

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

Edward V. Thomas¹, John Lewis^{1*}
Christine Anderson-Cook², Tom Burr², Michael S.
Hamada², Adah Zhang¹

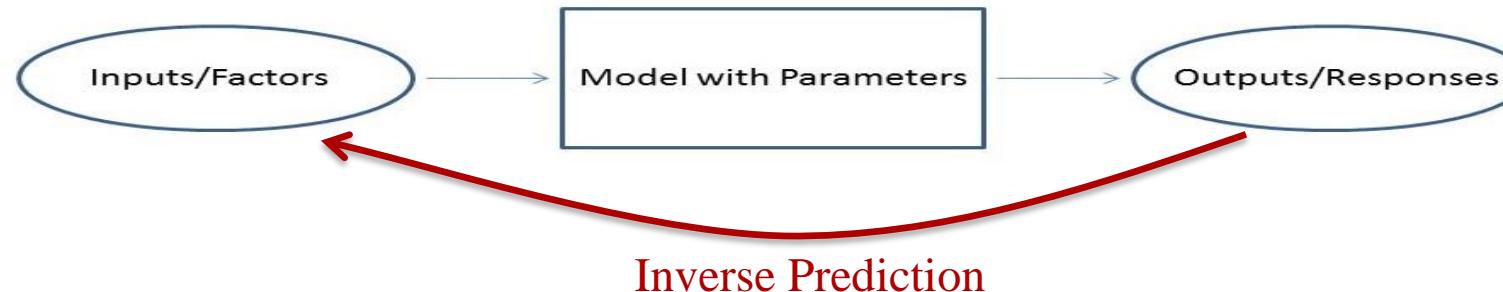
¹ Sandia National Laboratories, Albuquerque, NM

² Los Alamos National Laboratory, Los Alamos, NM

*Presenting Author

Work funded by the Department of Homeland Security

National Technical Nuclear Forensics Center



- Inferring the input factors (x) of models based on responses (y)
 - *Classical calibration* – inverting forward/causal models $y \approx f(x)$
 - *Inverse calibration* – $x \approx g(y)$ (e.g. regularization methods: PCR, PLSR)
- Motivation of this work - analysis of nuclear materials
 - Identify the processing conditions used to manufacture interdicted material based on physical and chemical measurements
- Focus here is on methods based on *classical calibration* (inverting forward models)
 - Experimentally or scientific-based models

Down-Selecting a Multivariate Response

- Motivation from nuclear forensics
 - Many types of physical/chemical measurements
- Constraints on the number of measurements:
 - Likely a limited amount of interdicted material
 - Destructive nature of some measurements
- Strategy to down-select an *informative/discriminating* subset of responses from a candidate set
 - Informative – precise predictions (small prediction variance)
 - Discriminating – effects of factors on the various responses are sufficiently dissimilar
- Depends on an assumed forward model for each of q responses related to p causal factors

$$Y_i = f_i(\beta_i; X) + \epsilon_i, \quad i = 1, 2, \dots, q$$

Y_i – i^{th} response, β_i – model parameters, X – factors, ϵ_i – mean zero error

Predicting X : Least Squares Accounting for Errors

- Estimate each model: $Y_i \approx f_i(\hat{\beta}_i; X), i = 1, \dots, q$
- A new observed multivariate response ($\mathbf{Y}^* = (Y_1^*, \dots, Y_q^*)^\top$) is used to predict unknown levels of factors X^*

$$Y_i^* = f_i(\beta_i, X^*) + \epsilon_i^* \text{ with}$$

- Goal: Find an “optimal” solution \hat{X}^* such that $\hat{Y}_i^* \approx Y_i^*, i = 1, \dots, q$ where $\hat{Y}_i^* = f_i(\hat{\beta}_i, \hat{X}^*)$
- Prediction error at candidate solution \hat{X} : $d_i = \hat{Y}_i - Y_i^*$ where $\hat{Y}_i = f_i(\hat{\beta}_i, \hat{X})$

$$\hat{X}^* = \operatorname{argmin}_X D^\top V^{-1} D$$

$$D = (d_1, \dots, d_q)^\top, \quad V = V(\hat{X}) = \operatorname{cov}(D)$$

- Solved iteratively – requires $\hat{\beta}_i$, initial \hat{X} , and $\hat{V}(\hat{X})$

