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1 Introduction

Branch-and-bound methods for deterministic global optimization [18] require the ability to
evaluate a lower bound on a nonconvex function on particular classes of subdomains. This
bounding information may be generated using a relaxation scheme by McCormick [23],
which evaluates convex underestimators of a nonconvex objective function on interval sub-
domains. McCormick’s relaxation method assumes that the objective function can be ex-
pressed as a finite, known composition of simple functions and arithmetic operations. Sub-
gradients may be computed for these underestimators using dedicated variants [24,3] of
automatic differentiation [14,26]. Using this information, a lower bound on a nonconvex
objective function on an interval may be supplied by minimizing the corresponding convex
McCormick underestimator using a local optimization solver. Other methods for global op-
timization, such as nonconvex outer approximation [19] and nonconvex generalized Benders
decomposition [21], also require the construction and minimization of convex underestima-
tors.

McCormick’s relaxation method has several useful properties. Firstly, accurate evalua-
tion of a convex underestimator and a corresponding subgradient is computationally inex-
pensive and automatable; the C++ library MC++ [8,24] uses operator overloading to com-
pute these quantities for well-defined user-supplied compositions of the basic arithmetic
operations and functions such as sin/cos and exp/ log. Secondly, as the width of the in-
terval on which a McCormick relaxation is constructed is reduced to zero, the relaxation
approaches the objective function sufficiently rapidly [6] to mitigate a phenomenon called
the cluster effect [9,41], in which a branch-and-bound method will branch many times on in-
tervals that either contain or are near a global minimum. By extending McCormick’s method
in an intuitive manner, generalized McCormick relaxations [37,33] have been developed to
handle compositions of functions in a more systematic manner, and to handle various exten-
sions of McCormick’s theory to implicit functions [42,38,34].

However, as the following example shows, McCormick’s relaxations can be nondiffer-
entiable.

Example 1 Let a function mid : R3 → R map to the median of its three scalar arguments,
consider the smooth composite function g : R→ R : z 7→ exp(z3), and set z∗ := −1+

√
3.

As shown in [24, Example 2.1], the function gcv : [−1,1]→ R for which

gcv : z 7→ exp(mid(z3 +3z2−3,z3−3z2 +3,−1)) =
{

exp(−1), if z≤ z∗,
exp(z3 +3z2−3), if z > z∗,

can be generated from g according to McCormick’s rule [24, Section 3] for constructing
convex relaxations of a composite function. (In this application of McCormick’s rule, αBB
relaxations [1] of the inner function z 7→ z3 have been employed.) Indeed, gcv is convex
on [−1,1], and gcv(z) ≤ g(z) for each z ∈ [−1,1]. However, even though gcv satisfies Mc-
Cormick’s proposed sufficient condition for differentiability of a convex relaxation [23,
p. 151], it is in fact nondifferentiable at z∗.

Several factors can introduce failure of continuous or twice-continuous differentiabil-
ity of McCormick’s relaxations. Firstly, as illustrated by the above example, the median
function used in defining McCormick’s composition rule is itself nondifferentiable. Sec-
ondly, any nondifferentiability in supplied relaxations of composed functions can propagate
to yield nondifferentiability in constructed relaxations of composite functions. (Whether
the composed functions are themselves smooth is irrelevant.) Thirdly, as presented in [24,
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Proposition 2.6], McCormick’s rule for generating relaxations of products introduces non-
differentiability, due to its use of bivariate max and min functions.

A relaxation scheme preserving continuous or twice-continuous differentiability would
be desirable for a number of reasons. In general, minimization of nondifferentiable convex
objective functions requires dedicated numerical methods for nondifferentiable problems
such as bundle methods [20,17], which lack the strong convergence rate results of their
smooth counterparts. On the other hand, continuously differentiable convex relaxations may
be minimized using gradient-based algorithms for local optimization, which typically ex-
hibit Q-linear convergence. Twice-continuously differentiable relaxations can be minimized
by Newton’s method (discussed in [28]), which exhibits Q-quadratic convergence under
certain nonsingularity assumptions on the Hessian matrix. Computation of the required
Hessian or Hessian-vector products can be avoided by using a secant-based quasi-Newton
method [7], which exhibits Q-superlinear convergence under the assumptions of Newton’s
method.

Furthermore, an automatable and computationally inexpensive method for generating
continuously differentiable relaxations would yield theoretical and numerical benefits when
used in established methods for generating convex and concave relaxations of solutions
of parametric ordinary differential equations (ODEs). If continuously differentiable relax-
ations were available for the right-hand side function of such an ODE, then the relaxation-
generating ODE described in [36] would have a continuously differentiable right-hand side
function. The corresponding relaxation of the ODE solution would then be differentiable
with respect to the ODE parameter, permitting computation of the corresponding paramet-
ric derivatives according to classical ODE theory [15], thus overcoming theoretical hurdles
concerning subgradient evaluation. Similarly, incorporation of continuously differentiable
relaxations of an ODE right-hand side function into the relaxation method of [35] would
yield ODEs whose parametric sensitivities are decribed by the hybrid system sensitivity
results of [12].

Thus, the goal of this article is to present a variant of McCormick’s relaxation scheme
which produces continuously or twice-continuously differentiable relaxations, while retain-
ing the various theoretical and computational benefits of McCormick’s original method. To
achieve this, variants of McCormick’s product rule are introduced in Definition 13, in which
the original product rule is further relaxed in a particular manner. An additional assumption
(Assumption 1) is imposed on user-supplied relaxations of composed univariate intrinsic
functions, so as to enforce differentiability in McCormick’s composition rule. This assump-
tion is readily satisfied for standard arithmetic operations and functions. Under these modi-
fications, the aforementioned sources of nonsmoothness in McCormick’s relaxation scheme
are circumvented. For broader applicability, the relaxation theory developed in this arti-
cle is presented in the framework of generalized McCormick relaxations [33]. To construct
twice-continuously differentiable relaxations rather than once-continuously differentiable
relaxations according to the methods in this article, more stringent (yet readily satisfied) as-
sumptions are required on the supplied relaxations of univariate intrinsic functions, and the
employed product rule must be relaxed further. Gradients of the developed relaxations can
be evaluated efficiently using the standard forward or reverse modes of automatic differen-
tiation [14,26].

The product rule variants developed in this article make use of certain smoothing ap-
proximations. Smooth approximations of simple nonsmooth functions have previously been
considered [4], particularly in the context of complementarity problems [11,10,29]. The
smoothing approach taken in this article is similar in spirit, but is modified so as to accom-
modate our requirement that the posited convex/concave relaxations are well-defined, are
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indeed convex or concave, are valid bounds on the underlying function, and are either once-
or twice-continuously differentiable, as desired.

Observe that the αBB relaxation scheme [1] represents an alternative to McCormick’s
scheme, and shares several of the features of McCormick’s method outlined above. More-
over, αBB relaxations of twice-continuously differentiable functions are themselves twice-
continuously differentiable. This article instead focuses on variants of McCormick’s method,
due to the ability of McCormick’s theory to handle more general compositions of functions,
and due to its extensions to relaxations of implicit functions and solutions of differential-
algebraic equations.

This article is structured as follows. Section 2 summarizes and extends established def-
initions and properties concerning differentiability on intervals, interval analysis, and Mc-
Cormick’s relaxation technique. Section 3 develops the smoothing constructions used in the
remainder of the article, and uses these to construct a variant of McCormick’s multiplica-
tion operation. Section 4 develops variants of McCormick’s overall relaxation technique and
presents the main theorem of the article, in which these variants are asserted to be once- or
twice-continuously differentiable as desired, and to have the various desirable properties of
McCormick’s original relaxation scheme. Section 5 describes a C++ implementation of the
methods in this article, and presents examples of its application for illustration.

2 Background and preliminaries

This section summarizes and extends established definitions and properties concerning dif-
ferentiability on closed sets, interval analysis, McCormick’s relaxation scheme, and conver-
gence analysis of relaxation schemes.

2.1 Differentiability on open and closed sets

Let ‖·‖ denote the Euclidean norm on Rn. Given an open set X ⊂Rn, a function f : X→Rm

is (Fréchet) differentiable at x ∈ X if there exists a matrix A ∈ Rm×n for which

0 = lim
h→0

f (x+h)− ( f (x)+Ah)
‖h‖

.

In this case, the above equation defines A uniquely, and A is called the Jacobian J f (x) of
f at x. If m = 1, in which case f is scalar-valued, then the gradient of f at x is the column
vector ∇ f (x) := (J f (x))T ∈ Rm.

Given an open set X ⊂Rn, a function f : X →Rn is continuously differentiable (C 1) on
X if it is differentiable on X and the Jacobian mapping x 7→ J f (x) is continuous on X . Equiv-
alently, f is C 1 on X if its first-order partial derivatives each exist on X and are continuous.
If m = 1, in which case f is scalar-valued, then f is twice-continuously differentiable (C 2)
on X if f is C 1 on X and there exists a continuous Hessian mapping x 7→∇2 f (x) ∈Rn×n for
which

0 = lim
h→0

f (x+h)− ( f (x)+∇ f (x)T h+ 1
2 hT ∇2 f (x)h)

‖h‖2 , ∀x ∈ X .

