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Inverse Prediction () i,

Inputs/Factors —— | Model with Parameters | ———— Outputs/Responses

Inverse Prediction

= Inferring the input factors (x) of models based on responses (y)

= Classical calibration — inverting forward/causal models y = f(x)

= Inverse calibration — x = g(y) (e.g. regularization methods: PCR, PLSR)
= Motivation of this work - analysis of nuclear materials

= |dentify the processing conditions used to manufacture interdicted material based on
physical and chemical measurements

= Focus here is on methods based on classical calibration (inverting forward models)
= Experimentally or scientific-based models




c Down-Selecting a Multivariate Response () i

= Motivation from nuclear forensics
= Many types of physical/chemical measurements
= Constraints on the number of measurements:
= Likely a limited amount of interdicted material
= Destructive nature of some measurements
= Strategy to down-select an informative/discriminating subset of responses from a candidate set
= |Informative — precise predictions (small prediction variance)
= Discriminating — effects of factors on the various responses are sufficiently dissimilar
= Depends on an assumed forward model for each of g responses related to p causal factors

Yi:fi(ﬁi;X)+Ei, i:1,2,...,q

Y; — it" response, B; — model parameters, X — factors, €; — mean zero error




Predicting X: Least Squares Accounting for Errors (@) &..

= Estimate each model: Y; = f;(B; X),i =1,...,q

= A new observed multivariate response (Y* = (Yl*, . Y;)T) IS used to predict unknown
levels of factors X*

Y7 = fi(Bi, X*) + €] with

= Goal: Find an “optimal” solution X* such that 171* ~Y",i=1,..,q where 171* = fi(,[?i,)?*)
= Prediction error at candidate solution X: d; = ¥; — ¥;" where ¥; = £;(6;, X)
X* = argminy DTV1D
D = (d, ...,dq)T, V =V(X) = cov(D)

= Solved iteratively — requires g;, initial X, and 7 (X)




Estimating V () i,

= To estimate V, first decompose d;:

d; = 1; + w; — €; wWhere,
A = 1B X) — f:(Bi. X) and w; = fi(Bi X) — fi(Bi, X*)

= |nterpretation of components of d;

= 4 = fi(Bi, X) — fi(B:, X): error due to uncertainty in model parameters

= w; = f;(B, X) — fi(B;, X*) : error due to uncertainty in the candidate solution X
= Assuming properly specified models and unbiased solutions: E(d;) = 0 and

V="0(X)+V,(X)+ 2covy,(X) + V;

= V,, V, can be estimated using first order approximations, can use residuals to estimate V.
= Simplifying assumptions: V;, V,,, V. assumed diagonal, covariance 0.

= Solution considers the uncertainty in predicted response — switch role of X and g, related to
“errors-1n-variables” literature
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Variance-Covariance of Prediction (Fh) i,

= Assume forward models are 1) Continuous functions of the factors 2) Not highly non-linear
= First-order linear approximation to Y;" = f;(B;, X™) near X*

Yi* = fl(IBUX*) ~ ﬁ,(ﬁl’X*) + Z?:ljij()?;)()?; o X;)’ Where]ij()?;) = aix]fl(lgl;)?]*)

= Locally linear regression of Y* on J; 7(X™) leads to an estimate of the covariance of X*
A TT (O \{77—17( T * -1 7 O * ad 5. U
Ce- = (JT(R)V-Y (X)) *, where J,;(X*) =5 filBs X)),

= Multivariate response is
= [nformative if diagonal elements are sufficiently small
= Discriminating if the off diagonal elements are sufficiently small




c Glass Composition Example () i,

= Study to investigate how glass properties vary as a function of composition
= Constituents are mole ratios: X, = Na,0/P,0¢, X, = BaO/P,0s5, X5 = Al,04/P,0c¢
= Goal: Predict constituents based on six glass properties (i = 1, ..., 6)
= Use experimental data to estimate models (simple linear): Y; = B;q + Bi1 X1 + Bz X, + Biz X5
= Best forward models (by R? metric) are of density and index of refraction
* Don’t depend on Na,O

Property: i =1,...,6 Ba B; (Na,0) | B, (Ba0) | B (Al,02) P R?