Estimating V

- To estimate V , first decompose d_i :

$$d_i = \lambda_i + \omega_i - \epsilon_i^* \text{ where,}$$

$$\lambda_i = f_i(\hat{\beta}_i, \hat{X}) - f_i(\beta_i, \hat{X}) \quad \text{and} \quad \omega_i = f_i(\beta_i, \hat{X}) - f_i(\beta_i, X^*)$$

- Interpretation of components of d_i
 - $\lambda_i = f_i(\hat{\beta}_i, \hat{X}) - f_i(\beta_i, \hat{X})$: error due to uncertainty in model parameters
 - $\omega_i = f_i(\beta_i, \hat{X}) - f_i(\beta_i, X^*)$: error due to uncertainty in the candidate solution \hat{X}
- Assuming properly specified models and unbiased solutions: $E(d_i) = 0$ and

$$V = V_\lambda(\hat{X}) + V_\omega(\hat{X}) + 2\text{cov}_{\lambda\omega}(\hat{X}) + V_\epsilon$$

- V_λ, V_ω can be estimated using first order approximations, can use residuals to estimate V_ϵ
- Simplifying assumptions: $V_\lambda, V_\omega, V_\epsilon$ assumed diagonal, covariance 0.
- Solution considers the uncertainty in predicted response – switch role of X and β , related to “errors-in-variables” literature

Variance-Covariance of Prediction

- Assume forward models are 1) Continuous functions of the factors 2) Not highly non-linear
- First-order linear approximation to $Y_i^* = f_i(\beta_i, X^*)$ near X^*

$$Y_i^* = f_i(\beta_i, X^*) \approx f_i(\beta_i; \hat{X}^*) + \sum_{j=1}^p J_{ij}(\hat{X}_j^*)(\hat{X}_j^* - X_j^*), \text{ where } J_{ij}(\hat{X}_j^*) = \frac{\partial}{\partial x_j} f_i(\beta_i; \hat{X}_j^*).$$

- Locally linear regression of Y^* on $\hat{J}_{ij}(X^*)$ leads to an estimate of the covariance of \hat{X}^*