Equivalently [30], f is C 2 on X if its second-order partial derivatives each exist on X and
are continuous. A vector-valued function f is C 2 if each of its component functions is C 2.
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By specializing a classical result by Whitney [43], differentiability on closed sets such
as intervals can be defined in a manner that is consistent with the classical chain rule of
differentiation, as follows.

Definition 1 (adapted from [43]) Given a closed set B⊂Rn and some i∈ {1,2}, a function
f : B→Rm is C i on B if there exist an open set X ⊂Rn and a function f̂ : X→Rm such that
B⊂ X , f̂ (x) = f (x) for each x ∈ B, and f̂ is C i (in the classical sense) on X . Given any point
x in the boundary of B, define J f (x) := J f̂ (x). If m = 1, in which case f is scalar-valued,
then define ∇ f (x) := J f (x)T.

Remark 1 When x lies in the boundary of B, it is possible that J f (x) is not uniquely specified
by the above definition, since f̂ might not be specified uniquely. For example, if B comprises
a single point {x0} ⊂ Rn, then J f (x0) may be chosen to be any element of Rm×n, since f̂
may be chosen to be any C i function for which f̂ (x0) = f (x0).

Despite the possible nonuniqueness implied by the previous remark, the following propo-
sitions show that the classical chain rule continues to hold. Both propositions are immediate
corollaries of Theorem 1 in [43].

Proposition 1 Consider B, i, and f as in Definition 1, and any point x in the boundary of
B. If there exists any sequence {x(k)}k∈N→ x in B\{x}, then any Jacobian J f (x) satisfies

0 = lim
h→0

(x+h)∈B

f (x+h)− ( f (x)+ J f (x)h)
‖h‖

.

Proposition 2 Consider nonempty sets B ⊂ Rn and D ⊂ Rm such that B is either closed,
open, or both, and such that D is either closed, open, or both. For any fixed i ∈ {1,2},
given C i functions g : B→ D and f : D→ Rp, the composite function h≡ f ◦g : B→ Rp is
well-defined and C i on B.

Moreover, for each x∈ B, Jh(x) = J f (g(x))Jg(x). (If B is closed and x lies in the bound-
ary of B, then this construction of Jh(x) satisfies both Definition 1 and Proposition 1 for
some valid choice of ĥ.)

Corollary 1 Given a closed convex set B ⊂ Rn and a convex C 1 function f : B→ R, for
each x ∈ B, ∇ f (x) is a subgradient of f at x in that

f (y)≥ f (x)+∇ f (x)T (y− x), ∀y ∈ B.

2.2 Interval analysis

An interval x ≡ [x,x] is a nonempty compact set {z ∈ R : x ≤ z ≤ x} ⊂ R; the set of all
such intervals is denoted IR. Intervals and vectors of intervals are denoted in this article
as boldfaced, italicized, lowercase letters (e.g., y). Given a set B ⊂ Rn, the set of intervals
(or vectors of intervals) that are subsets of B will be denoted as IB. If B is nonempty, then
IB is necessarily nonempty. An interval vector y ≡ (y1, . . . ,yn) ∈ IRn will be represented
equivalently as [y,y], where y := (y1, . . . ,yn) ∈ Rn and y := (y1, . . . ,yn) ∈ Rn. An interval
x ∈ IR has a width of widx := x−x, and an interval vector y ∈ IRn has a width of widy :=
maxk∈{1,...,n}widyk.

This article makes use of standard definitions and results from interval analysis con-
cerning operations, inclusion monotonicity, interval extensions, and interval hulls; these are
summarized in Appendix A.1. For further details, the reader is directed to the introductory
sources [27,25,2].
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Definition 2 (adapted from [25]) Consider a nonempty set B ⊂ Rn. An interval function
f : IB→ IRm is locally Lipschitz continuous if for each q ∈ IB, there exists k≥ 0 for which

wid(f(x))≤ k widx, ∀x ∈ Iq.

A locally Lipschitz continuous, inclusion-monotonic interval extension of a function f
will be called a tight interval extension of f .

The results in this article apply to finite compositions of the functions formalized by the
following definition.

Definition 3 (adapted from [33]) Given an open set B ⊂ R, a function u : B→ R is a
univariate intrinsic function (UIF) if there exists a known tight interval extension ũ : IB→
IR of u, and if, with B̄ := {(x,z) ∈ IB×B : z ∈ x}, there exist known functions ucv,ucc :
B̄→ R and ζ min

u ,ζ max
u : IB→ R satisfying all of the following conditions.

– For each x ∈ IB, ucv(x, ·) is convex on x, ucc(x, ·) is concave on x, and ucv(x,z) ≤
u(z)≤ ucc(x,z) for each z ∈ x.

– For each x∈ IB, ζ min
u (x)∈ argmin{ucv(x,z) : z∈x} and ζ max

u (x)∈ argmax{ucc(x,z) :
z ∈ x}.

– For any x,y ∈ IB with x ⊂ y, and for any z ∈ x, ucv(y,z) ≤ ucv(x,z) and ucc(y,z) ≥
ucc(x,z).

– For each z ∈ B, ucv([z,z],z) = ucc([z,z],z) = u(z).

For any z ∈ x ∈ IB, define

ucv
I (x,z) := ucv(max{z,ζ min

u (x)}), ucv
D (x,z) := ucv(min{z,ζ min

u (x)}),
ucc

I (x,z) := ucc(min{z,ζ max
u (x)}), and ucc

D (x,z) := ucc(max{z,ζ max
u (x)}).

The interval hull of a locally Lipschitz continuous function is clearly a tight interval ex-
tension of the function. The interval operations in Definition 15 are interval hulls of the cor-
responding operations on real numbers. Tight interval extensions are provided for a number
of UIFs in Table 1; these interval extensions are also interval hulls. Appropriate construc-
tions of the functions ucv and ucc are also provided for these UIFs in Table 2. By inspection,
these particular constructions all satisfy the properties:

min
z∈x

ucv(x,z) = min
z∈x

u(z), and max
z∈x

ucc(x,z) = max
z∈x

u(z);

in general, a weaker version of these properties will be required in Assumption 1 below.

Definition 4 (adapted from [23,24]) Given a nonempty set B⊂Rn, a function f : B→Rm

is factorable if each of the following conditions is satisfied:

– f can be expressed on B as a finite composition (in some order) of addition, multiplica-
tion, and UIFs, and

– a well-defined natural interval extension f̃ : IB→ IRn of f can be constructed by re-
placing each addition/multipication/UIF by its corresponding tight interval extension,
without introducing any domain violations.

The natural interval extension of a factorable function is a tight interval extension of the
function [25, Section 3.3].
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Table 1 Tight interval extensions for various UIFs u.

B u(z) for z ∈ B ũ(x) for x ∈ IB
R cz for fixed c ∈ R cx
R expz [expx,expx]

(0,+∞) lnz [lnx, lnx]
R z2k for fixed k ∈ N [(mid(0,x,x))2k,max{x2k,x2k}]
R z2k+1 for fixed k ∈ N [x2k+1,x2k+1]

(0,+∞)
√

z [
√

x,
√

x]
R |z| [|mid(0,x,x)|,max{|x|, |x|}]

(0,+∞) 1
zk for fixed k ∈ N

[
1
zk ,

1
zk

]
(−∞,0) 1

z2k for fixed k ∈ N
[

1
z2k ,

1
z2k

]
(−∞,0) 1

z2k−1 for fixed k ∈ N
[

1
z2k−1 ,

1
z2k−1

]

2.3 McCormick objects and relaxations

This section presents and extends definitions and properties concerning the generalized Mc-
Cormick framework [42,33], which expresses the classical development of McCormick’s
relaxation technique [23] in terms of the abstract objects containing bounding and relaxing
information that are propagated by MC++ [8] in order to carry out McCormick’s scheme in
practice. As described in Section 1, the main results in the current article are presented in
the generalized McCormick framework. Notation from [42] is employed.

Definition 5 (from [33]) The set of McCormick objects of n variables is defined as MRn :=
{(zB,zC) ∈ IRn× IRn : zB∩zC 6= /0}. For any X ∈MRn, X will be represented equiva-
lently as

X ≡ (xB,xC)≡ ([xB,xB], [xC,xC]).

Given X ,Y ∈MRn, X ⊂ Y if and only if both xB ⊂ yB and xC ⊂ yC. The set of proper
McCormick objects of n variables is MRn

prop := {(zB,zC) ∈MRn : zC ⊂ zB}. Given a set
B ⊂ Rn, define MB := {X ∈MRn : xB ∈ IB}, and MBprop := {X ∈MRn : xC ⊂ xB ∈
IB} ⊂MRn

prop.

Roughly, the xB-component of a McCormick object X contains interval bounding in-
formation, and the xC-component contains information used to construct convex underes-
timators and concave overestimators. These notions will be formalized by the following
results.

Notions of McCormick extensions, inclusion monotonicity, and coherent concavity for
functions of McCormick objects were developed in [42]. In this article, these notions have
been altered slightly to permit restrictions to proper McCormick objects, and are presented
in Appendix A.2. The following definition is stricter than in its analog in [42], and combines
these properties.

