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Abstract—Continuing to improve computational energy effi-
ciency will soon require developing and deploying new operation-
al paradigms for computation that circumvent the fundamental
thermodynamic limits that apply to conventionally implemented
Boolean logic circuits. In particular, Landauer’s principle tells us
that irreversible information erasure requires a minimum energy
dissipation of kT In 2 per bit erased, where k is Boltzmann’s cons-
tant and T is the temperature of the available heat sink. Howev-
er, correctly applying this principle requires carefully characteri-
zing what actually constitutes “information erasure” within a
given physical computing mechanism. In this paper, we show
that abstract combinational logic networks can validly be consid-
ered to contain no information beyond that specified in their in-
put, and that, because of this, appropriately-designed physical
implementations of even multi-layer networks can in fact be up-
dated in a single step while incurring no greater theoretical mini-
mum energy dissipation than is required to update their inputs.
Furthermore, this energy can approach zero if the network state
is updated adiabatically via a reversible transition process. Our
novel operational paradigm for updating logic networks suggests
an entirely new class of hardware devices and circuits that can be
used to reversibly implement Boolean logic with energy dissipa-
tion far below the Landauer limit.

Keywords—thermodynamics of computation; reversible compu-
ting; adiabatic computing; nonlinear dynamics; chaotic computing

I. INTRODUCTION

The limits to the energy efficiency of conventional infor-
mation processing technology are fast approaching, with ther-
mal noise expected to become an important limiting factor wi-
thin the next decade or two [1,2]. However, communication
theorists have known since Shannon [3] that even a noisy chan-
nel can still be used to reliably communicate information at
any rate up to the channel capacity
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where B is the channel bandwidth and Ps, Py denote signal and
noise power, respectively. Even when the signal-to-noise ratio
Ps/Py is relatively small, the channel capacity may still be am-
ple in a high-bandwidth communication medium; this observa-
tion forms the basis of our ubiquitous modern wireless tele-
communication infrastructure. Analogously, reliable computa-
tion can theoretically still be performed even using noisy cir-
cuits, since a computational dataflow can be viewed as being a
special case of a communication channel that just happens to
transform the data in transit. This observation suggests that ap-
propriately designed circuits may perform reliable computa-
tions at extremely low signal energies, operating in a regime
where thermal noise dominates. Our goal, in this line of
thought, is to identify a specific new computational mechanism
and operating conditions under which the energy dissipation
per useful computational operation is negligible.

A canonical example of a system having no (or negligible)
energy dissipation is a system at (or near) thermal equilibrium,
that is, a system occupying some thermally distributed ensem-
ble of states at some uniform temperature T. Thermal states
cannot dissipate energy because they already are at their maxi-
mum entropy. Of course, an equilibrium thermal state is static-
ally distributed, and is not itself actively carrying out a useful
computation. However, in a complex, spatially-extended sys-
tem, the static structure of an equilibrium state of the system
can reflect the logical structure of a computation. Furthermore,
if we perturb the system in such a way as to carry out gradual,
adiabatic transitions between near-equilibrium states, so that
the system’s state is no longer static but quasistatic, the se-
quence of equilibrium states that is visited may represent a ser-
ies of useful computations. This is the essential idea behind re-
versible computing [4,5].

As the size of our computational devices pushes further into
the deep nanoscale, approaching molecular and atomic dimen-
sions, and as the energy of their information-bearing signals
approaches the characteristic thermal energy kT, the tendency
is for the thermal and logical degrees of freedom of the system
to become more closely intertwined with each other, and so un-



derstanding the nature of thermal states and how they arise be-
comes increasingly important to the process of designing a new
mechanism to carry out an intended logical function.