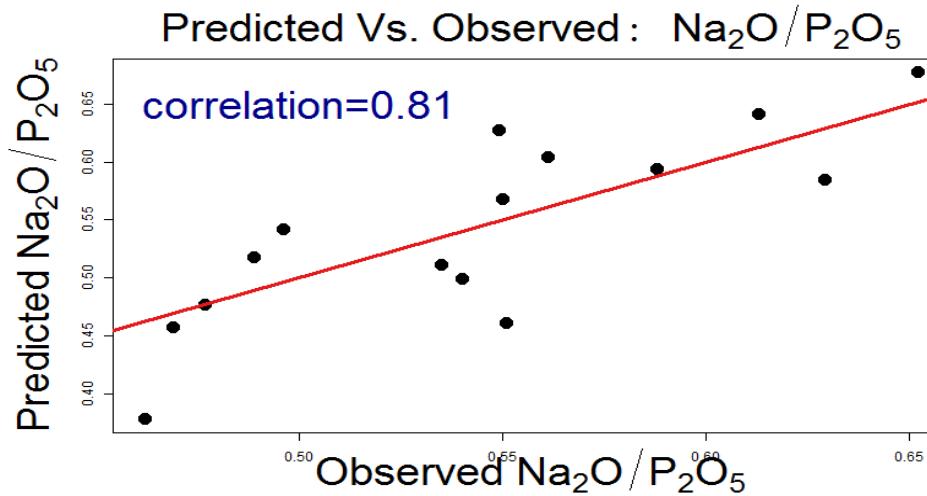
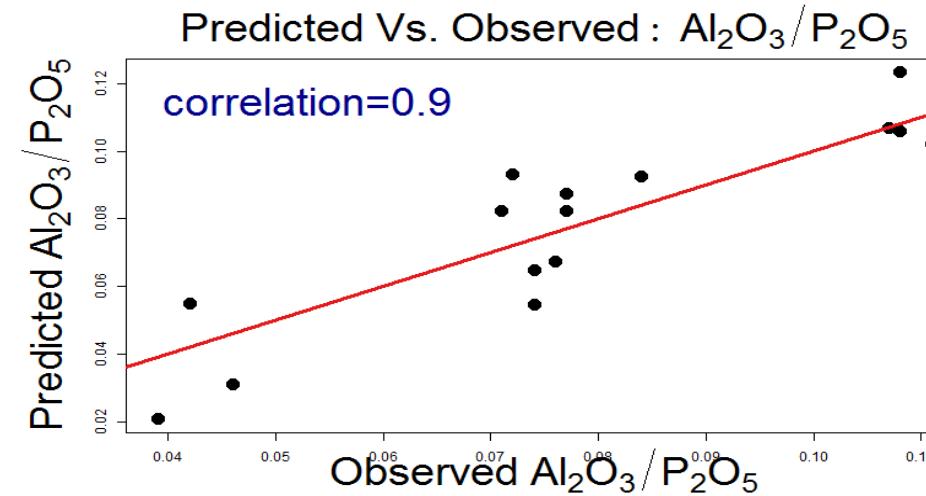
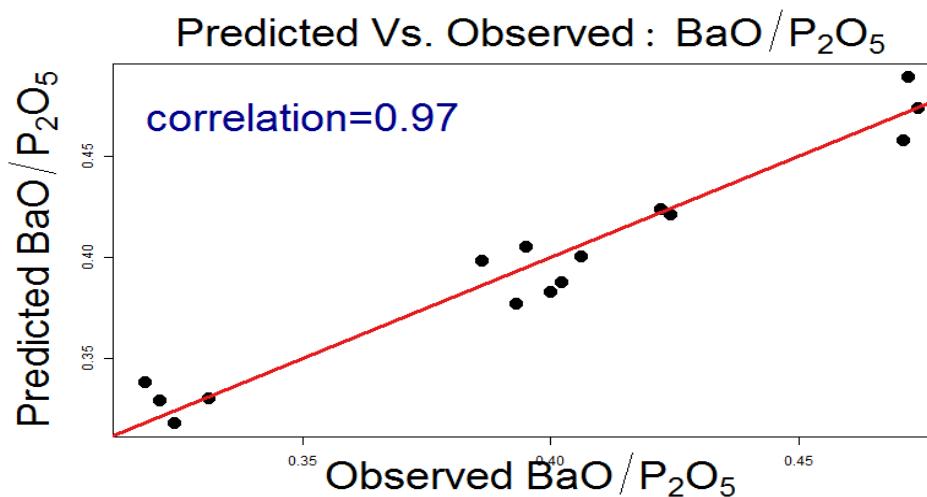
$$\hat{C}_{\hat{X}^*} = \left(\hat{J}^T(\hat{X}^*) \hat{V}^{-1} \hat{J}(\hat{X}^*) \right)^{-1}, \text{ where } \hat{J}_{ij}(\hat{X}^*) = \frac{\partial}{\partial x_j} f_i(\hat{\beta}_i; \hat{X}^*).$$

- Multivariate response is
 - *Informative* if diagonal elements are sufficiently small
 - *Discriminating* if the off diagonal elements are sufficiently small

Glass Composition Example

- Study to investigate how glass properties vary as a function of composition
 - Constituents are mole ratios: $X_1 = Na_2O/P_2O_5$, $X_2 = BaO/P_2O_5$, $X_3 = Al_2O_3/P_2O_5$
- **Goal:** Predict constituents based on six glass properties ($i = 1, \dots, 6$)
- Use experimental data to estimate models (simple linear): $\hat{Y}_i = \hat{\beta}_{i0} + \hat{\beta}_{i1}X_1 + \hat{\beta}_{i2}X_2 + \hat{\beta}_{i3}X_3$
- Best forward models (by R^2 metric) are of **density** and **index of refraction**
 - Don't depend on Na_2O

