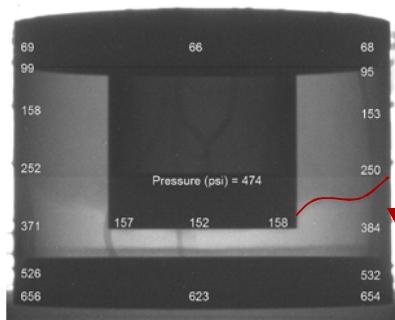


Exceptional service in the national interest

Development of a Vapor Liquid Equilibrium (VLE) Model for Aria

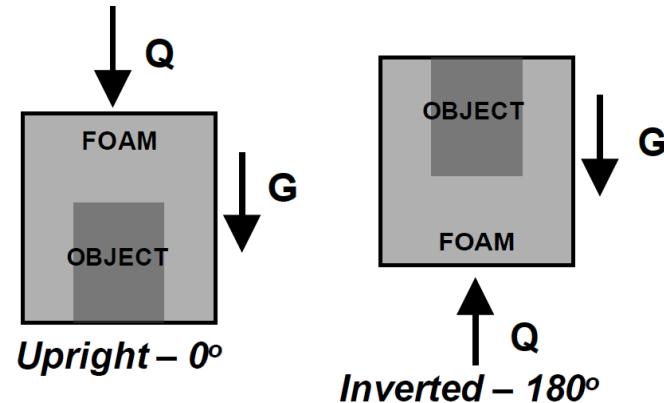
By: James L Urban


Mentors: Sarah N Scott & Victor E Brunini

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Motivation

- Foam In a Can (FIC) Experiment
 - Foam thermally degrades producing gaseous and liquid products
 - As gaseous products accumulate they pressurize the space



X-ray image of FIC experiments
Taken from [1] with permission
and annotated in red.

Motivation

- Upright vs. Inverted Tests
 - Different results for different orientations
 - Dripping?
- Goal for the summer:
 - Investigate applicability of VLE to FIC experiments
 - Create a numerical tool to investigate the effect of a vapor/liquid split in Foam In a Can experiments

Taken from [1] with permission

Vapor Liquid Equilibrium Theory

- Equilibrium occurs when Gibbs free energy is minimized
 - For VLE: Occurs when the chemical potentials of both phases of each material are equal

$$\mu_{v,i} = \mu_{l,i}$$

- Can be expressed using a simplified equation
 - Raoult's Law:

$$y_i P = P_i^{sat}(T) x_i$$

- Henry's Law:

$$y_i P = H_i(T) x_i$$

Vapor Liquid Equilibrium Theory

- Flash equation:

$$F = L + V$$
$$Fz_i = Lx_i + Vy_i$$

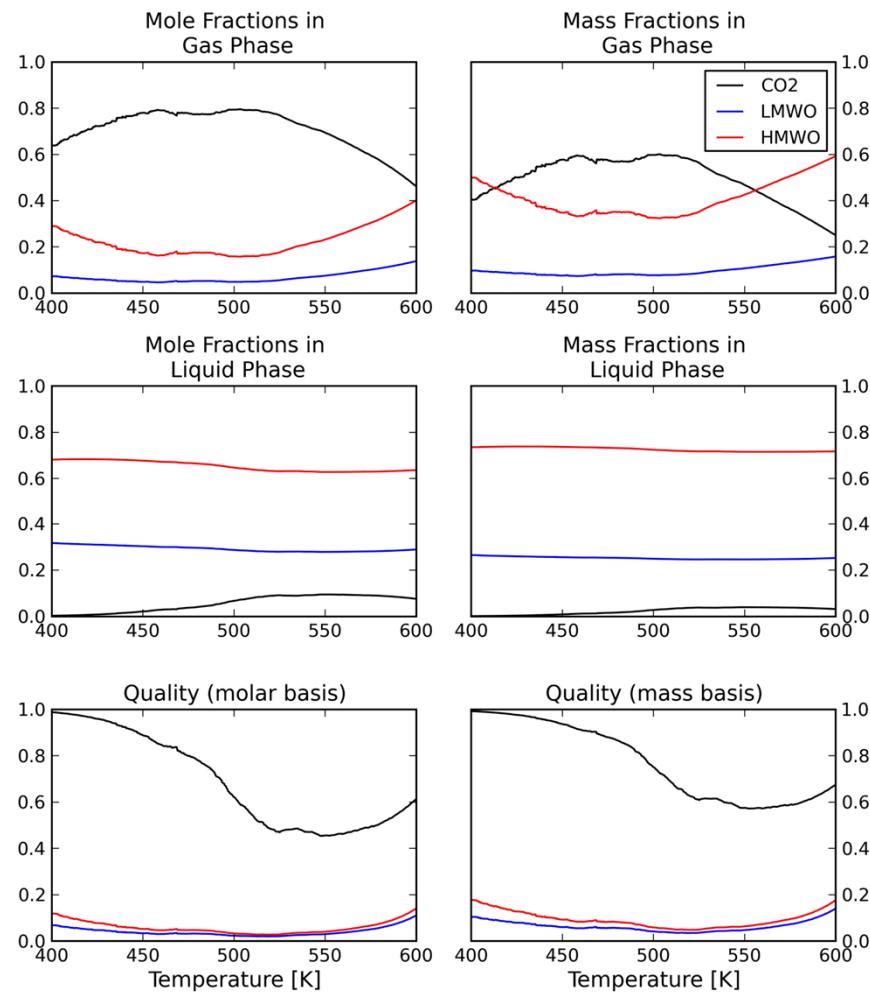
- Continuity:

$$\sum_i y_i = \sum_i x_i = 0$$

- Calculate the vapor split, $\frac{V}{F}$, of the mixture:

$$\sum_i \frac{z_i \left(\frac{H_i}{P} - 1 \right)}{1 + \frac{V}{F} \left(\frac{H_i}{P} - 1 \right)} = 0$$

VLE Solver Implementation


- Determine if the fluid mixture is in a state where VLE is possible
- Calculate the VLE concentrations
- Create fictitious ODE model:

$$\dot{y}_j = \frac{y_{j,VLE} - y_j(t)}{\tau_{VLE}} \quad \dot{x}_j = \frac{x_{j,VLE} - x_j(t)}{\tau_{VLE}}$$

- We choose a small value of τ_{VLE} so it will arrive at VLE quickly
- Treated as a chemical reaction

Python VLE Description & Results

- Made a simplified VLE model
 - Uses experimental temperature and pressure data as inputs
 - Calculates VLE of the mixture:
 - CO_2 , LMWO, and HMWO
- Python VLE model Results:
 - Products of the foam are in both liquid and vapor phases
 - Heavier molecular weight species are more likely to be in the liquid phase

Overall Progress

- Investigate importance of VLE with a simplified python VLE model ... **Done**
- Make VLE Solver into C++ ... **Done**
- Make compatible with Sierra-Aria ... **In progress**
- Evaluate performance of this VLE solver (accuracy, speed, etc.) ... **Soon**

Thank You

- Questions?
 - Jurban@sandia.gov
 - snscoff@sandia.gov
 - vebruni@sandia.gov
- References:
 1. Scott, Sarah N and Dodd, Amanda B. "Uncertainty Quantification for Experimental and Model Results of Pyrolyzing and Pressurizing Polyurethane Foam at Varying Heating Rates." MCS 9, Rhodes, Greece, 2015