It is a very general feature of complex, nonlinearly-coupled
dynamical systems that their degrees of freedom may often
evolve chaotically [6,7,8], in which case the dynamical state
converges towards a so-called strange attractor, in which the
dynamical orbits exhibit a fractal dimension and the long-term
state distribution resembles that of a thermal system in an equi-
librium state at some nonzero effective temperature T, exhibit-
ing characteristic thermal fluctuations (a.k.a. “noise) of RMS
magnitude kT/2 in the energy (potential or kinetic) associated
with each dynamical degree of freedom, which may be any
generalized position or momentum coordinate variable within
the system. In a conservative system (such as any closed phys-
ical system), there will be in general many different strange at-
tractors, corresponding to different values of the total internal
energy U and associated temperature T of the system, as well
as to distinct large-scale system configurations. Different ini-
tial states will in general converge towards different strange at-
tractors, allowing us to use such attractors to represent comput-
ational states corresponding to distinct logical input cases.

Il. GENERAL APPROACH

To evaluate candidate new computing mechanisms for suit-
ability within this new conceptual framework, we can use de-
tailed circuit simulations (initially, say, using compact device
models such as those provided by the NEEDS project!), to-
gether with a detailed statistical analysis of simulation results,
to identify methods for extracting useful computational results
from the behavior of networks of dynamically-interacting, non-
linear nanodevices. In principle, such networks could imple-
ment reliable computation even at very low signal energies
where thermal noise is dominant. Although individual degrees
of freedom within the circuit may evolve chaotically on short
timescales, over longer timescales, average properties of the
trajectory can still reliably communicate results of the desired
computation.

We anticipate that this new approach to achieving ultra-low
energy dissipation may turn out to be simpler than traditional
approaches to reversible computing using adiabatic retractile
cascades, which apply larger signal energies and recover them
adiabatically over the course of a long, complex, controlled sta-
ging sequence. In contrast, in the new approach, we can carry
out multiple levels of logic reversibly within a single adiabatic
transition of the overall state of the circuit.

Our approach relates somewhat to previous approaches to
computing using the chaotic dynamics of nonlinear systems,
such as, for example, “reservoir computing” [9,10,11]. How-
ever, as it has been framed in past work, reservoir computing
typically invokes the application of artificial neural networks to
learn how to interpret the dynamical trajectory of an arbitrarily-
selected underlying chaotic system. These networks cannot ne-
cessarily be assumed to operate with very low energy cost. In
contrast, our present proposal is to design the underlying sys-
tem from the beginning so that its dynamical behavior, albeit

1See https://nanohub.org/groups/needs.

chaotic and noisy on short timescales, is nevertheless predicta-
ble and easy to interpret on longer timescales.

In other words, although the degrees of freedom within a
noise-dominated nonlinear system will, in general, evolve cha-
otically, if we are careful, we can, in principle, design our com-
putational mechanisms so that the particular attractor to which
the dynamical trajectory converges still reliably depends on the
input to the circuit and on the logical structure of the computa-
tion. In this vision, a desired result can be reliably obtained by
appropriately measuring (e.g., by effectively averaging) the
network outputs over longer time periods; this longer timescale
effectively confines our attention to a narrowband slice of the
noise spectrum, which therefore contains less noise power.
This method is analogous to how, in communications, even a
low-power (but narrow-band) signal can be reliably distin-
guished from higher-power background noise, if the noise is
spread out over a relatively broad spectrum.

Our design strategy is that the nature of the interactions
between devices in our model will be explicitly crafted in such
a way that the statistical properties of the dynamical trajectory
of the local degrees of freedom at specific points in the net-
work will reflect the desired digital information that would be
obtained at the corresponding points in a conventional logic
circuit. Through detailed simulations and analysis over several
design iterations, we will converge onto network-design tech-
nigues and measurement technologies that best implement such
a mapping.

We expect this approach will prove to allow computations
to be carried out with extremely low energy dissipation. Con-
ventional wisdom says that digital information requires stored
signal energies to be of a magnitude that is well above the ther-
mal energy kT (which is ~26 meV at room temperature) to be
reliably distinguished from thermal noise, and we know from
fundamental entropy considerations that at least kT In 2 energy
per bit must be dissipated whenever digital information is irre-
versibly discarded [12]. Although these observations limit the
energy efficiency of conventionally-designed digital circuits,
the novel insight that enables our new approach is that down-
stream logic nodes technically contain no new (independent)
information since they depend deterministically on the input to
the computation.