Property: $i = 1, \dots, 6$	$\hat{\beta}_0$	$\hat{\beta}_1 (Na_2O)$	$\hat{\beta}_2 (BaO)$	$\hat{\beta}_3 (Al_2O_3)$	$\hat{\sigma}_\varepsilon$	R^2
1. Coeff. of Thermal Expansion	155.8 (6.1)	70.59(10.3)	----	-216.5(31)	3.12	0.86
2. Softening Temperature	392.7(15.5)	-104.7(24.6)	----	694.6(63)	5.73	0.93
3. Glass Transition Temperature	374.8(14.7)	-104.5(23.7)	----	412.1(66)	6.39	0.82
4. Crystallization Temperature	570.5(28.9)	-219.5(48.5)	----	709.8(147)	14.7	0.74
5. Density	2.534(0.022)	----	1.113(0.051)	0.484(0.119)	0.0119	0.97
6. Index of Refraction	1.498(0.003)	0.0097(0.004)	0.0834(0.005)	0.1036(0.0123)	0.00113	0.97



- Multivariate response good for predicting BaO and Al_2O_3 , not as good for Na_2O
 - Strongest models don't depend on Na_2O
 - Intuition: need strong forward models for inverse prediction
- Density is responsible for the precise predictions of BaO – Barium is very dense compared to other constituents

Comparing Different Subsets of Responses

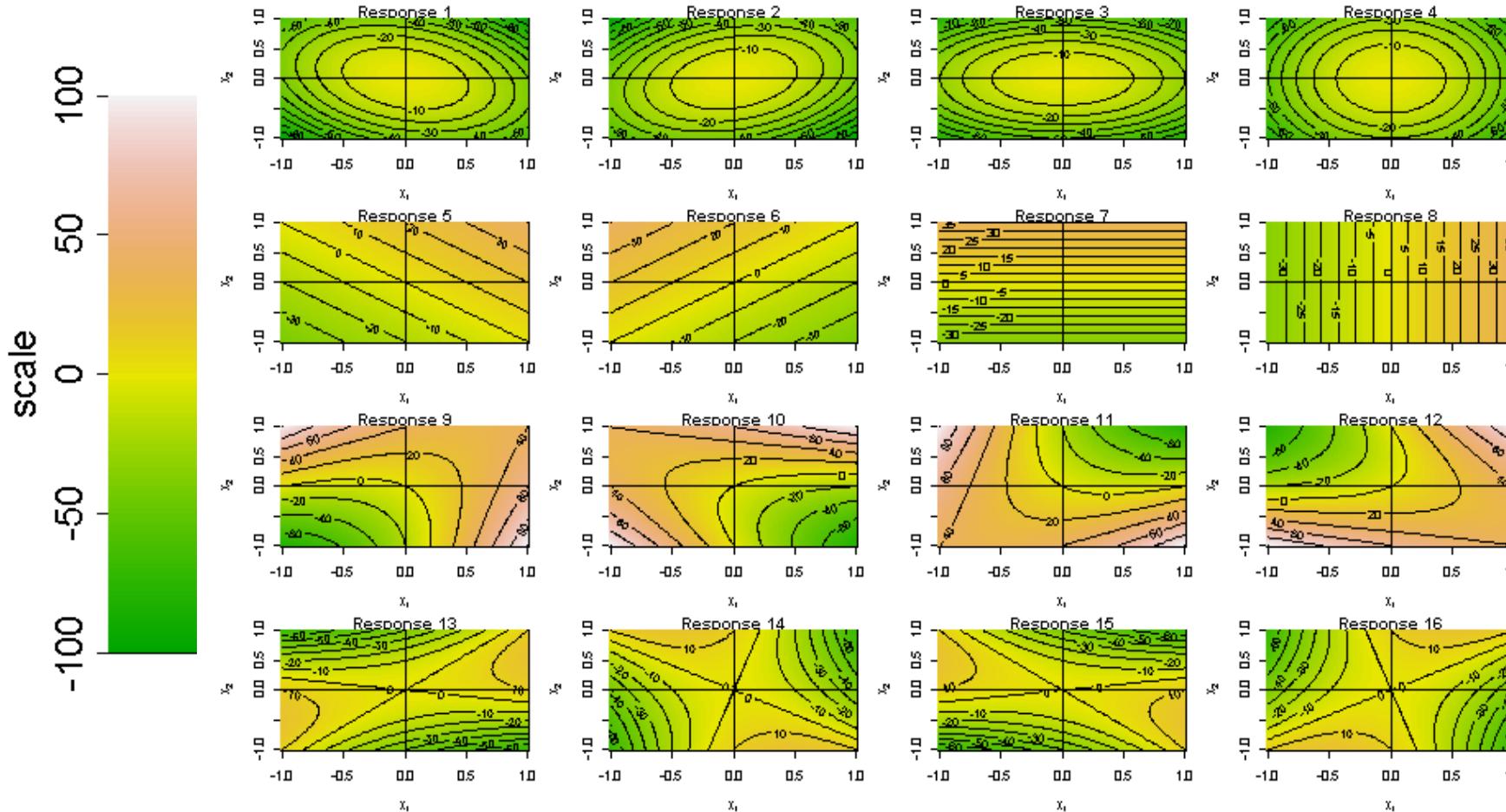
- Use $\hat{C}_{\hat{X}^*} = \left(\hat{J}^T(\hat{X}^*) \hat{V}^{-1} \hat{J}(\hat{X}^*) \right)^{-1}$ to estimate average prediction variance for different subsets of the multivariate response

