughout the range of interest
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Subset 𝑽𝒂𝒓𝒂𝒗𝒈 ෡𝑿𝟏
∗ 𝑽𝒂𝒓𝒂𝒗𝒈 ෡𝑿𝟐

∗

{1,2,…,16} 0.0075 0.0075

{7,8} 0.0286 0.0286

{3,7,9,13} 0.0291 0.0154

{9,10,11,12} 0.0121 0.0121

~ 4x larger (for ෠𝑋1
∗)

~ 1.6x larger for ¼ of responses



Summary

 Described a method for assessing a multivariate response’s usefulness in inverse prediction

 Accounts for multiple sources of uncertainty: model parameter uncertainty, solution uncertainty, 

measurement error

 Derived first order approximation to the covariance of prediction መ𝐶 ෠𝑋∗ = 𝐽𝑇 ෠𝑋∗ ෠𝑉−1𝐽 ෠𝑋∗
−1

 Informative and discriminating if the elements of መ𝐶 ෠𝑋∗ are sufficiently small 

 Level of collinearity in the Jacobian 𝐽 is an indicator of discriminating ability (as well as 

level of redundancy)

 Method can be used to down-select responses from a candidate set when constraints exists in 

measuring new observations  (e.g. nuclear forensic applications)

 Ideal combination: responses with strong difference across input space, and several responses 

with different shaped relationships

 Concentrated on empirical models derived from well designed experiments

 Methods can be applied to scientific models – may need numerical estimation of partial derivatives
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Continuing Research

 Different objective functions – robust predictions 

 Bayesian methods incorporating prior information on 𝑋∗ to down-select multivariate response

 Assess the degree of match between new samples and data observed in the experiment

 Experiment is highly controlled. Future sample don’t come from these experiments. Are 

the predictions reliable?

 Use predictions across several methods to assess the degree of match?

15

Method 𝑽𝒂𝒓𝒂𝒗𝒈 ෡𝑿𝟏
∗ w/ 16 responses 𝑽𝒂𝒓𝒂𝒗𝒈 ෡𝑿𝟏

∗ w/ 4 responses

Forward with LS 0.0075 0.0125

PCR 0.014 0.017

PLSR 0.014 0.017

Estimates of root average prediction variance based on simulations: 𝑛 = 27, 𝜎 = 1, and 100 repetitions.

One repetition : generate data from the response surfaces using 3 – level full factorial with 3 replicates, predict 

simulated data on a grid spanning the design space 


