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Crystalline Materials
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Stannered, 2007, via Wikimedia Commons.
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Material Behavior Across @ Sandia
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Time & Length Scales
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To develo predictive physics-based models, a
fundamental understanding of the structure of

matter, defects, and the kinetics of structural
evolution in the environments of interest are needed. o5
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TEM and In Situ Experiments )
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Gringer, 2009, via Wikimedia Commons.

« Enables real-time studies of samples under various stimuli

« Limited to electron-transparent, vacuum & electron beam-compatible samples
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e |on iradiation
o lon beam modification
e Mechanical

behavior

o Monotonic and cyclic
loading
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10 keV Au in Au, via Wikimedia Commons.

Sandia

Radiation-Solid Interactions @ oy

Energetic ion displaces one or
more target atoms

o Frenkel (vacancy-interstitial) pair

o Collision cascade

o Nuclear and electronic interactions
time 0.0001 ps

Kai Nordlund (2008)

Ne —
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" / ®
Schematic recoil spectra for 1 MeV
particles in Cu. Sizes represent recoil

energies. After Averback, ] Nucl
Mater, 1994.

Highly temporally and spatially localized energy
® PReSS Seminar transfer drives microstructural change.

Kaoumi, et al, ] ASTM Intl, 2006.
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Sandia’s In situ Ion Irradiation @ Sanda
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Direct real time observation of ion
irradiation, ion implantation, or both
with nanometer resolution.
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Single Ions in Nanoparticles e

Collaborators: T.J. Boyle, K. Hattar, S. Pratt

Ol Difference Images
* Dark: Only
present betore
« light: Only
present after
t=0s *  Gray: unchanged
60 nm

10 nm

« Single 46 keV Au ions info Au nanoparticles

Effects of similarly sized cascades vary dramatically with particle size.
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In Situ Irradiation: 3.6 MeV Au®* @ National

Laboratories

Video speed x5.

« AU at 2.1 x 108 ions cm™?s!into Au foil
« Large defect clusters from cascades

What happens near grain boundaries?
® PReSS Seminar o1]

Hattar, et al, Nucl Instr Meth Phys Res B, 2014.
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In Situ Irradiation (M) i

* Au folil during
bombardment
with 10 MeV Sid* In situ ion irradiation

« ~10s of 4000s total TEM: 10 MeV Si into
experiment fime '

. Can reproduce nanocrystalline Au.

previous results,
but with greater
energy range and Playback at 2 x real time.
expanded
capabilities for
analysis.

Locations of single ion strikes and resulting microstructural change captured.
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Microstructure Digitization () s
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Experimental Theoretical Template  Point Mapped
Pattern Template Matched To IPF

« Automated diffraction

orientation mapping

o Point by point grid of
orientations mapped

o 5 nm resolution

 Analogous to EBSD
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Point diffraction data
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GB Movement: Statistical @Paaﬁ‘o‘:';ﬁéﬂes
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Bufford, et al, Appl Phys Lett, 2015.

Rapid quantification of statistically relevant numbers of grains and boundaries.
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 The same grains R MBeforalf s ra.o,,y;d.-':gi_ég_sefmg*
Identifled before and A A8 _Eé-n "1»5; v X
after irradiation vsif” S F
Al T W 2

* |ndividual grain
boundary misorientation
angles and axes
quantified

« Correlation of GB
properties and radiation-
iInduced changes

| 3°<h<15° |
[15°< b <30° |
[ 30°<o [

Grain boundary misorientation angle and axes quantified

® PReSS Seminar e15

Bufford, et al, Appl Phys Lett, 2015.
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Simulated Irradiation () i

Collaborators: F.F. Abdeljowad and S.M. Foiles
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2x real time
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Experiment/Model ) i

Discrepancies?

Lon 8 ) {

" .1&3%1 14
=117

1

- —o— Anneal
—+— Avg. Thermal Events

Bufford, et al, Appl Phys Lett, 2015.

« Overall scaling laws appear consistent

Immobile boundaries suggest importance of non-thermally activated mobility
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* |on irradiation

o lon beam modification

e Mechanical

behavior
o Monotonic and cyclic
loading
[fProperties * * .. C
Processi ng = %L .,
rm a n ce Test Time (s)
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In Situ TEM Nanoindentation @ oo

In Situ Nanoindentation TEM Holder
« Sub nanometer displacement resolution
*  Quantitative force information with uN resolution

* A variety of
sample
geometries

* Load
functions:
monotonic,
cyclic/fatigue,
creep, siress
relaxation.

Load (pN)
Load (uN)
Load (uN)
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Tensile Testing [

National
Laboratories
39
Monotonic tension 12 _
(@]
T
5 « Lots of information: — q
o E, o0, oy, elongafion, r \)
toughness, n, m o w 25
S 0
&
Stress relaxation
o

« More information:
o m,AV, creep

Gold standard for bulk mechanical properties

Requires well formed, desiructible specimens
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Tension Specimen Fabrication @ Nationa

« Hysifron “Push-to-Pull’” devices

o Microfabricated Si test frame
o Cu film (75 nm) floated onto device, then FIB milled

Collaborators: D. Adams, K. Hattar, W. Mook, C. Sobczak

af7| WD |mag | det [mode| HFW [ftilt| —————200pym——— WD | mag |det ‘mode HFW ‘ti‘t| —Sm—_—
#3151 mm|500 x| ETD| SE |512um|0° 5.0mm 20000 % |ETD| SE [12.8 um|0

* Nearly pure tension, uniform cross sectional areq, stable load frame
« Thin foil geometry not ideal for mechanics, but is electron-transparent
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Monotonic ()

Laboratories

500 nm

« Monotonic loading

o Negligible plasticity before failure
o Rapid crack propagation
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Successful quantitative tensile testing in the TEM
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Cyclic Loading () .

