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Outline

• Studying the structure of electronic social networks

– Identifying, understanding, modeling

• Designing algorithms for electronic social networks

– Basic, distributed, streaming, sampling, benchmarking

• “Cleaning” electronic social networks

– Non-human activity violating social scientific assumptions

• Computing with electronic social networks

– Multi-core, GPU, HPC, cloud
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Studying the Structure

• Consider a network with n vertices and m edges

• “Communities”: the most familiar “structure”	

• “Community detection”: the most familiar problems

– “Modularity”: the most familiar way of measuring comm. Str.
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Modularity Maximization
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Image: Lancichinetta, Fortunato, Radicchi, Physical Review E (78) 046110, 2008

Thousands of algorithms, any of which suffers a “Resolution limit”

Cannot “resolve” communities with fewer than 
�

�
	edges

(Fortunato and Barthelemy, PNAS 2007)



Sandia Work: “Tolerate” the Resolution Limit
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Berry, et al. Physical  Review E (83) 056119, 2011

The resolution limit

Weight edges, then resolve to 
�

�
where � bounds inter-comm. edges



Now We’ll Consider More 
Fundamental Structural Properties

Vertex degree distribution Clustering coefficient distribution
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v 

Clustering coefficient (CC) of v = 
Fraction of related neighbors.

# triangles on v 

# wedges on v 

cavg(d) = Average CC over nodes of degree d.
Global CC = average over all nodes v 
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Current Network Models Cannot Match 
Both Degree & Clust. Comp. Dists.

• Erdȍs-Rényi (1960)

– All edges have equal probability

– Con: Poisson degree distribution

• Preferential Attachment 
(Barabási-Albert 1999)

– Nodes join the graph sequentially

– Prefer nodes of higher degree

– Pro: Power-law degree distribution

– Con: Too few triangles

• Stochastic Blockmodel
(Holland et al. 1983)

– Each node belongs to a block

– Edge probability between blocks

– Pro: Explicit community structure

– Con: Wrong degree distribution

• Stochastic Kronecker, aka R-MAT
(Chakrabarti et al. 2004)

– Edge probabilities defined by Kronecker 
products of generator matrices

– Pro: Scalable

– Con: Wrong degree distribution

– Con: Too few triangles

• Chung-Lu (2002), 
aka Configuration Model

– Edge probabilities defined by desired 
degree of endpoints

– Pro: Scalable

– Pro: Matches many degree distributions

– Con: Too few triangles

10/8/2015 Kolda - Woudschoten Conference -
Networks

7



Sandia Work: “BTER Model” 
Captures Clustering Coefficients

8
Seshadhri, Kolda, Pinar (Phys. Rev. E 2012)

Kolda, Plantenga, Pinar, Seshadhri (SISC 2014)



Sandia Work: Quantify Triangle Counts

• The 4/3-moment of the degree distribution is the 

expected value of ��
�/�

for any vertex �

• Sandia theoretical computer scientists, working with 
Iowa State statisticians, showed that if this moment 
is bounded by a constant, the number of triangles in 
a network is linear   (efficiently listed!)
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Designing Algorithms

• Tamara Kolda, C. Seshadhri, A. Pinar, G. Ballard, K. 
Matulef, and other Sandia/CA staff have designed 
many efficient sampling algorithms for:

• Wedges (paths with three vertices and two edges)

• Triangles (3-cycles)

• Diamonds  (4-cycles)

• See:    http://www.sandia.gov/~tgkolda/pubs/index.html

• I’ll focus on work in NM with Cindy Phillips

– Distributed graph algorithms

– “Cleaning” social networks
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A New Distributed Computing Model

Alice and Bob (or more) independently create social graphs GA and GB. 

– Alice and Bob each know nothing of the other’s graph.

– Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over GA union GB  with limited 
sharing: O(logkn) total communication for size n graphs, constant k

s



Another Limited Sharing Model

Goal: Cooperate to compute algorithms over 

Alice gets no information beyond answer in honest-but-curious model.