It may be the case that the energy scale of each input signal
still has to be above the thermal noise energy, but because the
low-power signal that is conveyed through the network from
the input nodes as they are transitioned over a long time period
is confined to a very narrow frequency band (perhaps at base-
band or near DC), the downstream influences of the input, even
after many stages of intermediate transformation by noisily
fluctuating devices, can still remain reliably detectable, and as
long as the system always remains close to the particular equil-
ibrium state (a.k.a. strange attractor) selected by the instantane-
ous input configuration, the energy dissipated per useful device
operation over the course of the transition and measurement
process can in principle be much less than kT In 2 without in-
curring the usual overhead, in terms of staged control sequenc-
ing, that is required by traditional approaches to multi-stage
reversible logic [5].



At this point, the above discussion still remains rather pre-
liminary, in that it just outlines the essential seed of this new
idea; these arguments still need to be validated by a more de-
tailed investigation. However, this line of thought is already
clarifying, for us, how to correctly interpret and reapply the
known thermodynamic limits of computation. Although this
line of work may be considered high-risk by industry engin-
eers, it is highly innovative in that it shows how to use a deep-
er, more thorough understanding of how to correctly apply fun-
damental principles to (potentially) vastly improve the energy
efficiency that is achievable in real computing systems.

In later sections of this paper, we will outline one potential
initial approach for translating the above general insights into a
particular (very simple) circuit model suitable for simulation
and possible eventual implementation. However, the general
points made above are not confined to the following material;
rather, there is a very wide range of possible circuit models that
could be explored as a basis for realizing the above concepts.

I1l. CLARIFYING LANDAUER’S PRINCIPLE

Before we describe our particular model in detail, we wish
to clarify the nature of the fundamental thermodynamic limits
of computation, so that it is more clear how our new paradigm
will avoid running afoul of some of the limits on energy dissi-
pation that apply to more conventional approaches.

In his landmark paper [12], Rolf Landauer of IBM analyzed
the minimum energy dissipation during the erasure of a bit of
information (considered in the abstract, as well as in the
context of a simple, general model system, namely, a bistable
potential energy well) and found that this energy loss could
never be less than kT In 2, where Kk is Boltzmann’s constant and
T is the temperature of the system. This principle can be un-
derstood to apply generally to any possible mechanism for stor-
ing digital information, and in fact, it follows rigorously as a
direct logical consequence of the microscopic invertibility of
fundamental physical dynamics (including quantum time evo-
lution), together with a pragmatic definition of physical entro-
py as comprising any and all information that cannot be de-
computed (evolved back into a fixed standard microstate) by
any invertible process that is practical for us to arrange.?

Given this perspective, “erasing” some digital information
that is encoded in a physical state simply means undergoing a
process that transforms the physically-encoded information
into another form (e.g., heat) from which a standard state is not
reversibly recoverable, which puts this information in the cate-
gory of non-invertibly-decomputable information or entropy.
Meanwhile, thermodynamic temperature T is defined by
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2\We can nevertheless imagine totally impractical processes that could, in
principle, restore a standard state; for example, if we could somehow cause
the entire microscopic time-evolution of the system (and its environment) to
exactly reverse its direction, the system would eventually return to a (poten-
tially standardized) initial state.

where S is the infinitesimal

entropy increase that results el 1 :
from adding infinitesimal K log W
energy OE to an equilibrium
system (heat bath) at tem-
perature T. It follows imme-
diately from this definition
that if an amount of entropy
AS =k In 2 =1 bit will even-
tually be ejected from a giv-
en system into a relatively
large external environment
or heat sink at temperature
T, then an amount of energy
AE = TAS = KT In 2 must be
accordingly invested into
that environment (in the
form of heat) in order to
increase its entropy by the
required amount. Thus, any
bit of physical information
that gets (by definition irrevocably) transformed into entropy
must eventually result in this much energy dissipation, if entro-
py is not to build up within the computer indefinitely. This
constitutes a simple proof of Landauer’s principle that is com-
pletely general, in the sense that it is independent of the details
of any particular physical implementation of an information-
storing device.
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Fig. 1. Boltzmann’s Legacy. Entropy
S is a measure of information; it char-
acterizes the number of ways W of ar-
ranging a system.