Definition 6 Given a function f : B⊂ Rn→ Rm, a mapping F : MB (or MBprop)→MRm

is a relaxation function for f if it is coherently concave, inclusion monotonic, and a Mc-
Cormick extension of f .

The following two propositions demonstrate the utility of relaxation functions: they are
closed under composition, and effectively define convex underestimators and concave over-
estimators of the underlying functions they relax.
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Proposition 3 (Lemmas 2.4.15 and 2.4.17 in [33]) Consider functions f : B⊂ Rn→ D⊂
Rm and g : D→ Rk, a relaxation function F : MB (or MBprop)→MRm for f , and a relax-
ation function G : MD (or MDprop)→MRk for g. Define B0 := {X ∈MB (or MBprop) :
F (X ) ∈MD}. If there are no domain violations in constructing the composition G ◦F :
B0→MRk, then G ◦F is a relaxation function for g◦ f : B→ Rk.

Proposition 4 (Lemma 2.4.11 in [33]) Given a function f : B⊂Rn→R, a relaxation func-
tion F : MB (or MBprop)→MR for f on B, and some x ∈ IB, define functions φ f ,x,ψ f ,x :
x→ R such that:

φ f ,x(z) = f C(x, [z,z]), and ψ f ,x(z) = f C
(x, [z,z]), ∀z ∈ x.

Then φ f ,x is convex on x, ψ f ,x is concave on x, and φ f ,x(z) ≤ f (z) ≤ ψ f ,x(z) for each
z ∈ x.

The goal of this article is to obtain C i relaxations of a factorable function, for any partic-
ular i ∈ {1,2}. Achieving this will require appending the following nonstandard assumption
to Definition 3 for each employed UIF. This assumption will be invoked explicitly whenever
it is required.

Assumption 1 For particular i∈{1,2}, given a UIF u : B⊂R→R, assume for each x∈ IB
that the functions ucv(x, ·) and ucc(x, ·) are each C i on x, and that ũ(x)≤ ucv(x,ζ min

u (x))
and ũ(x)≥ ucc(x,ζ max

u (x)). If i = 2, assume additionally that:

– if ζ min
u (x) ∈ int(x), then the second derivative of ucv(x, ·) is zero at ζ min

u (x), and
– if ζ max

u (x) ∈ int(x), then the second derivative of ucc(x, ·) is zero at ζ max
u (x).

Observe that the above assumption does not require u itself to be C i. Indeed, the C i

relaxations obtained in this article will remain valid even when nondifferentiable UIFs are
employed. However, [6] shows that nondifferentiable UIFs cannot satisfy Assumption 2
below, which will be required in this article to ensure sufficiently rapid convergence of the
obtained relaxations to the original function as the width of x approaches zero.

Remark 2 Lemmata 12 and 13 in Appendix B show that, if i = 1 and a function u : B→ R
is C 1, then Assumption 1 and the conditions of Definition 3 are satisfied when ucv(x, ·) and
ucc(x, ·) are chosen to be the convex and concave envelopes of u on x, respectively, and
when ζ min

u (x) and ζ max
u (x) are chosen according to Definition 3.

Remark 3 Consider a univariate function u that is C 2, is either convex or concave, and
is either monotonically increasing or monontonically decreasing on its domain. Moreover,
note that the concave envelope of a univariate convex function on an interval is a secant, as
is the convex envelope of a univariate concave function on an interval. Thus, even if i = 2,
Assumption 1 and the conditions of Definition 3 are satisfied when ucv(x, ·) and ucc(x, ·) are
chosen to be the convex and concave envelopes of u on x, respectively, and when ζ min

u (x)
and ζ max

u (x) are chosen according to Definition 3.

Remark 4 The condition in Assumption 1 that both ũ(x) ≤ ucv(x,ζ min
u (x)) and ũ(x) ≥

ucv(x,ζ max
u (x)) can be imposed without loss of generality, as detailed in Remark 5 below.

Any univariate function u : B ⊂ R→ R on an open set can be considered to be a UIF,
provided that the functions ũ, ucv, and ucc are known or can be constructed. Table 2 presents
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Table 2 Functions ucv,ucc that satisfy the conditions of Definition 3 and Assumption 1 for various UIFs u.
These functions also satisfy Assumption 2, except when u : z 7→ |z|. Examples 7–9 are in Appendix B.

B u(z) for z ∈ B ucv(x,z) for x ∈ IB,z ∈ B ucc(x,z) for x ∈ IB,z ∈ B
R cz for fixed c ∈ R cz cz

R expz expz expx+(expx− expx)
(

z−x
x−x

)
(0,+∞) lnz lnx+(lnx− lnx)

(
z−x
x−x

)
lnz

R z2 See Example 7 x2 +(x2− x2)
(

z−x
x−x

)
R z2k+2 for fixed k ∈ N z2k+2 x2k+2 +(x2k+2− x2k+2)

(
z−x
x−x

)
R z2k+1 for fixed k ∈ N See Example 9 See Example 9

(0,+∞)
√

z
√

x+(
√

x−√x)
(

z−x
x−x

) √
z

R |z| See Example 8 |x|+(|x|− |x|)
(

z−x
x−x

)
(0,+∞) 1

zk for fixed k ∈ N 1
zk

1
xk +( 1

xk − 1
xk )
(

z−x
x−x

)
(−∞,0) 1

z2k for fixed k ∈ N 1
z2k

1
x2k +( 1

x2k − 1
x2k )

(
z−x
x−x

)
(−∞,0) 1

z2k−1 for fixed k ∈ N 1
x2k−1 +( 1

x2k−1 − 1
x2k−1 )

(
z−x
x−x

)
1

z2k−1

functions ucv,ucc which satisfy the conditions of Definition 3 and Assumption 1 for the UIFs
u considered in Table 1.

Within this framework, McCormick’s classical relaxations [23] can be restated as the
convex/concave relaxations implied by Propositions 3 and 4 for a factorable function, when
each addition/multiplication/UI operation is replaced by a relaxation function of the opera-
tion. Such relaxation functions were described in [33], and are presented as Definitions 21–
23 in Appendix A.2. These relaxation functions suggest the construction of an analog of
a natural interval extension for a factorable function, using McCormick objects instead of
intervals. This notion is formalized in the following definition, which is motivated by the
subsequent theorem.

Definition 7 (adapted from [33]) Given a factorable function f : B⊂ Rn→ Rm, a natural
McCormick extension F :MB→MRm of f is defined by replacing each addition operation,
multiplication operation, and UIF in the construction of f with its McCormick counterpart
described by Definitions 21–23 in Appendix A.2, provided that there are no domain viola-
tions in the introduced McCormick arithmetic.

Theorem 1 (Theorem 2.4.32 in [33]) Given a factorable function f : B⊂Rn→Rm with a
well-defined natural McCormick extension F , F is a relaxation function for f .

The classical McCormick relaxations of a factorable function are the convex/concave
relaxations implied by the above theorem and by Proposition 4. These relaxations may be
nonsmooth; the central goal of this article is to develop C 1 and C 2 variants of these relax-
ations.

2.4 Convergence analysis

Intuitively, to be useful, a scheme for constructing convex and concave relaxations of a
scalar-valued function on an interval should converge rapidly to the underlying function as
the width of interval is reduced to zero. Appopriate notions of convergence were formalized
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by Bompadre and Mitsos [6], and were extended to McCormick objects by Schaber [31];
these notions are summarized here.

Definition 8 (adapted from [6]) Given a continuous function f : B ⊂ Rn → R, functions
{ f cv(x, ·), f cc(x, ·) : x→R}x∈IB comprise a scheme of estimators for f if, for each x ∈ IB,
f cv(x, ·) is convex on x, f cc(x, ·) is concave on x, and

f cv(x,z)≤ f (z)≤ f cc(x,z), ∀z ∈ x.

Such a scheme is pointwise convergent of order t0 if, for each q ∈ IB, there exists a0 > 0
such that

sup
z∈x

( f (z)− f cv(x,z))≤ a0(widx)t0 , ∀x ∈ Iq,

and sup
z∈x

( f cc(x,z)− f (z))≤ a0(widx)t0 , ∀x ∈ Iq.

The following example motivates the incorporation of the interval q into this definition.

Example 2 Consider a function f :R→R and a scheme of estimators { f cv(x, ·), f cc(x, ·)}x∈IR
for f , for which, for each x ∈ IR,

sup
z∈x

( f (z)− f cv(x,z)) = sup
z∈x

( f cc(x,z)− f (z)) =
{
(widx)2, if widx≤ 1,
(widx)3, if widx> 1.

According to the above definition, this scheme is pointwise convergent of order 2. In the
original definition [6], however, this scheme is not pointwise convergent of order 2, since,
for each a0 > 0, there exists a sufficiently large interval x ∈ IR for which

a0(widx)2 < (widx)3.

In fact, according to the definition in [6], this scheme is not pointwise convergent of any or-
der. Since applications of pointwise convergence in [6] are only concerned with sufficiently
small intervals, the interval q was added to the definition above so that the constants a0 and
t0 need not apply to arbitrarily large intervals in IB.