Subset	$\sqrt{Var_{avg}(X_1)}$ (Na ₂ O)	$\sqrt{Var_{avg}(X_2)}$ (BaO)	$\sqrt{Var_{avg}(X_3)}$ (Al ₂ O ₃)
All Responses	0.08	0.013	0.018
Excluding Density	0.08	0.02	0.019
Excluding Index of Ref.	0.08	0.013	0.019

- Excluding density results in ~1.5 times increase in the root prediction variance of X_2
- Multivariate response is less informative for predicting X_2 if density is excluded
- Excluding index of refraction is not as detrimental – despite a good forward model

Goal: Choose a subset of the 16 response surfaces that is *informative* (small prediction variance) and *discriminating* (sufficiently dissimilar shapes) for prediction of X_1 and X_2

16 response surfaces



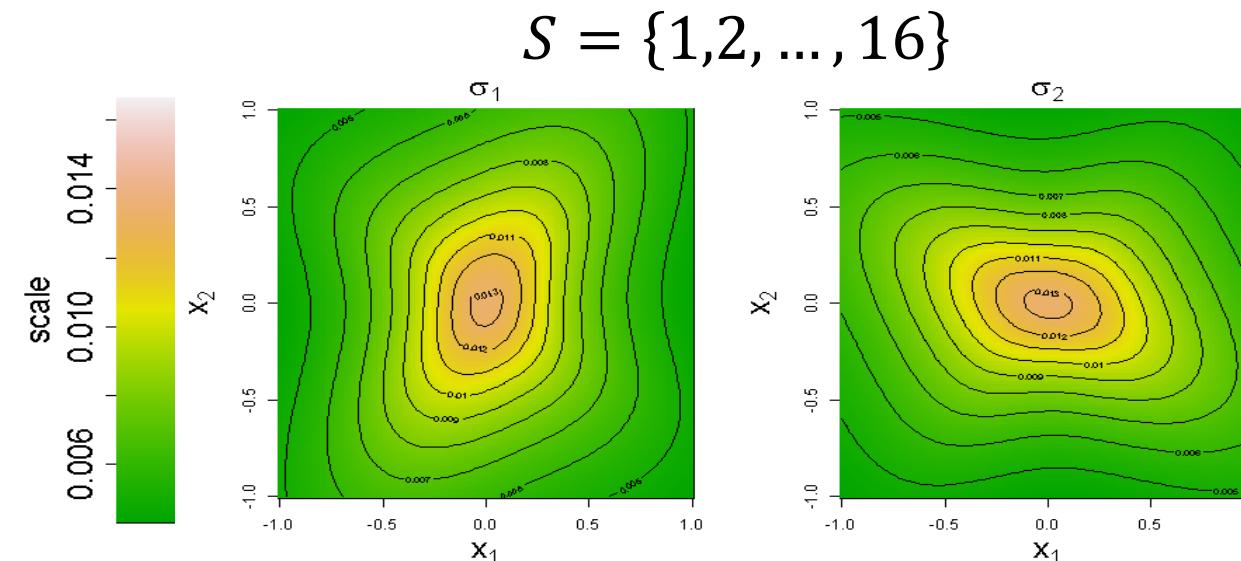
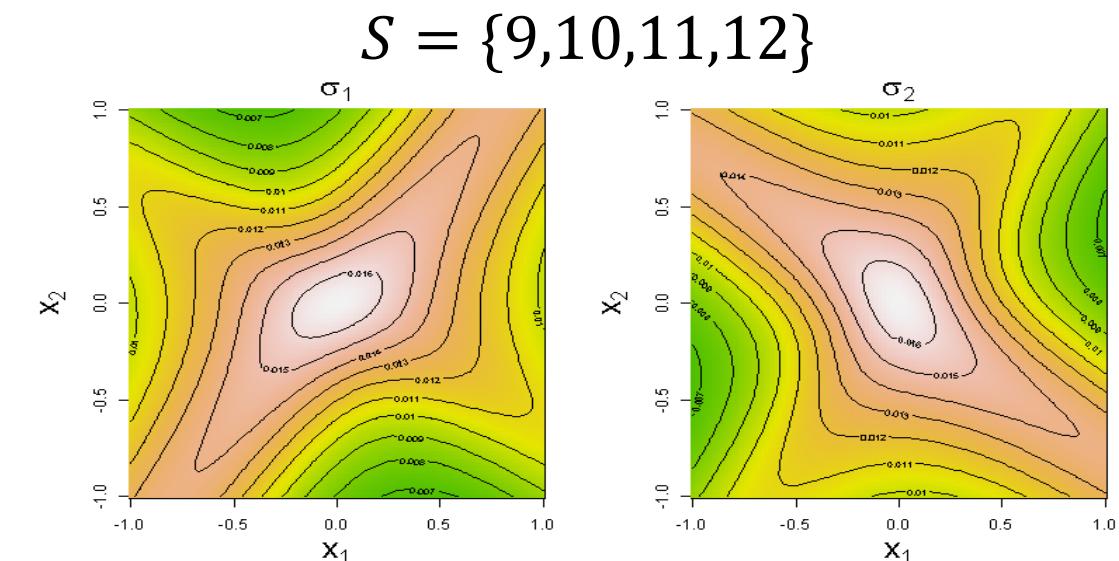
1-4: peaks

5-8 : hillsides

9-12: rising ridges

13-16: saddles

- Analytical results using $\hat{C}_{\hat{X}^*} = \left(\hat{J}^T(\hat{X}^*) \hat{V}^{-1} \hat{J}(\hat{X}^*) \right)^{-1}$
- Two candidate sets of responses: $S = \{1, 2, \dots, 16\}$ and $S = \{9, 10, 11, 12\}$
- $\sigma_1 = sd(\hat{x}_1^*), \sigma_2 = sd(\hat{x}_2^*)$