1. Coeff. of Thermal Expansion 155.8 (6.1) 70.59(10.3) -216.5(31) 3.12 0.86
2. Softening Temperature 392.7(15.5) | -104.7(24.6) 694.6(63) 5.73 0.93
3. Glass Transition Temperature 374.8(14.7) | -104.5(23.7) 412.1(66) 6.39 0.82
4. Crystallization Temperature 570.5(28.9) | -219.5(48.5) 709.8(147) 14.7 0.74
5. Density 2.534(0.022) 1.113(0.051) | 0.484(0.119) | 0.0119 0.97
6. Index of Refraction 1.498(0.003) | 0.0097(0.004) | 0.0834(0.005) | 0.1036(0.0123) | 0.00113 | 0.97




Prediction of Glass Composition () ...

Predicted Vs. Observed : Na,O/P,0s Predicted Vs. Observed : AlL,O5;/P50s
Q ] correlation=0.81 : Q - correlation=0.9 ’
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Comparing Different Subsets of Responses () i

A A P A " A _1 - - = - -
= UseCy = (]T(X (X )) to estimate average prediction variance for different subsets of
the multivariate response

Su bset \/V“ravg (Xl) \/V“ravg (XZ) \/V“ravg (XS)
(Na,0) (Ba0) (Al;03)
All Responses 0.08 0.013 0.018
Excluding Density 0.08 0.02 0.019
Excluding Index of Ref. 0.08 0.013 0.019

= Excluding density results in ~1.5 times increase in the root prediction variance of X,
= Multivariate response Is less informative for predicting X, if density Is excluded
= Excluding index of refraction is not as detrimental — despite a good forward model




m = = Sandia
Further Investigation: 16 Known Response Surfaces () &

Goal: Choose a subset of the 16 response surfaces that is informative (small prediction
variance) and discriminating (sufficiently dissimilar shapes) for prediction of X; and X,

16 response surfaces
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9-12: rising ridges
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Prediction St. Dev. Across Design Space () i

= Analytical results using Cg- = (fT()?*)V‘lf()?*))_l

= Two candidate sets of responses: S = {1,2,...,16}and S = {9,10,11, 12}
" 01 = sd(X]),0, = sd(X3)
s=1{12,..,16}

0.014

scale
0.010

0.006

= Value depends on X*. Smaller standard deviation across design space when using all 16
responses

= Relative increase using just four responses Is small across the design space




Simulation Results compared to Analytical e

Qualitative agreement when computing prediction variance using simulations
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c Quantifying Differences In Prediction Variance k=

Subset \/Varavg X; \/Varm,g X;
{1,2,...,16} 0.0075 0.0075
7,8 0.0286 0.0286 ~
17,8} } ~ 4x larger (for X;)
{3,7,9,13} 0.0291 0.0154
{9,10,11,12} 0.0121 0.0121 ~1.6x larger for ¥ of responses

= Set {9,10,11,12} is a good choice for prediction across the space of interest if
constraints exist in obtaining new measurements

= Responses In this set complement each other well — 1.e. steep contours are present in one
or more of the responses throughout the range of interest




': Summary ()

= Described a method for assessing a multivariate response’s usefulness in inverse prediction

= Accounts for multiple sources of uncertainty: model parameter uncertainty, solution uncertainty,
measurement error

n o~ . -1
= Derived first order approximation to the covariance of prediction Cg+ = (]T(X WX *))

= Informative and discriminating if the elements of C- are sufficiently small

= Level of collinearity in the Jacobian J is an indicator of discriminating ability (as well as
level of redundancy)

= Method can be used to down-select responses from a candidate set when constraints exists in
measuring new observations (e.g. nuclear forensic applications)

= |deal combination: responses with strong difference across input space, and several responses
with different shaped relationships

= Concentrated on empirical models derived from well designed experiments
= Methods can be applied to scientific models — may need numerical estimation of partial derivatives




c Continuing Research () .

= Different objective functions — robust predictions
= Bayesian methods incorporating prior information on X* to down-select multivariate response
= Assess the degree of match between new samples and data observed in the experiment

= Experiment is highly controlled. Future sample don’t come from these experiments. Are
the predictions reliable?

= Use predictions across several methods to assess the degree of match?

Method \/ Var,,, X7 w/ 16 responses \/ Var,,, X7 W/ 4 responses
Forward with LS 0.0075 0.0125
PCR 0.014 0.017
PLSR 0.014 0.017

Estimates of root average prediction variance based on simulations: n = 27,0 = 1, and 100 repetitions.
One repetition : generate data from the response surfaces using 3 — level full factorial with 3 replicates, predict

simulated data on a grid seanning the design seace