However, when applying Landauer’s principle to the analy-
sis of the energy efficiency limits of physical systems that,
themselves, implement rather complex computing structures,
one must be careful to apply it appropriately. In particular, for
systems that are more complex in structure than (say) a single
two-state memory cell, one must be careful to quantify their in-
formation content appropriately.

How is the quantity of information characterized? As was
first elucidated by Boltzmann [13] in the development of his
pioneering H-theorem,® and later elaborated upon and applied
by Shannon [3] in the context of communications theory, the
most natural measure H of entropy (and indeed, the only one
exhibiting the desired properties) for a system X that has W
possible ways of arranging its microscopic constituents, ar-

rangements which we may label x, ..., Xw, is:
W
H=-> plogp,, (2)

i=1

where p;i denotes the probability that the system may be found
in microstate x;. This entropy measure H is maximized when
every pi = 1/W, in which case (assigning physical entropy S =
H and letting Boltzmann’s constant k = log e denote the natural
logarithmic unit), we have

S=kInw, 3)

3 Boltzmann actually defined his expression for H to be the negative of
that in (2), and showed that it always decreases (rather than increases).



the equation which is famously carved on Boltzmann’s
tombstone (Fig. 1).

N
Now, let’s drill down a little further into this defini- o N 1
tion. What is the physical meaning of a way of arranging
the system? In modern physics, this refers to a possible
pure quantum state of the system that is distinguishable N N N,
from other such states in a given set (i.e., their state o’ G, ) —

vectors are pairwise mutually orthogonal). A given
mixed state p of a quantum system is simply a statistical
ensemble of pure states comprising an orthogonal set of
basis states of the system, in the specific basis that dia-
gonalizes the mixed state’s density matrix.

For a system whose configuration may vary continu-
ously (along various degrees of freedom, e.g., the posi- Ng

tions of constituent particles), in general the possible
quantum states of that system include ones where the
probability amplitude may be “smeared out” over a sub-
stantial volume in configuration space. In such states,
the positions of the constituent particles are not individually
well-defined, but may be entangled (quantum-mechanically
correlated) with each other in complex ways.

Let us consider again what we just said above: In general, a
distinguishable physical microstate may involve a complex,
correlated configuration of many degrees of freedom (many
subsystems). In particular, it does not necessarily always con-
sist of the state of just a single, small isolated system, such as
(for example) a one-bit memory storage cell.

Why is this observation useful? Because it tells us that, if
we can arrange for the distinguishable states of a physical sys-
tem that we can measure in a given context to themselves be
complex, spatially-extended objects, whose structure may re-
flect (for example) multiple consecutive stages of a desired
computation, then the fact that this complex structure is made
up of many smaller parts does not imply that it actually con-
tains many bits of information—only that the individual states
in question each have a complex form. Information, as always,
is quantified by simply counting the distinguishable states, or
more generally, by measuring the entropy of the set of states as
in (2), in cases where the set of likely states is more constrain-
ed than the maximal set, and/or is nonuniform in terms of the
states’ statistical probabilities.

In subsequent sections of this paper, we elaborate further
on how this insight allows us, in principle, to update, in a sin-
gle step, an entire combinational logic network that may be
multiple layers deep without necessarily requiring the usual
Landauer-erasure minimum energy dissipation of kKT In 2 for
each internal logic node that is updated.

In the next section, we define a simple network model of
combinational logic circuits for later reference. Then in secs.
V-VI, we briefly discuss how logical states of nodes corres-
pond to physical microstates, while logic gates correspond to
dynamical interactions between nodes. Then in section VII, we
restrict our attention to a simple conservative Hamiltonian dyn-
amical model of logic circuits, which will allow us to illustrate
the central idea of our approach.

Fig. 2. A Simple Example Combinational Logic Network. (Full adder.)