By Theorem 2 in [6], if f is nonaffine and twice-continuously differentiable, then there
does not exist any scheme of estimators for f with pointwise convergence of order greater
than 2. Given a factorable function expressed as a composition of twice-continuously differ-
entiable functions, the classical McCormick relaxations of this function are pointwise con-
vergent of order 2 [6], as are the αBB relaxations [1,6]. A scheme of estimators with second-
order pointwise convergence is typically necessary to mitigate clustering when carrying out
a branch-and-bound method for global optimization [9]. Certain optimization problems with
nondifferentiable objective functions, however, are not subject to this requirement [40].

Consider a factorable function f that is a composition only of locally Lipschitz con-
tinuous functions. Given a natural interval extension f̃ of f , the constant mappings {z 7→
f̃ (x),z 7→ f̃ (x)}x∈IB comprise a scheme of estimators for f that is pointwise convergent of
order 1 [32].

The following definition formalizes a notion of width of a McCormick object, and a
corresponding notion of convergence of a function of McCormick objects, as the width of
the argument tends to zero.
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Definition 9 (adapted from [31]) A McCormick object X ∈MR has a width of

widM X := wid(xB∩xC) = min{xC,xB}−max{xC,xB}.

A vector Y ∈MRn of McCormick objects has a width of

widM Y ≡ widM (Y1, . . . ,Yn) := max
k∈{1,...,n}

widM Yk.

A function F : MB (or MBprop)⊂MRn→MRm is (t1, t2)-convergent on MB (or MBprop)
if, for each q ∈ IB, there exist a1,a2 > 0 such that

widM (F (X ))≤ a1(widM X )t1 +a2(widxB)t2 , ∀X ∈Mq (or Mqprop).

Again, the interval q has been added to this definition to prevent the fixed constants a1,a2
from having to be applicable to every choice of xB ∈ IB.

As described in Section 3.2 of [31], given a (t1, t2)-convergent relaxation function F
for a function f , the corresponding convex/concave relaxations of f described by Proposi-
tion 4 exhibit pointwise convergence of order t2. Moreover, as described in Section 3.9.7
of [31], a well-defined composition of (1,2)-convergent McCormick-valued functions is
itself (1,2)-convergent. This notion motivates the following assumption, which will be ap-
pended frequently to Definition 3.

Assumption 2 Given a UIF u : B ⊂ R→ R, assume that {ucv(x, ·),ucc(x, ·)}x∈IB com-
prises a scheme of estimators for u on B that is pointwise convergent of order 2.

It will be shown in this article that the above assumption yields (1,2)-convergent relax-
ation functions for UIFs. This assumption is satisfied by the functions ucv,ucc described in
Table 2, except when u is the absolute value function z 7→ |z|. This is demonstrated in [6] for
each u other than z 7→ z2 and z 7→ z2k+1 for k ∈ N, which are considered in Lemmata 14 and
15 in Appendix B.

3 Smoothing constructions

This section establishes basic properties of certain C 1 and C 2 relaxations of simple nons-
mooth functions such as z 7→max{z,0} and (x,y) 7→max{x,y}, and uses these to construct
variants of McCormick’s multiplication rule. These rules will be shown in subsequent sec-
tions to have various desirable properties.

3.1 Relaxing simple nonsmooth functions

Definition 10 Define functions µ1,µ2 : R→ R as follows:

µ1 : y 7→


0, if y≤ 0,
1
4 y2, if 0 < y < 2,
y−1, if 2≤ y,

µ2 : y 7→


0, if y≤ 0,
1
16 y3(4− y), if 0 < y < 2,
y−1, if 2≤ y.

For each i ∈ {1,2}, define functions γi,σi : R×R× [0,+∞)→ R as follows:

γi : (z,a, p) 7→
{

max{z,a}, if p = 0,
a+ p µi(

z−a
p ), if p > 0, σi : (z,b, p) 7→

{
min{z,b}, if p = 0,
b− p µi(

b−z
p ), if p > 0,
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and define functions νi,λi : R×R× [0,+∞)→ R as follows:

νi : (x,y, p) 7→ 1
2 (γi(x,y, p)+ γi(y,x, p)),

λi : (x,y, p) 7→ 1
2 (σi(x,y, p)+σi(y,x, p)).

Observe that µ1 is a member of the family of functions considered in [10, Example 11.8.11(c)].
In this article, in the spirit of [4], [10, Section 11.8] and [5, Section 1.10], µ1 and µ2 essen-
tially serve as analogs of the mapping y 7→max{y,0}which exhibit several useful properties.
Ultimately, µ1, γ1, and ν1 will be used to construct C 1 analogs of McCormick relaxations,
while µ2, γ2, and ν2 will be used to construct C 2 relaxations. By inspection, µ1 and µ2 are
each C 1, with

∇µ1 : y 7→


0, if y≤ 0,
1
2 y, if 0 < y < 2,
1, if 2≤ y,

∇µ2 : y 7→


0, if y≤ 0,
1
4 y2(3− y), if 0 < y < 2,
1, if 2≤ y.

(1)

The above expressions show that µ1(y), µ2(y), ∇µ1(y), and ∇µ2(y) are each nonnegative
for each y ∈ R, noting that 3− y > 0 when 0 < y < 2. Thus, µ1 and µ2 are increasing on R.
Moreover, µ2 is C 2, with

∇
2
µ2 : y 7→


0, if y≤ 0,
3
4 y(2− y), if 0 < y < 2,
0, if 2≤ y.

(2)

The following lemmata summarize basic properties of the functions µi, γi, σi, νi, and
λi for each i ∈ {1,2}; each of these properties can be demonstrated readily. First, basic
properties of µi are presented.

Lemma 1 For each i ∈ {1,2} and each y ∈ R, max{y−1,0} ≤ µi(y)≤max{y,0}.

Lemma 2 The functions µ1 and µ2 are convex on R.

Next, useful properties of γi, σi, νi, and λi will be established. Intuitively, throughout
this article, γi(z,a, p) plays a similar role to max{z,a} for fixed a, σi(z,b, p) is analogous to
min{z,b} for fixed b, νi(x,y, p) is analogous to max{x,y} for varying x and y, and λi(x,y, p)
is analogous to min{x,y} for varying x and y. Roughly, the parameter p quantifies the extent
to which γi and σi are relaxed to yield a differentiable underestimator of max{·,a} and a
differentiable overestimator of min{·,b}, as is formalized in the following lemma.

Lemma 3 Consider any fixed i ∈ {1,2}, a,b ∈ R, and p ≥ 0. The mapping γi(·,a, p) is
convex and increasing. Moreover,

a≤max{z− p,a} ≤ γi(z,a, p)≤max{z,a}, ∀z ∈ R.

Similarly, the mapping σi(·,b, p) is concave and increasing, with

min{z,b} ≤ σi(z,b, p)≤min{z+ p,b} ≤ b, ∀z ∈ R.

If p > 0, then γi(·,a, p) and σi(·,b, p) are both C i.

Proposition 5 Consider any fixed i ∈ {1,2}, a,b ∈R and p > 0. Gradients of the mappings
z 7→ γi(z,a, p) and z 7→ σi(z,b, p) at some z0 ∈ R may be computed using (1) as follows.

∂γi

∂ z
(z0,a, p) = ∇µi(

z0−a
p ),

∂σi

∂ z
(z0,b, p) = ∇µi(

b−z0
p ).
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Lemma 4 Given triples (z1,a1, p1),(z2,a2, p2) ∈ R×R× [0,+∞), suppose that z1 ≤ z2,
a1 ≤ a2, and p1 ≥ p2. Then, for each i ∈ {1,2}, γi(z1,a1, p1)≤ γi(z2,a2, p2).

Similarly, given triples (z1,b1, p1),(z2,b2, p2) ∈ R×R× [0,+∞), suppose that z1 ≥ z2,
b1 ≥ b2, and p1 ≥ p2. Then, for each i ∈ {1,2}, σi(z1,b1, p1)≥ σi(z2,b2, p2).

Lemma 5 For any fixed p > 0 and i ∈ {1,2}, the mappings (x,y) 7→ νi(x,y, p) and (x,y) 7→
λi(x,y, p) are each C i on R2.

Proposition 6 Consider any fixed i ∈ {1,2} and p > 0. Partial derivatives of the mappings
(x,y) 7→ νi(x,y, p) and (x,y) 7→ λi(x,y, p) at some x0,y0 ∈ R may be computed using (1) as
follows.

∂νi

∂x
(x0,y0, p) =

∂λi

∂y
(x0,y0, p) =

1
2

(
1+∇µi(

x0−y0
p )−∇µi(

y0−x0
p )

)
,

∂νi

∂y
(x0,y0, p) =

∂λi

∂x
(x0,y0, p) =

1
2

(
1−∇µi(

x0−y0
p )+∇µi(

y0−x0
p )

)
.

Lemma 6 Given triples (x1,y1, p1),(x2,y2, p2) ∈ R×R× [0,+∞), suppose that x1 ≤ x2,
y1 ≤ y2, and p1 ≥ p2. Then, for each i ∈ {1,2}, νi(x1,y1, p1)≤ νi(x2,y2, p2).