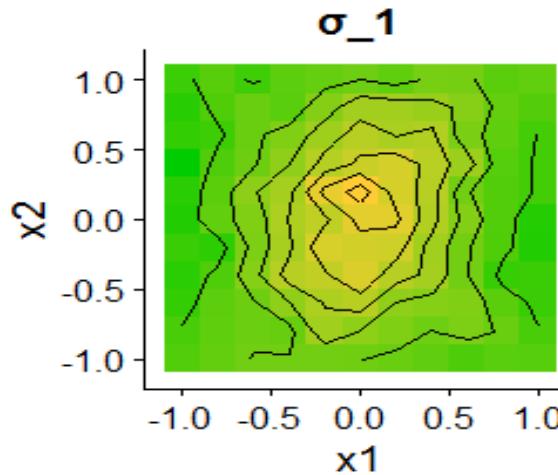
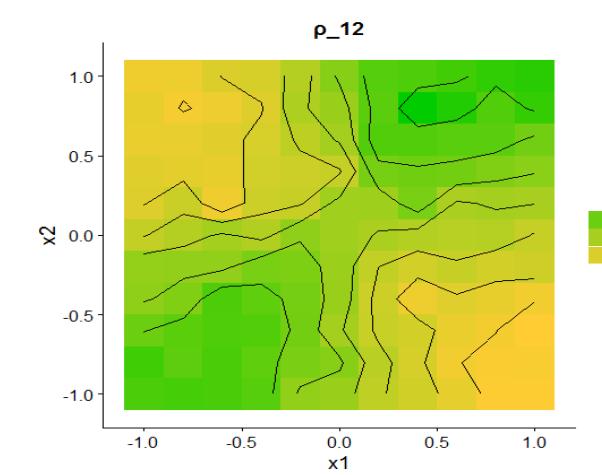
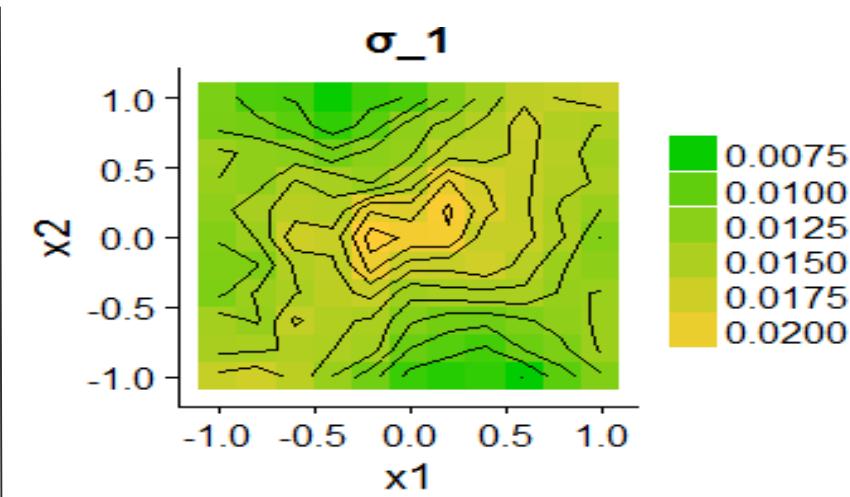
- Value depends on X^* . Smaller standard deviation across design space when using all 16 responses
- Relative increase using just four responses is small across the design space