IV. STATES OF A COMBINATIONAL LOGIC NETWORK

In the abstract, we can (quite conventionally) describe a
combinational logic network in terms of a tuple (N, G), where
N ={Ni, ..., Nn} is a set of n logic nodes and G = {Gy, ..., Gn}
is a set of m logic gates (meaning, gate instances), and where
we stipulate that n > m, that is, there are at least as many nodes
as there are gates, because each gate has (at least) one unique
output node, and there may be other nodes that are only inputs
to the network. Fig. 2 illustrates a simple example network,
using the conventional graphic notation for a few basic Boole-
an gates. An individual deterministic logic gate G;, where 1 <j
<'m, can be described, in the most general sense, in terms of a
tuple G; = (I, O, ), where | < N is the gate’s set of input nodes,
O < N is the gate’s set of output nodes, and

f:{03" > {o3° 4)
is a function that maps possible assignments of bit values {0,1}
to the gate’s |I| input nodes to the resultant assignment of bit
values to the gate’s |O| output nodes. The output sets O of the
various gates must have a null intersection; that is to say, each
node can be the output of at most one gate. In addition, to say
that the given network of logic gates is combinational means
that the induced directed graph describing the possible paths
through the network that pass only forwards through gates
(from an input node to an output node) does not include any
directed cycles; that is, there is no way to get from a given
node back to itself while passing only forwards through gates.

With these definitions, it follows that the assignment of bit
values to all nodes is uniquely determined by the assignment of
values to those nodes that are inputs to the network (i.e., those
that are not outputs of any gates). Letting there be i < n such
nodes, the number of possible states of the network (consistent
with the specified action of all gates) is actually only 2, not 2",
and thus, the actual amount of information in the state of the
network is only i bits, not n bits. This is our first clue that it
ought to be theoretically possible to change the state of such a
network while dissipating only ix(kT In 2) amount of energy,
not nx(kT In 2), even when the inputs are destructively over-
written (prior input values are erased). In other words, internal



nodes of a combinational logic network are not necessarily
subject to Landauer’s principle because (when constrained by
the gate behavior) they do not actually contain any additional
information (independent of the network inputs). Note that this
discussion assumes that the states of the network’s internal and
output nodes are in fact determined by the input nodes; we will
see later that this can remain essentially true despite the effects
of thermal noise and propagation delays through the network.

V. MICROSCALE NODE CONFIGURATION

What do we mean when we say that a bit value (0 or 1) is
assigned to a node in a logic network? Simply that the node (in
isolation) has at least two microstates (measurably distinguish-
able quantum states), and that (at least) one of these is labeled
“0” and (at least) one of them is labeled “1”; the currently “as-
signed” bit value is then just the label corresponding to the
state that would be found if the node were measured (using a
measurement that can reliably distinguish the state) at a given
time. Most generally, the digital states of interest might actual-
ly each correspond to a large set of (in principle) distinguisha-
ble quantum states, but where not all of the measurable distinc-
tions are considered relevant in determining the bit values. So
for example, in typical voltage-coded logic, a range of measur-
able node voltages between [Vov, Von] might all be considered
to represent logic “0”, while another range [ViL, Vin] (where
typically Vi > Vou) might all be considered to represent logic
“1.” Although in principle, the voltage might be able to be
measured more accurately than is implied by just distinguish-
ing these two sets, in practice, only the distinction between
those two sets is used.

Now, the actual microstate of the node’s physical hardware
may in general be traversing a complex trajectory through a
high-dimensional configuration space, comprising many de-
grees of freedom. For example, large numbers of conduction
electrons may be flitting around chaotically through a solid
conductor, scattering off of lattice defects and surface irregu-
larities and atoms of trapped impurities. Even in a small deep-
nanoscale device, such as a single-electron transistor or a rod in
some molecular mechanical logic, the various degrees of free-
dom may in general be oscillating or fluctuating in complex
patterns. However, regardless of the details, the system remains
in principle characterizable by a density matrix which can be
diagonalized into a set of measurably distinguishable quantum
states. Each of these states may involve wavefunctions of
electrons (or other moving particles) that are smeared out over
a molecular orbital, or even over the entire volume of a large
conductor, but that is fine. We can imagine that the individual
electron positions are evolving along stochastic trajectories
which are guided by the wavefunction amplitudes, in a Bohm-
ian perspective [14]. Viewed on short timescales (if we could
“snapshot” the electron motions) the evolution of the system
would be noisy, but on longer timescales, where the short-
timescale fluctuations are “averaged out,” it is smooth. This is
merely to say that the isolated node exhibits a reliably-measur-
able, persistent distinction between its “0” and “1” macrostates,
which are (by assumption) distinguishable.