Similarly, given triples (x3,y3, p3),(x4,y4, p4) ∈ R×R× [0,+∞), suppose that x3 ≥ x4,
y3 ≥ y4, and p3 ≥ p4. Then, for each i ∈ {1,2}, λi(x3,y3, p3)≥ λi(x4,y4, p4).

Lemma 7 Given p≥ 0 and i ∈ {1,2}, the mapping (x,y) 7→ νi(x,y, p) is convex on R2, and
the mapping (x,y) 7→ λi(x,y, p) is concave on R2. Moreover,

1
2 (x+ y)≤ 1

2 (max{x− p,y}+max{x,y− p})≤ νi(x,y, p)≤max{x,y}, ∀x,y ∈ R,
and min{x,y} ≤ λi(x,y, p)≤ 1

2 (min{x+ p,y}+min{x,y+ p})≤ 1
2 (x+ y), ∀x,y ∈ R.

Definition 11 Define a function p : IR → [0,+∞) such that for some constant ap > 0,
p(x) := ap(widx)2 for each x ∈ IR. Denote p(x) as px.

In Definition 11, the particular quadratic expression for p is irrelevant to the results de-
veloped in Sections C.1 and C.2 below; the results in these sections remain valid if p is
redefined so that p(x) := π(widx), where π : [0,+∞)→ [0,+∞) is any particular strictly-
increasing function for which π(0) = 0. Defining π : z 7→ apz2, however, yields the conver-
gence results obtained in Section C.3. The particular choice of the constant ap does not affect
the theoretical results developed in this article; appropriate choices of ap will be discussed
in Section 5.1 from a numerical standpoint.

Remark 5 As claimed earlier, the condition in Assumption 1 that both ũ(x)≤ ucv(x,ζ min
u (x))

and ũ(x)≥ ucc(x,ζ max
u (x)) can be imposed without loss of generality. If this condition ei-

ther fails or is not known to be true, then, for each x ∈ IB, ucv(x, ·) can be replaced with
the mapping z 7→ γi(ucv(x,z), ũ(x), px), and ucc(x, ·) can be replaced with the mapping
z 7→ σi(ucc(x,z), ũ(x), px); these replacements now satisfy the condition. The established
properties of γi and σi ensure that the other conditions required of ucv and ucc by Definition 3
and Assumption 1 continue to hold under these replacements.



14 Kamil A. Khan, Paul I. Barton

3.2 Relaxing intersections of bounds and relaxations

Roughly, for each i ∈ {1,2}, the Squi and belti operations introduced in this section are
C i relaxations of the “Cut” and “Enc” operations presented in Definitions 2.4.3 and 2.4.5
of [33], and serve analogous roles. It will be shown in this section that Squi is a relaxation
function of the identity function on R. Moreover, Lemma 26 in Appendix C shows that
Squi is (1,2)-convergent. Intuitively, Squi also inherits the C i nature of γi and σi. These
properties will be exploited in Section 3.3 when constructing a C i variant of McCormick’s
multiplication operation.

Definition 12 For each X ∈MR and each i ∈ {1,2}, define a belt operation belti(X ) ∈
IR as follows:

belti(X ) :=
{
[x,x] if xB = xB =: x,
[γi(xC,xB, pxB),σi(xC,xB, pxB)] if xB < xB.

Define a squashing operation Squi(X ) := (xB,belti(X )) ∈ IR2. Given a vector Y ∈
MRn, define

Squi(Y ) :=

Squi(Y1)
...

Squi(Yn)

 ∈ (IR2)n.

For any X ∈MR, Lemma 3 implies that xB ∩xC ⊂ belti(X ) ⊂ xB, which in turn
yields Squi(X ) ∈MRprop. Thus, Squi(Y ) ∈MRn

prop for any Y ∈MRn. Furthermore,
observe that belti(([x,x], [x,x])) = [x,x] for each x ∈ R.

Lemma 8 For each i ∈ {1,2}, for each coherent pair X ,Y ∈MR and each ` ∈ [0,1],

belti(Conv(`,X ,Y ))⊃ `belti(X )+(1− `)belti(Y ).

Moreover, Squi is coherently concave for each i ∈ {1,2}.

Proof Since X and Y are coherent, define z := xB = yB. The convexity of γi(·,zB, pz)
and the concavity of σi(·,zB, pz) yield the following pair of inequalities:

γi(`xC +(1− `)yC,zB, pz)≤ `γi(xC,zB, pz)+(1− `)γi(yC,zB, pz),

σi(`xC +(1− `)yC,zB, pz)≥ `σi(xC,zB, pz)+(1− `)σi(yC,zB, pz),

which are equivalent to the required inclusion. Moreover, since X , Y , and ` were chosen
arbitrarily, it follows immediately that Squi is coherently concave. ut

Lemma 9 For each i ∈ {1,2}, belti and Squi are inclusion monotonic.

Proof Consider any X ,Y ∈MR for which X ⊂ Y . If xB = xB =: x, then xB ∩xC 6= /0
implies x ∈ xC. Thus, X ⊂ Y implies

belti(X ) = [x,x] = xB = xB∩xC ⊂ yB∩yC ⊂ belti(Y ),

as required. If xB < xB, then since xC ≥ yC, xB ≥ yB, and pxB ≤ pyB , Lemma 4 implies that
γi(xC,xB, pxB)≥ γi(yC,yB, pyB). A similar argument shows that σi(xC,xB, pxB)≤σi(yC,yB, pyB),
and so belti(X )⊂ belti(Y ). The inclusion Squi(X )⊂Squi(Y ) follows immediately.

ut
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Lemma 10 For each fixed i ∈ {1,2} and xB := [xB,xB] ∈ IR, consider the interval-valued
mapping y : (ξ ,ξ ) 7→ belti((x

B, [ξ ,ξ ])). The mappings y and y are both C i on R2.

Proof If xB = xB, then the mapping belti((x
B, ·)) is constant, and is therefore C i. Other-

wise, if xB < xB, then the required result follows immediately from Lemma 3 and Defini-
tion 11. ut

Remark 6 It follows from the above definitions and lemmata that, for each i ∈ {1,2}, Squi
is a relaxation function for the identity mapping on Rn.

3.3 Relaxing multiplication

Let the value of i ∈ {1,2} be fixed throughout this section. Ultimately, setting i = 1 will
yield C 1 relaxations. Setting i = 2 instead will yield C 2 relaxations, but will place stricter
requirements on the UIFs considered, as demanded by Assumption 1.

The following definition replaces Definition 22 in Appendix A.2; it will be shown in
Section 4 that this replacement weakens McCormick’s classical multiplication operation to
yield an alternative that is C i, while maintaining (1,2)-convergence. This modified multi-
plication operation depends on i, but this dependence will not be reflected in its “X Y ”
notation.

Definition 13 Define a multiplication operation×i :MR2
prop→MR so that, for each X ,Y ∈

MR,
×i(X ,Y )≡X Y := Squi((x

ByB,z)),

where z ≡ [z,z] ∈ IR is defined so that:

z := νi

(
(yBxC)+(xByC)− xByB, (yBxC)+(xByC)− xByB, pxByB

)
,

z := λi

(
(yBxC)+(xByC)− xByB, (yBxC)+(xByC)− xByB, pxByB

)
.

3.4 Restrictions to proper McCormick objects

Again, let the value of i∈ {1,2} be fixed throughout this section. The following result shows
that the codomains of + : MR2

prop →MR (cf. Definition 21) and ×i : MR2
prop →MR may

be restricted to MRprop without loss of generality.

Proposition 7 Consider any X ,Y ∈MRprop, and define S := X +Y and P := X Y
for some i ∈ {1,2}. Then, S ,P ∈MRprop.

Proof Firstly, to show that S ∈MRprop, observe that

sC = [sC,sC] = [xC,xC]+ [yC,yC]⊂ [xB,xB]+ [yB,yB] = xB +yB = sB.

Secondly, P = Squi((p
B,z)), with z ∈ IR given as in Definition 13. Define v := xB∩xC

and w := yB∩yC. Since X ,Y ∈MRprop, it follows that v=xC and w= yC. Now, making
use of Lemma 7, it follows that

z≤max
(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
and z≥min

(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
.
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Defining

q := max
(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
,

and q := min
(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
,

it is argued on [33, Page 69] that [q,q]∩pB 6= /0. Thus,

z∩pB ⊃ [q,q]∩pB 6= /0.

This shows that (pB,z) ∈MR, which implies that P = Squi((p
B,z)) ∈MRprop. ut

The following result considers UIFs in the same manner as the above result, and shows
that the codomains of their McCormick analogs may be restricted to MRprop without loss of
generality.

Proposition 8 Consider a UIF u : B⊂R→R that satisfies Assumption 1. With U described
by Definition 23, U (X ) ∈MRprop for each X ∈MBprop.