• Secure multiparty computation

– Few players, large data  (this context is new)

s

June 23, 2016 MMDS 2016 12



Motivation

• Company mergers

• National security: connect-the-dots for counterterrorism

• Nodes are people

– Exploit structure of social networks
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Topics

• s-t connectivity

• Planted clique

• Engineering better test sets
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Result: Low-communication s-t 
Connectivity

• s-t connectivity for social graphs: O(log2 n) bits for n-node graphs

• Ω(n log n) lower bound for general graphs (Hajnal, Maass, Turàn)

– Edges partitioned, 2 parties

Alice Bob

Usually total
Communication large
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Social Network Structure

• Social networks have a giant component: second smallest 
component of size O(log n)

Giant Connected Component
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Social Network Structure

• Normal connection growth (Easley and Kleinberg)

• Observed in social networks (long distance phone call, linkedin, 
etc)

• Theoretically in Chung-Lu graphs with power law exponent 
between 1+ε and 3.47

Giant Connected Component
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Assumptions

• Alice’s graph GA and Bob’s graph GB both have giant components

• These giant components intersect

– Can verify with O(log2 n) communication with high probability 
if intersect by a constant fraction (say 1%)
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Shell expansion

• Like breadth-first-search, “layer” is connected piece in GA or 
GB

• Key: don’t explore too much of the graph(s)

s

Alice

s

Bob

s

Only send new nodes
at each step.
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Low-Sharing s-t Connectivity 
Algorithm

• Alice and Bob agree on a value     (polylog in n)

– Algorithm is correct iff at least size of 2nd largest 
component

• Do shell expansion (BFS) from both s and t

• Stopping criteria:

1. s shell merges with t shell (yes)

2. No new nodes added in some step (no)

3. Shell merges with giant component of GA or GB (yes)

4. Shell size exceeds      .  Stop before sending. (yes)

• With a good guess,   = O(log n), so O(log2 n) bits communicated 
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Also: Secure multi-party communication version of S-T connectivity (IEEE/IPDPS 2015)
S-T connectivity (yes/no) without revealing node names



Topics

• s-t connectivity

• Planted clique

• Engineering better test sets
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J. Berry, M. Collins, Aaron Kearns, C. Phillips, J. 
Saia, R. Smith, “Cooperative computing for 
autonomous data centers,” Proceedings of the 
IEEE International Parallel and Distributed 
Processing Sympoisum, May 2015. 



The Planted Clique Problem

• Find a clique that has been artificially added to a graph

– Given graph, choose nodes randomly and build a clique

• Can we find a clique that’s a little larger than “native” clique size?

• For Erdos-Renyi, native is log n, can find          
– (Deshpande and Montanari 2013,   Alon, Krivelevich, Sudakov, 1998)

• A form of anomaly detection, with other theoretical applications
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The Distributed Planted Clique 
Problem

• When can social network structure help in solving a problem?

• Find a clique that has been artificially added to a graph

– O(log n) nodes chosen randomly and builds a clique

– Adversary assigns clique edges to Alice or Bob

• Can we find a clique that’s a little larger than “native” clique 
size?

Blue edges to Alice Red edges to Bob
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Exploiting Social Network Structure

• Two key assumptions (n-node graph)

1. Maximum degree is 

2. Clustering coefficient for degree-d nodes is

These two assumptions lead to a polynomial-time, polylog-
communication algorithm for finding an O(log n)-size planted 
clique.  

v 

Clustering coefficient (CC) of v = 
Fraction of related neighbors.

# triangles on v 

# wedges on v 

cavg(d) = Average CC over nodes of degree d.
Global CC = average over all nodes v 

5 

6
= 
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Clustering Coefficient Assumption: 
Social Science Justification (slide 1)

Assumption: Clustering coefficient for degree-d nodes is

– Strong triadic closure (Easley, Kleinberg): two strong edges in a 

wedge implies (at least weak) closure.

• Reasons: opportunity, trust, social stress

– Converse of strong triadic closure: not (both edges strong) 

implies not (more than coincidental closures)

• experimental evidence: Kossinets, Watts 2006

x

zy
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Clustering Coefficient Assumption: 
Social Science Justification (slide 2)

Bounded number of strong human interactions even with social 

media (Dunbar 2012)

– so bounded number of strong wedges.

– As degree increases, more wedges involve weak pairs

– Social reasons for triadic closure all reduced as strength decreases

– Assumption is implied on average  whp by Kolda et al. (SISC), 

where ξ fit from global CC:

But the assumption actually isn’t justified at all!
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Problems

Experimental validation on some public social networks failed!