Qualitative agreement when computing prediction variance using simulations

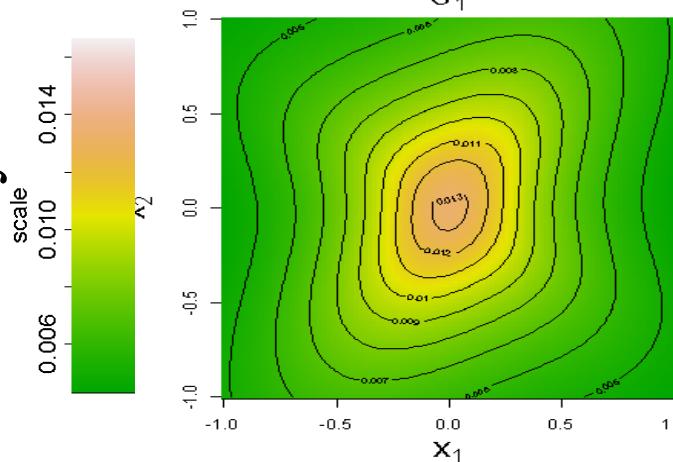
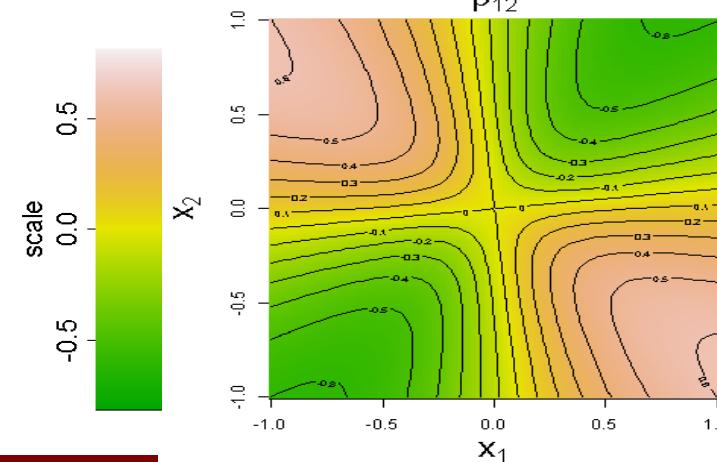
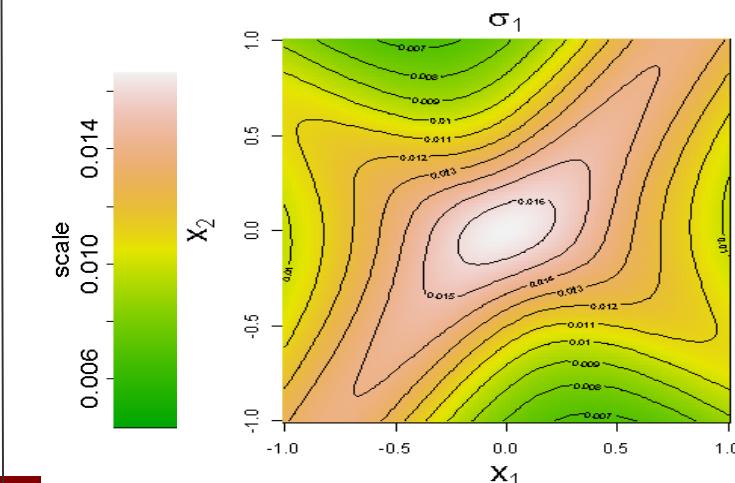
$$S = \{1, 2, \dots, 16\}$$