Proof By construction, ζ min
u (xB) ∈ xB and ζ max

u (xB) ∈ xB. Moreover, since X ∈MBprop,
xC ⊂ xB. It follows that mid(ζ min

u (xB),xC,xC) ∈ xB and mid(ζ max
u (xB),xC,xC) ∈ xB. It

therefore follows from the bounds on ucv and ucc in Assumption 1 that [uC(X ),uC(X )]⊂
ũ(xB), which implies that U (X ) ∈MRprop. ut

4 Main results

The following definition is a variant of Definition 7. Recall that all UIFs listed in Table 2 sat-
isfy Assumption 1 for each i ∈ {1,2}, and that all of these functions except for the absolute-
value function satisfy Assumption 2.

Definition 14 Given some i∗ ∈ {1,2} and a factorable function f : B ⊂ Rn → Rm whose
composed UIFs each satisfy Assumption 1 with i := i∗, a natural C i∗ McCormick extension
F : MBprop→MRm of f is defined by replacing each addition operation in the construction
of f with its McCormick counterpart described in Definition 21 in Appendix A.2, each
multiplication operation with its counterpart in Definition 13 with i := i∗, and each UIF with
its counterpart in Definition 23 in Appendix A.2.

Define an unconstrained C i∗ McCormick extension of f as Func := F ◦Squi∗ : MB→
MRm.

The following theorem is the main theorem of this article. This theorem shows that
the convex/concave relaxations obtained from a natural C i McCormick extension of a given
factorable function according to Proposition 4 are indeed C i, and that they satisfy the various
useful properties of McCormick’s original relaxation method.

Theorem 2 Given some i∗ ∈ {1,2} and a factorable function f : B ⊂ Rn → Rm whose
composed UIFs each satisfy Assumption 1 with i := i∗, there are no domain violations in
the construction of a natural C i∗ McCormick extension F : MBprop →MRm of f on B.
The function F is a relaxation function for f on B. Additionally, if each UIF describing f
satisfies Assumption 2, then F is (1,2)-convergent.

Moreover, if m = 1, in which case f is scalar-valued, then the convex/concave relax-
ations φ f ,x,ψ f ,x defined by Proposition 4 in terms of F for each x ∈ IB are each C i∗

on x.
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Proof Since f is factorable, it has a well-defined natural interval extension. Thus, Propo-
sition 7, Proposition 8, and Assumption 1 imply that there are no domain violations in the
construction of F . The remaining claims of the theorem are proved separately as Theo-
rems 5, 6, and 7 in Appendix C. ut

Roughly, an unconstrained C i∗ McCormick extension of a function f : B ⊂ Rn → R
yields convex/concave relaxations of f that are weaker than those described by a natural
C i∗ McCormick extension, yet are well-defined on all of Rn rather than particular interval
subsets, and satisfy the following corollary. As a result, natural C i∗ McCormick extensions
are preferable to unconstrained C i∗ McCormick extensions in general, since the former gen-
erate tighter relaxations. Unconstrained C i∗ McCormick extensions are useful in two par-
ticular situations: firstly, if the problem minz∈x φ f ,x(z) is solved using a constrained convex
optimization method that visits infeasible points, and secondly, if generalized McCormick
relaxations [37,42] are employed in a manner that permits inputs X ≡ (xB,xC) for which
xC * xB.

Corollary 2 Given some i∗ ∈ {1,2} and a factorable function f : B ⊂ Rn → Rm whose
composed UIFs each satisfy Assumption 1 with i := i∗, an unconstrained C i∗ McCormick
extension Func : MB→MRm of f is a relaxation function for f . Additionally, if each UIF
describing f satisfies Assumption 2, then Func is (1,2)-convergent.

Moreover, if m = 1, in which case f is scalar-valued, then the convex/concave relax-
ations φ f ,x,ψ f ,x defined by Proposition 4 in terms of Func for each x ∈ IB are each C i∗

on Rn.

4.1 Gradient propagation

Using the obtained differentiability results, the standard forward or reverse modes of au-
tomatic differentiation [14,26] can be used to evaluate derivatives of the convex/concave
relaxations obtained for natural or unconstrained C i McCormick extensions, provided that
gradients can be evaluated for the composed addition, multiplication, and UI operations.
The obtained gradients are subgradients of the corresponding relaxations.

To evaluate derivatives for C i McCormick extensions, addition and UI composition can
be treated exactly as in Proposition 2.9 and Theorem 3.2 in [24], with all subgradients men-
tioned in these results replaced by the corresponding gradients. For multiplication, repeated
application of the chain rule to Definition 13 yields the following, which makes use of the
partial derivatives of νi and λi provided by Proposition 6.

Theorem 3 Consider functions f ,g : D⊂Rn→R, and relaxation functions F ,G : MD (or
MDprop)→MR for f and g on D, such that the mappings X 7→ fB(X ) and X 7→ gB(X )
are each independent of their xC argument. Consider the product function h : D→ R : z 7→
f (z)g(z), and the corresponding product relaxation function H : MD (or MDprop)→MR :
X 7→ ×i(F (X ),G (X )) with i ∈ {1,2}. As in Proposition 4, for some fixed y ∈ ID, con-
struct the convex/concave relaxations φh,y : z 7→ hC((y, [z,z])) and ψh,y : z 7→ h

C
((y, [z,z]))

of h on y, and construct the analogous relaxations φ f ,y/ψ f ,y of f and φg,y/ψg,y of g.
Gradients of φh,y and ψh,y at some particular x ∈ y may be computed as follows, with
Y := (y, [x,x])∈MD (or MDprop). For notational simplicity, the Y arguments of fB(Y )≡
[ f B(Y ), f B

(Y )], gB(Y ) ≡ [gB(Y ),gB(Y )], and hB(Y ) ≡ [hB(Y ),h
B
(Y )] will be omit-

ted.
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If h
B
= hB, then ∇φh,y(x) = ∇ψh,y(x) = 0. Otherwise, if h

B
> hB, then define interme-

diate scalar quantities:

n1(x) := (gBfC(Y ))+( f B gC(Y ))− f BgB,

n2(x) := (gBfC(Y ))+( f B
gC(Y ))− f BgB,

n3(x) := (gBfC(Y ))+( f B
gC(Y ))− f BgB,

n4(x) := (gBfC(Y ))+( f B gC(Y ))− f BgB,

If f B
= f B, then define intermediate scalar quantities b1(x) = b2(x) = b3(x) = b4(x) := 0.

Otherwise, if f B
> f B, then define:

b1(x) :=

{
gB ∇φ f ,y(x), if gB ≥ 0,

gB ∇ψ f ,y(x), if gB < 0,
b2(x) :=

{
gB ∇φ f ,y(x), if gB ≥ 0,

gB ∇ψ f ,y(x), if gB < 0,

b3(x) :=

{
gB ∇ψ f ,y(x), if gB ≥ 0,

gB ∇φ f ,y(x), if gB < 0,
b4(x) :=

{
gB ∇ψ f ,y(x), if gB ≥ 0,

gB ∇φ f ,y(x), if gB < 0.

If gB = gB, then define intermediate scalar quantities b5(x) = b6(x) = b7(x) = b8(x) := 0.
Otherwise, if gB > gB, then define:

b5(x) :=

{
f B

∇φg,y(x), if f B ≥ 0,

f B
∇ψg,y(x), if f B < 0,

b6(x) :=

 f B
∇φg,y(x), if f B ≥ 0,

f B
∇ψg,y(x), if f B

< 0,

b7(x) :=

 f B
∇ψg,y(x), if f B ≥ 0,

f B
∇φg,y(x), if f B

< 0,
b8(x) :=

{
f B

∇ψg,y(x), if f B ≥ 0,

f B
∇φg,y(x), if f B < 0.

Next, define the following intermediate scalar quantities:

a1(x) :=
∂νi

∂x
(n1(x),n2(x), phB)b1(x)+

∂νi

∂y
(n1(x),n2(x), phB)b2(x),

a2(x) :=
∂νi

∂x
(n1(x),n2(x), phB)b5(x)+

∂νi

∂y
(n1(x),n2(x), phB)b6(x),

a3(x) :=
∂λi

∂x
(n3(x),n4(x), phB)b3(x)+

∂λi

∂y
(n3(x),n4(x), phB)b4(x),

a4(x) :=
∂λi

∂x
(n3(x),n4(x), phB)b7(x)+

∂λi

∂y
(n3(x),n4(x), phB)b8(x).

Then,

∇φh,y(x) =
∂γi

∂ z
(hC(Y ),hB, phB) (a1(x)+a2(x)) ,

and ∇ψh,y(x) =
∂σi

∂ z
(h

C
(Y ),h

B
, phB) (a3(x)+a4(x)) .

Proof This result follows immediately from Definition 13 and the chain rule in Proposi-
tion 2. Observe that, in light of Remark 1, if a composed function is defined only at a single
point, then its derivative at this point may be set to 0 without affecting the validity of this
chain rule. ut
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When constructing unconstrained C i McCormick relaxations, the following gradient
propagation result can be used to handle the initial squashing operation.

Proposition 9 For fixed y ∈ IR and i ∈ {1,2}, consider the functions sC
y,s

C
y : R2→ R de-

fined so that Squi((y,z)) = (y, [sC
y(z,z),s

C
y(z,z)]) for each z ∈ IR. Then

∇sC
y(z,z) =

[
∂γi
∂ z (z,y, py) 0

]
, and ∇sC

y(z,z) =
[
0 ∂σi

∂ z (z,y, py)
]
.