VI. CONNECTING NODES TOGETHER

Now, what happens when multiple logic nodes are connec-
ted together and made to interact with each other by logic gate
hardware? The detailed physical behavior of course depends
on the precise gate structure and mechanism, but a general pic-
ture is as follows. The gate introduces an interaction between
the subsystems comprising the various nodes that impinge up-
on it. For functional or bidirectional-constraint type gates not
exhibiting internal state, simple kinds of interactions could be
represented by a Hamiltonian potential energy function.

More generally, certain kinds of gate device hardware may
exhibit hysteretic effects, or some type of nonvolatile/persistent
internal memory, such as memristors or Flash memory cells;
such gates may introduce their own internal state variables
which evolve on longer timescales; the new state variables may
also contribute corresponding kinetic-type energy terms to the
system’s overall Hamiltonian, such as in, for example, the spin
energy of a NEMS flywheel structure, or the magnetic field en-
ergy of a nanomagnet, a spintronic device, or a superconduc-
tive current loop. However, for the moment, we will set such
possibilities aside.

The most general types of gates may also permit not just
conservative (energy-conserving/elastic) interactions between
node structures, but also dynamic flows of matter currents be-
tween them (e.g. short-circuit or leakage currents in electronic
devices, spin currents in spintronic devices, and more generally
flows down chemical gradients). Such flows typically are dis-
sipative, and will cause a given structure to exceed the theoreti-
cal minimum energy dissipation that is of interest to us in this
paper. For purposes of the present paper, we prescribe avoid-
ing such behaviors; in future work, we will investigate to what
extent reintroducing them may be helpful or necessary for im-
proving the stability of a system. But for the moment, let our
focus be on nodes that are interacting with each other through a
simple, conservative Hamiltonian-type gate interaction.

VII. EXAMPLE HAMILTONIANS FOR
STANDARD BOOLEAN GATES

In this section, we present a very basic dynamical model of
networks of Boolean AND and NOT gates to illustrate our
general picture, and serve as a starting point for later studies.

As a simple example, imagine that each node N; in the logic
network includes a single microscopic generalized-position de-
gree of freedom (not necessarily a spatial position) represented
by a continuous coordinate variable x;. This could be a voltage,
a superconducting current, or any other continuous variable. In
general, this “position” variable can fluctuate dynamically; to
enable such dynamics, we will include a kinetic energy term in
our Hamiltonian of the simple nonrelativistic form

K, =%m.v.2, )

where v; = dxi/dt denotes the velocity of the generalized posi-
tion coordinate, and m; denotes a generalized effective mass as-
sociated with the given degree of freedom. For this abstract



example, units are arbitrary, so for simplicity, we can let each
m; = 1 unit, for the time being, without loss of generality.

Now, in the most general circumstances, the position x;
may be fluctuating around dynamically, but we can imagine
that, in the system’s lowest-energy state where all coordinates
are at rest, the value of the position would tell us something
about the node’s logic value, in the sense that certain positions,
if measured consistently, would imply a certain logic value.

Again, units are meaningless here, so for simplicity let
Xi = 1 unit be interpreted as logic 1, and let x; = 0 be interpreted
as logic 0.

For our present purposes, we will assign the input nodes to
the network as outputs of special 0-input, 1-output “gates” cal-
led memory cells, so that we may include these in our model.
Therefore, the number of nodes equals the number of gates, n =
m, and so without loss of generality, we can identify node and
gate indices with each other; that is, let the output node of each
gate Gj be node N;.