$$S = \{9, 10, 11, 12\}$$

Simulation



Analytical



Quantifying Differences in Prediction Variance

Sandia
National
Laboratories

Subset	$\sqrt{Var_{avg} \hat{X}_1^*}$	$\sqrt{Var_{avg} \hat{X}_2^*}$
$\{1,2,\dots,16\}$	0.0075	0.0075
$\{7,8\}$	0.0286	0.0286
$\{3,7,9,13\}$	0.0291	0.0154
$\{9,10,11,12\}$	0.0121	0.0121

$\sim 4x$ larger (for \hat{X}_1^*)

$\sim 1.6x$ larger for $\frac{1}{4}$ of responses

- Set $\{9,10,11,12\}$ is a good choice for prediction across the space of interest if constraints exist in obtaining new measurements
- Responses in this set complement each other well – i.e. steep contours are present in one or more of the responses throughout the range of interest

Summary

- Described a method for assessing a multivariate response's usefulness in inverse prediction
- Accounts for multiple sources of uncertainty: model parameter uncertainty, solution uncertainty, measurement error
- Derived first order approximation to the covariance of prediction $\hat{C}_{\hat{X}^*} = \left(J^T(\hat{X}^*) \hat{V}^{-1} J(\hat{X}^*) \right)^{-1}$
 - *Informative and discriminating* if the elements of $\hat{C}_{\hat{X}^*}$ are sufficiently small
 - Level of collinearity in the Jacobian J is an indicator of discriminating ability (as well as level of redundancy)
- Method can be used to down-select responses from a candidate set when constraints exists in measuring new observations (e.g. nuclear forensic applications)
 - Ideal combination: responses with strong difference across input space, and several responses with different shaped relationships
- Concentrated on empirical models derived from well designed experiments
- Methods can be applied to scientific models – may need numerical estimation of partial derivatives

- Different objective functions – robust predictions
- Bayesian methods incorporating prior information on X^* to down-select multivariate response
- Assess the degree of match between new samples and data observed in the experiment
 - Experiment is highly controlled. Future sample don't come from these experiments. Are the predictions reliable?
 - Use predictions across several methods to assess the degree of match?

Method	$\sqrt{Var_{avg} \hat{X}_1^*}$ w/ 16 responses	$\sqrt{Var_{avg} \hat{X}_1^*}$ w/ 4 responses
Forward with LS	0.0075	0.0125
PCR	0.014	0.017
PLSR	0.014	0.017

Estimates of root average prediction variance based on simulations: $n = 27$, $\sigma = 1$, and 100 repetitions.

One repetition : generate data from the response surfaces using 3 – level full factorial with 3 replicates, predict simulated data on a grid spanning the design space