Proof This result follows immediately from the definition of the squashing operation. ut

5 Implementation and examples

This section first discusses how to choose the parameter ap in Definition 11 in accordance
with numerical considerations. A C++ implementation of the relaxation theory in this article
is then described, and is subsequently applied to various example problems for illustration.

5.1 Choosing the parameter ap

When constructing a C i McCormick extension of a function f , the parameter ap in Defi-
nition 11 is only used if either f is described in terms of at least one product function, an
unconstrained C i McCormick extension is desired, or the constructions described in Re-
mark 5 for pathological UIFs are required. If none of these circumstances apply, then there
is no need to choose ap.

Although the established (1,2)-convergence of C i McCormick extensions is indepen-
dent of ap, larger values of ap ultimately yield weaker relaxations φ f ,x/ψ f ,x when widx
is large, making fathoming by value dominance less likely at the early stages of a branch-
and-bound procedure for nonconvex optimization. On the other hand, smaller values of ap
yield relaxations that are theoretically C i, yet may differ (with respect to the L2-norm) only
marginally from a nondifferentiable function when widx is reduced.

Moreover, observe that in the results established in this article, there is no need for the
same value of ap to be used each time the function p : IR→ [0,+∞) is invoked during
construction of a particular C i McCormick extension of a function. This notion provides
a degree of freedom which can be exploited to ensure that the values of ap employed are
neither too great or too small, in accordance with the previous paragraph.

Now, it follows from Lemma 3 that, for any X ≡ (xB,xC) ∈MRprop and i ∈ {1,2},

0≤ wid(belti(X ))

widxB − widxC

widxB ≤min
{

2pxB

widxB ,1
}
= min{2ap widxB,1}.

So, the belt operation increases the ratio widxC

widxB by at most (2ap widxB). Observe that, if
wid(belti(X ))

widxB ≈ widxC

widxB , then there is little numerical difference between the C i McCormick
relaxations and the classical McCormick relaxations.

In light of the above discussion, suppose that during execution of a branch-and-bound
procedure, whenever any interval subdomain x is visited, the C i McCormick extension of a
function demands evaluation of pyB(x), where the interval-valued function yB is defined by
the natural interval extension of the factorable objective function. Due to inclusion mono-
tonicity of natural interval extensions, wid(yB(x)) decreases as widx decreases. Now, if x0
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denotes the interval domain considered at the root node of the branch-and-bound procedure,
the above discussion suggests setting

ap←
bp

2widyB(x0)
(3)

for some constant bp in the range [0.01,0.2]. With this choice, the C i McCormick extensions
are not relaxed too much relative to the corresponding original natural McCormick exten-
sions, and yet (2ap widyB(x)) remains significantly greater than 0 (relative to a computer’s
typical numerical precision) even after several successive branches in the branch-and-bound
procedure.

Lastly, note that (2ap widyB(x))→ 0+ in the limit (widx)→ 0+. If (2ap widyB(x))
falls below some small tolerance ε > 0, then affine relaxations defined either by the sub-
gradients of the classical natural McCormick extensions or the gradients of C i McCormick
extensions may be preferable to the McCormick extensions themselves.

5.2 Implementation

A C++ implementation of C i McCormick extension evaluation was developed by modifying
version 1.0 of the header library MC++ [8], to carry out the methods in this article using op-
erator overloading. This new implementation describes McCormick objects using a template
class mc::smoothMcC<T>, which is a modified version of the class mc::McCormick<T> de-
fined by MC++. As in MC++, the templated argument T refers to the interval objects used
by an employed interval arithmetic library. The specific modifications used to construct the
class mc::smoothMcC<T> from mc::McCormick<T> are as follows.

Firstly, static member variables MCbp and MCi were added to the class, so as to hold
the values of the parameters bp and i ∈ {1,2}, respectively. These parameters can be set
or retrieved using static member functions setBp, getBp, setI, and getI. Further static
member functions evaluate the functions p, µi, ∇µi, γi, σi, νi, ∂νi

∂x , ∂νi
∂y , λi, ∂λi

∂x , and ∂λi
∂y . The

execution of MCp, the static member function evaluating p, is detailed in the next paragraph.
In the following description, let mcX denote an arbitrary mc::smoothMcC<T> object repre-
senting a McCormick object X . Member functions squash and p were added to the class,
so that mcX.squash() replaces its calling member X with Squi(X ), and so that mcX.p()
invokes MCp to return the value pxB . Using these constructions, McCormick-McCormick
multiplication was implemented according to Definition 13, via a friend function that
overloads operator*, with gradients propagated according to Theorem 3. The relaxations
described in Examples 7, 8 and 9 were implemented by modifying the overloaded operations
fabs and pow appropriately, along with a squaring function sqr that was implemented in
MC++.

To implement evaluation of p via MCp according to the discussion in Section 5.1, a
static member enum variable apMode was added to the mc::smoothMcC<T> class, to de-
scribe whether the parameters ap should be evaluated as if the root node in a branch-
and-bound process is being visited, or whether a child node is being visited instead. If
apMode=SET AP, then whenever p is evaluated, the parameter ap is evaluated in the root-

node mode described in Section 5.1, and the value of ap is pushed onto the end of a static
member std::vector<double> named apList. To handle child nodes in a branch-and-
bound process, when values of ap have already been stored in apList, apMode is set to
GET AP. In this mode, whenever p is evaluated, the appropriate value of ap is retrieved from
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apList; the appropriate component of apList to be retrieved is tracked using a static
member std::vector<double>::const iterator.

Ultimately, given a user-supplied template subroutine f that is written as though its in-
puts and outputs are doubles or double arrays, the implementation described above permits
natural C i McCormick extensions of f to be evaluated using operator overloading, along
with directional derivatives that are evaluated using the forward mode of automatic differ-
entiation. To obtain unconstrained C i McCormick extensions instead, the squash operation
should first be applied to each mc::smoothMcC<T> input to f. The UIFs and operations
described in Table 2 are all supported in this implementation.

5.3 Complexity analysis

Roughly, denote the computational cost of evaluating a factorable function f : X ⊂ Rn→ R
using its factored representation as “cost( f )”. Observe that, when constructing the convex
or concave relaxation suggested by a natural C 2 McCormick extension for f , each addi-
tion, multiplication, and UIF in the factored representation of f is replaced with its C 2

McCormick counterpart. Thus, there exists γc > 0 for which the computational cost of eval-
uating a C 2 convex or concave relaxation of f is no greater than γc cost( f ). The parameter
γc is independent of f , but depends on the library of UIFs considered.

Similarly, using standard complexity results for automatic differentiation [14], it follows
that there exist similar library-dependent constants γa,γt > 0, satisfying the following claim.
If the reverse mode of automatic differentiation is used to evaluate a subgradient of such a
relaxation, then the cost of doing so is bounded above by γa cost( f ); if the forward mode is
used instead, then the cost of evaluating this subgradient is bounded above by nγt cost( f ),
where n denotes the domain dimension of f .

5.4 Examples

In this section, the implementation of C 2 McCormick relaxation described in Section 5.2 is
applied to various example problems for illustration.

Example 3 To illustrate the modified multiplication rule provided by Definition 13, consider
the function f : R2→ R : (x,y) 7→ y(x2−1), which is plotted in Figure 1(a). The function f
is (real-)analytic but nonconvex on z := [−4,4]2 ⊂ R2.

Using MC++ [8], the classical McCormick convex relaxation of f was constructed on
z, and is plotted in Figure 1(b). This relaxation is not differentiable everywhere; this non-
differentiability is introduced via McCormick’s rule for relaxing the product of terms whose
signs change on the interval of interest. A natural C 2 McCormick relaxation of f on z was
constructed using the implementation described in Sections 5.1 and 5.2, with bp := 0.2; this
relaxation is plotted in Figure 1(c). Observe that this relaxation is visibly differentiable (and
is, in fact, C 2), but is otherwise qualitatively similar to the classical McCormick relaxation.
The classical McCormick relaxation dominates its C 2 counterpart on z.

For comparison, the αBB relaxation of f on z with a nonuniform diagonal shift matrix
that minimizes maximum separation distance [1] was computed directly to be:

f α : (x,y) 7→ f (x,y)+8(x2−16)+4(y2−16),

and is plotted in Figure 1(d). The obtained αBB relaxation is analytic, and has a minimum
at (x∗,y∗) := (0,0.125). Observe that f α(x∗,y∗) =−192.0625, which is less than the lower
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Fig. 1 The function f : (x,y) 7→ y(x2− 1) and its convex relaxations on [−4,4]2: (a) the function f , (b) the
classical McCormick relaxation of f , (c) a C 2 McCormick relaxation of f , and (d) the αBB relaxation of f
that minimizes maximum separation distance.

bound f̃ (z) =−60 provided by the natural interval extension of f on z. This interval lower
bound coincides with min(x,y)∈z f (x,y), and is dominated on z by both the constructed clas-
sical McCormick relaxation and the constructed C 2 McCormick relaxation.