Let a memory cell have a potential energy function of the
form E, = 1rkT(x, —s,)?, where si is the constant logic value

(0 or 1) nominally being stored at a given time, and r is a factor
determining the reliability with which the cell’s value is main-
tained. Note that therefore the cell comprises a harmonic oscil-
lator, whose ground state corresponds to the nominal bit value.

A more refined model of a memory cell for future consider-
ation might be a bistable potential well with an energy barrier
between 0 and 1 states of magnitude rkT; such a cell could pre-
serve its state over some timescale without the need for extern-
al control to maintain a constant bias.

Now, let a Boolean NOT gate or logical inverter have the
potential energy function E, = 2bkT(x; + X; —-1)?, where j is

the index of the inverter’s input node. Again this describes a
quadratic potential, and the factor b determines the magnitude
of the energy associated with the NOT-gate constraint that
nominally, we should have x; = 1 — x; (if the output were exact).
Fig. 3 illustrates the shape of this potential energy surface, with
the x and y axes corresponding to coordinates x; and X;.

Finally, let a Boolean AND gate have a potential energy
function E, =1akT(x —x;x)* , where j, k are the indices of

the AND gate’s input nodes. The factor a determines the mag-
nitude of the energy associated with the AND-gate constraint
that nominally, we should have x; = xx« (if the output were ex-
actly correct).

This gate set (AND and NOT) comprises a universal set,
that is, it is sufficient for constructing arbitrary combinational
Boolean logic functions.

The act of measuring the output of a logic cell and storing a
corresponding new value in a memory cell is not yet modeled
in terms of a detailed mechanism; first we want to understand
better what the behavior of the above model looks like, in
terms of its chaotic nonlinear dynamics, and in the presence of
thermal noise. For the time being, updating the state of the
memory cell can be simply modeled at an abstract level by

A Quadratic Potential Energy Function for a NOT gate
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Fig. 3. Potential energy surface for an example NOT gate interaction term in
our example Hamiltonian model of Boolean logic.

gradually transitioning the value of the input parameter s from
old value to new value over a time t.

VIIIl.ANALYSIS AND SIMULATION PLAN

In principle, running our model simply consists of allowing
all of the generalized coordinates in the system to simultane-
ously evolve, with all nodes in a complex combinational net
fluctuating dynamically under the influence of thermal noise
and neighboring nodes’ configurations. We may consider how
the distribution of final output configurations evolves over time
as the model is run from a given initial system configura-
tion. It would be interesting to study how the dynamical beha-
vior changes as we scale down the magnitudes of the gate int-
eraction energies a and b, relative to the energy scale r of the
input memory cell.

Next, we may consider also what happens to the system on
longer timescales, when the bias states s of the input memory
nodes are transitioned between 0 and 1 (or vice-versa) over
time t. Given our conservative Hamiltonian model, the adiaba-
tic theorem implies that asymptotically, as t — oo, the energy
dissipation (heating) of the system as a result of the transition
should approach zero. But we may wish to examine how this
behavior is affected by the relative energy scales of the logic
gates versus the input memory, and how this affects the trade-
offs between speed, energy dissipation, and reliability for this
network model. For finite transition timescales, it would be in-
teresting to study the precise trajectory along which the distrib-
ution of downstream nodes’ values changes, to see how quick-
ly reliable results can be inferred from output node values. It
would also be interesting to study how, exactly, the asymptoti-
cally small thermal excitation of the system flows through the
network from the sole energy input to the system, namely the
transitioning of the memory node.

It would be straightforward to run simulations of this sys-
tem to obtain results that cannot be easily inferred analytically.
Even without explicit modeling of an external heat bath, the



system, with its many nonlinearly-interacting degrees of free-
dom, can be expected to evolve chaotically and to exhibit an
effective temperature.