« Fatfigue in bulk metals

o Progressive microstructural change with
cyclic loading, often below yield stress

« Fafigue in nc metals

o Grain boundary migration and grain growth
o Crack inifiation

« What are the underlying
mechanisms associated with

these phenomena?

o Pre-deformation microstructure
o Grain and grain boundary orientations

In situ TEM deformation techniques
are capable of investigating these
questions.

L
Padilla and Boyce, Exp Mech 2006.
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Low Cycle Fatigue ) =

Video playback x10 Collaborator: W. Moo

« Cyclic loading:
o Crack initiated in previous
monotonic test
o 9 cyclesto ~87.5% of that load
o 50 % unloading

o Slow crack propagation
400

300 -

200 -
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100 -

0 — 7.' ] : ] . ] :
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Depth (nm)

« Direct measurements of fracture parameters
 Structural evolution at the crack tip o
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High Cycle Fatigue
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Collaborators: D. Stauffer, B. Boyce, K. Hattar, W. Mook

« Cyclic loading:
o 200 hz

Nanocrystalline Cu (e)

In situ TEM: 250
dynamic mechanical loading

at 200 Hz
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Crack Growth Quantified (i)
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« Crack growth rate measured at 6 x 10-'2 m/cycle
026

» Evidence of fatigue-induced grain growth.
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Summary and Conclusions @ Natona
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« Mechanical deformation and irradiation-induced grain growth studied
with quantitative in sifu TEM techniques.

« |Immediately relevant to small-scale devices.

«  Fundamental knowledge of processes at the nanoscale informs
models and improves understanding at longer length scales.
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Surface Effects of Heavy Ions ) .

3 0Inm) 30 m|
— —

« 60 nm Au NPs before/after 2.0 x 10 ions/cm?of 2.8 MeV Au#t
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Macro/Microindentation ()
« Apply a static load

« Measure residual indentation area
« Depths from tens of yum to mm

Diamond Vickers Tip

: ,
£ = AN
= £
2 < \
.é Ty AN
= N
5 < L» &\

Brinell Vickers R. Tanaka, via Wikimedia Commons.

P.
e Hardness, H = ’Z“"

r

Infer bulk properties from local resistance to plastic deformation in “small” volumes.
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Nanoindentation (@) e

« Apply aload
 Measure force and depth continuously
 Measure or compute residual area

Nanoindentation

Load, P

Displacement, h
* Depths from tens of nm to um

 Modulus and rate sensitivity

J. Puthoff, via Wikimedia Commons.

1.0um 2.0um 3.0um 4.0m

Quantifying mechanical response at the nanoscale.
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Grain Boundary Yielding @)=,
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First observable
intergranular plasticity
event captured, with
quantitative force
measurement.
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Bufford, et al., Nat Commun 2014.




In Situ TEM Nanoindentation @ oo
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* In situ nanoindentation of Al near a X3{112} twin boundary
« Inifial cycle

Video playback x3

< ] < 3 4 3 L] ? [ § v W
T L 1342 ) g 0]

“revm Sk

Mwcload [0 W 2eclengn O m  pasere |

| e Cogth [ %° on tekTea 0 - T Tantn

Bufford, et al., Nat Commun 2014.
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Video Snapshots () .

Bufford, et al., Nat Commun 2014.

« Grains initially mostly free of large defects
« Movement of existing dislocation observed
« Deformation confined by twin to single grain

Confinement of dislocation activity suggests barrier (Hall-Petch) strengthening.
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Approach: Modeling [ =

0X0(= D

 What is phase field modeling?

o Mathematical model for solving interfacial
problems, like solidification, growth, etc.

« Example grain growth model
o Thermodynamic free energy function
 dF=d(yA)=vydA (y: GB energy, A: GB area)
o Model for kinetics
« V=Mpyh (M: GB mobility, h: GB curvature)
o Solve at each pixel for a predetermined timestep

« See Abdeljawad and Foiles, Acta
Mater, 2015 for more information

- (s
v N

1
b ‘.
—

Can directly use experimental maps as input structures, and then compare evolutions!
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Model Data Analysis )&=,

20 | —<©— Anneal

« During simulated annealing — .~ Avg. Thermal Spikes
grain growth scales

approximately with T1/2
o Expected for homogenous grain growth

« During simulated irradiation,
grain growth scales with T/n,
where n = 3 o s & s 1

o Initially faster, but stagnates sooner

SARARAGRA
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Simulated Irradiation )
and Annealing

Collaborators: F.F. Abdeljowad and S.M. Foiles