Why? Because the clustering coefficient assumption doesn’t hold.
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Current theory

Reality



Topics

• s-t connectivity

• Planted clique

• Engineering better test sets
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Clustering Coefficient “Rhino Horn”
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Images from Kolda, et al. SIAM J. Computing 2014



Human vs Automated

• Networks like Twitter contain a vast amount of non-human 
behavior

– You can buy 500 followers for $5 US

– Economic incentives to manipulate connections

• For applications, we assume that the network owners (e.g. law-
enforcement agencies) will have human-only networks

– Their networks are not public where entities can sign up

– No cleaning problem

– Will our distributed algorithms work?

• Our work uses data from SNAP, LAW

– What cleaning of these networks can we justify?
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Human vs Automated

Goal: Clean (enough) non-human behavior to test our algorithms

• Limitation: we have only topology

• Dunbar: Real human relationships require attention

– Attention can be divided

– Total attention, time of day, etc, is limited

• Communities with too many “strong” connections may not be 
human.

– E.g.: in Twitter-2010, there is a 317-clique of mutual follower 
relations (with no apparent common ground among nodes)
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Some Test Network Desired Properties

• Automated sub-networks are not present

• Edges plausibly represent a social bond

– Even better if the relationship requires time/effort

• Large size (millions/billions of nodes/edges)

• Approximates a full network snapshot

– Not ego-networks

We don’t know publicly available social networks with all these

– Closest: friendster

Given exemplars, could generate more instances with a network 
generator like BTER.
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Varying Strength of Ties

• People “know” about 1500 others by face/name

• Hierarchy of strength
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R. Dunbar, Social cognition on the internet: testing constraints on social network Size, Philosophical
Transactions of the Royal Society B, Biological Sciences,367(1599):2192-2201, 2012

Inner
Circle

2x
…

Acquaintances



Edge strength

• A notion somewhat like Easley and Kleinberg 2010, and Berry et 
al., 2011

34

u v

• Idea: Total strength has a constant bound

– Edge strength a continuum, not just strong/weak
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ri, (i/degree)  “relative rank”

Ed
ge

 s
tr

en
gt

h

Strength index is the
maximum of

min(ri,, si)  over all i

si

“strength-index” for Nodes (like H-index)

Neighbors sorted
by edge strength

June 23, 2016 MMDS 2016 35



Suppose strength-index = s;

Dunbar-like constant = D,
S = Prefix sum of strengths<=s

Then:

s = s-index
D = Dunbar-like constant
d = degree

Strength-Index Property
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Most important edges are
free from tail effectsSSC: “Symmetric Strength Component”



SSC and total strength distributions

SSC and total strength S are empirically bounded by small constants
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Cleaning Non-Human Nodes

• We assume                   for entirely-human vertices

• Constant D will depend on the network 

• Remove nodes with s above this curve (or edges connecting violators)

• Selecting D

– Compute average SSC average μ and standard deviation σ

– D = μ + kσ for user-defined parameter k

• Nodes above the line for a given k are kσ violators
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YouTube Heat Map

• Before cleaning. k=3,6,12
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LiveJournal Heat Map

• Before cleaning. k=3,6,12
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Twitter Heat Map

• Before cleaning. k=3,6,12
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Friendster

• Before cleaning. k=3,6,12. Already clean!
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Cleaning

• Sometimes small number of vertices have a large fraction of edges
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Cleaned LiveJournal

• k=12
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LiveJournal: Cleaned Clustering 
Coefficents
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Cleaned Twitter

• k=3
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Twitter

• Cleaned clustering coefficients
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Validation Goal

June 23, 2016 MMDS 2016 48

Show empirically that we are not 

“throwing out the baby with the bath water”

Working on it……



Computing and Social Networks

• Sandia joint work with Indiana U. described the main challenges 
for High-Performance Computing (HPC) and these graphs/networks

• Has influenced HPC, cloud, multicore graph computation
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Summary

• Sandians have made contributions to social network analysis 
recently

• There’s more related work on the horizon

• Main points of contact:

– NM: Cindy Phillips, Jon Berry

– CA:  Tammy Kolda, Ali Pinar
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