An easy way to initialize the system would be to set all of
the generalized-position coordinates to their ideal values given
the initial logic input, and assign their initial velocities random-
ly using the Maxwell-Boltzmann distribution (that is, letting
the average energy per generalized-position coordinate be KT).
Although initially the entire system energy will be found in the
kinetic energy terms of the Hamiltonian (all of the potential
energy terms being O in the ground state configuration), within
a short time, the energy will become randomly distributed over
all terms of the Hamiltonian as per the equipartition theorem,
with an average energy of 2 kT per microscopic degree of free-

dom (including both the position coordinates and their corres-
ponding velocities).

It would be straightforward to generate phase diagrams of
the various coordinates and to collect time-averaged statistics
regarding the coordinates of the output nodes, and verify on the
basis of these that, as expected, the correct digital value can be
reliably determined via measurements over relatively long
timescales.

As of this writing, a simulator along the lines described
above, called DYNAMIC, is currently being prototyped in the
Python language. Our core framework for simulating arbitrary
networks of Hamiltonian interactions is functioning, but still
needs more testing on complex networks, and the results need
to be visualized and analyzed. We intend to release this soft-
ware as open source once it has been completed.

IX. CONCLUSION

In this paper, we have argued that there is a potentially via-
ble approach for implementing extremely energy-efficient
Boolean logic (with potentially much less than KT energy dissi-
pation per useful logic operation) that has not previously been
explored in detail. This new approach can be understood as
emerging from the convergence of several key insights:

1. As per Shannon [3], we can still communicate reliably
at some rate even at signal power levels below the noise
floor, and furthermore, computation can be viewed as
merely a special case of communication;

2. Thermal equilibrium states are inherently nondissipat-
ive, and the static structure of a particular such state can
reflect the logical structure of a particular computation;

3. Networks of conservatively-interacting nonlinear devi-
ces exhibiting chaotic dynamical behavior are effective-
ly thermal systems, and thus are also nondissipative
once their dynamical orbits have converged onto a par-
ticular strange attractor, which corresponds to a thermal
equilibrium state. Yet, interactions beween such devices
can be tailored so as to embody desired computational
structures, such that their time-averaged behavior re-
flects specific computational results.

4. A state reflecting the computational structure of a deep
combinational Boolean logic network can be adiabatic-
ally updated in a single step, rather than through a

staged sequence of transitions. This does not violate
Landauer’s principle, because the values of downstream
nodes do not represent independent bits of information
being erased. Rather, the states of the network are spa-
tially extended entities, and so the network can be up-
dated all at once with no merging of states, and therefore
no loss of information or entropy generation.

These insights open the door to the exploration of a funda-
mental new class of devices and circuits for carrying out comp-
utations reversibly while dissipating << kT energy per useful
operation. We can imagine working with assemblages of non-
linear devices coupled via conservative interactions. Even
though the state of such networks may evolve chaotically and
be unpredictable on short timescales, over longer timescales
their statistical behavior can be arranged to embody desired
computational results. This approach is inherently insensitive
to noise, as we are dealing with thermal equilibrium states of
the degrees of freedom of interest. Because of this, the infor-
mation-bearing degrees of freedom do not even need to be per-
fectly isolated from their thermal environment, since at equil-
ibrium (when the temperatures of the dynamical system and its
environment are the same) any dissipative losses will be exact-
ly counterbalanced by fluctuations induced by the thermal env-
ironment, as per the fluctuation-dissipation theorem.

Although this vision of a new paradigm for energy-efficient
computing is still very preliminary, we have made initial steps
towards its realization by describing and implementing a sim-
ple, classical Hamiltonian dynamical model which illustrates
how the interactions between degrees of freedom could in prin-
ciple be tailored so that their long-term statistical behavior will
reflect computationally meaningful information. Further re-
search is needed to characterize the limits and tradeoffs of this
approach, explore variations on the underlying theme, translate
this conceptual picture into concrete physical implementations
leveraging manufacturable device and circuit structures, and
determine whether these types of designs can yield practical
benefits.

We also hope that the above line of work will contribute to
a broader, deeper understanding of the more general notion of
energy-efficient computation using nonlinear dynamics at the
edge of chaos, which has been alluded to in recent works [15].
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