Example 4 To illustrate the handling of the absolute-value function according to Example 8,
consider the function

g : R2→ R : (x,y) 7→ |x+1|+ |x−1|− |x+ y−1|− |x− y+1|, (4)

which is plotted in Figure 2(a). The function g is piecewise affine, and is nonconvex on
z := [−2,2]2 ⊂ R2.

As in the previous example, the classical McCormick convex relaxation of g on z was
constructed using MC++, and is plotted in Figure 2(b); this relaxation is readily verified
to be piecewise affine. The C 2 McCormick relaxation of g on z was evaluated using the
implementation described in Section 5.2, and is plotted in Figure 2(c). Since there does not
exist a scheme of estimators satisfying Assumption 2 for the absolute-value function, the
generated McCormick and C 2 McCormick relaxations are not guaranteed to be pointwise
convergent of order 2.

Example 5 To illustrate the handling of the squaring function z 7→ z2 according to Exam-
ple 7, consider the function

h : R2→ R : (x,y) 7→ (xy−1)2, (5)
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Fig. 2 The function g described in (4) and its convex relaxations on [−2,2]2: (a) the function g, (b) the
classical McCormick relaxation of g, and (c) a C 2 McCormick relaxation of g.

which is plotted in Figure 3(a). The function h is analytic and nonconvex on z := [−2,2]2 ⊂
R2.

The classical McCormick convex relaxation hcv of h on z was evaluated using MC++,
along with a subgradient at each point. This relaxation hcv is plotted in Figure 3(b), and
x-components of the evaluated subgradients of hcv are plotted in Figure 3(c). As a function
of (x,y), the evaluated subgradient is evidently not differentiable everywhere; it follows
that hcv is not twice-differentiable, let alone C 2. This example illustrates that, even though
the squaring function is convex and smooth, considering the squaring UIF as its own convex
relaxation can yield failures of twice-continuous differentiability. This observation motivates
Assumption 1 and Example 7.

A natural C 2 McCormick relaxation h̃cv of h on z was constructed using the imple-
mentation described in Sections 5.1 and 5.2, with bp := 0.2; this relaxation is plotted in
Figure 1(d). Gradients of h̃cv were also evaluated using the described implementation; the
partial derivatives ∂ h̃cv

∂x and ∂ h̃cv

∂y are plotted in Figures 3(e) and 3(f), respectively. These
partial derivatives appear to be differentiable, and are indeed C 1.

Example 6 This example illustrates the second-order pointwise convergence of the C 2 Mc-
Cormick relaxations presented in this article. As in [6, Example 7], consider the function

f : R+→ R : x 7→ (x− x2)(logx+ e−x)

on intervals of the form [0.5−ε,0.5+ε] for ε ∈ (0,0.2]. The function f is plotted in Figure 4,
together with a series of C 2 relaxations ψx(ε) of f constructed using the implementation
described in Sections 5.1 and 5.2, on intervals x ∈ {[0.5− ε,0.5 + ε] : ε = 0.4(2k),k ∈
{1, . . . ,20}}, with the parameters in (3) set to x0 := [0.3,0.7] and bp := 0.2.

For the considered values of ε , Figure 4(b) plots supx∈x(ε)( f (x)−ψx(ε)(x)) against
widx(ε) on a logarithmic scale; the slope of this plot suggests second-order pointwise con-
vergence of the convex relaxation ψx(ε) to f as ε → 0+.

6 Conclusions

A variant of McCormick’s relaxation scheme has been presented, which produces C 2 con-
vex and concave relaxations of a provided factorable function, while retaining the compu-
tational benefits of McCormick’s method. Gradients are readily evaluated for the provided
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Fig. 3 The function h described in (5) and its convex relaxations and associated subgradients on [−2,2]2: (a)
the function h, (b) the classical McCormick relaxation hcv of h, (c) the x-component of some subgradient of
hcv, (d) a C 2 McCormick relaxation h̃cv of h, (e) the partial derivative ∂ h̃cv

∂x , and (f) the partial derivative ∂ h̃cv

∂y .

relaxations using standard automatic differentiation methods. As an avenue for possible fu-
ture work, we expect that the methods in this article are compatible with an established
scheme for reverse propagation of McCormick relaxations [42], and could yield a scheme
for constructing C 2 relaxations for implicit functions.

As an open problem, observe that the methods in this article do not extend immediately
to the multivariate relaxations described by Tsoukalas and Mitsos [39]. Such an extension
would be desirable, since the multivariate product relaxations are tighter than the classical
McCormick product relaxation described in Definition 22.
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Fig. 4 (a) The function f described in Example 6 (dashed) and its C 2 convex relaxations ψx(ε) of f on
intervals x(ε) := [0.5−ε,0.5+ε] for various ε > 0 (solid), and (b) a plot of d f := supx∈x(ε)( f (x)−ψx(ε)(x))
vs. w := widx(ε) = 2ε .
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Appendices

A Established definitions and results

A.1 Interval analysis

This appendix summarizes relevant standard definitions and results concerning interval analysis.

Definition 15 (from [2]) For each c ∈ R, define scalar-interval multiplication so that for each x ∈ IR,

cx :=

{
[cx,cx], if c≥ 0,

[cx,cx], if c < 0.

Setting c←−1 corresponds to a negative operation. Define interval operations +,−,× : IR× IR→ IR such
that

+(x,y)≡ x+y := [x+ y,x+ y], ∀x,y ∈ IR.

−(x,y)≡ x−y := [x− y,x− y], ∀x,y ∈ IR.

×(x,y)≡ xy := [min{xy,xy,xy,xy},max{xy,xy,xy,xy}], ∀x,y ∈ IR.

It is readily verified that for any interval operation ◦ ∈ {+,−,×}, x◦y = {v◦w : v ∈ x,w ∈ y} for any
intervals x,y ∈ IR, and [v,v]◦ [w,w] = [v◦w,v◦w] for any v,w ∈ R.

Lemma 11 Consider an interval x ∈ IR and scalars a,b ∈R for which a≤ b. If x≥ 0, then (ax)≤ (bx). If

x≤ 0, then (ax)≥ (bx). Similarly, if x≥ 0, then (ax)≤ (bx). If x≤ 0, then (ax)≥ (bx).

Proof For any c ∈ R,

(cx) =
{

cx, if c≥ 0,
cx, if c < 0 = x min{c,0}+ x max{c,0}. (6)

If x ≥ 0, then each term in the final expression above is evidently increasing with respect to c, yielding the
first required inequality. If, instead, x≤ 0, then each term in the final expression is decreasing with respect to
c, which yields the second required inequality. Next, for any c ∈ R,

(cx) =
{

cx, if c≥ 0,
cx, if c < 0 = x min{c,0}+ x max{c,0}. (7)

Using this result, a similar argument to the previous case yields the remaining inequalities. ut
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Definition 16 (from [25]) Consider a nonempty set B ⊂ Rn. An interval-valued function f : IB→ IRm is
inclusion monotonic if f(x)⊂ f(y) for any pair x,y ∈ IB for which x⊂ y.

Given a function g : B→ Rm, an interval-valued function g̃ : IB→ IRm is an interval extension of g if
g̃([x,x]) = [g(x),g(x)] for each x ∈ B.

The following result from [25] motivates the above definition.

Theorem 4 (Theorem 3.1 in [25]) Consider a function g : B ⊂ Rn → Rm. If a function g̃ : IB→ IRm is
inclusion monotonic and is an interval extension of g, then g(x) := {g(z) : z ∈ x} ⊂ g̃(x) for all x ∈ IB.

Definition 17 Given a set D⊂Rn, define the interval hull �D of D as the intersection of all intervals in IRn

that are supersets of D. Given a function f : B ⊂ Rn → Rm, define the interval hull � f : IB→ IRm so that
� f (x) =�{y ∈ Rm : ∃z ∈ x s.t. y = f (z)}.

A.2 McCormick objects

This appendix summarizes definitions from [33,42] concerning generalized McCormick objects, and adapts
these to permit restrictions to proper McCormick objects.

Definition 18 (adapted from [42]) Given a function f : B⊂ Rn→ Rm, a mapping F : MB (or MBprop)→
MRm is a McCormick extension of f if

F ([x,x], [x,x]) = ([ f (x), f (x)], [ f (x), f (x)]), x ∈ B.

Definition 19 (adapted from [42]) Given a set B⊂Rn, a function F :MB (or MBprop)→MRm is inclusion
monotonic if F (X )⊂F (Y ) for each pair X ,Y ∈MB (or MBprop) such that X ⊂ Y .

Definition 20 (adapted from [42]) A pair X ,Y ∈MRn is coherent if xB = yB. Given coherent X ,Y ∈
MRn, for each λ ∈ [0,1], define:

Conv(λ ,X ,Y ) := (xB,λxC +(1−λ )yC) ∈MRn.

Given a set B⊂ Rn, a function F : MB (or MBprop)→MRm is coherent if F (X ) is coherent to F (Y ) for
every coherent X ,Y ∈MB (or MBprop). A function F : MB (or MBprop)→MRm is coherently concave if
it is coherent, and, for every X ,Y ∈MB (or MBprop),

F (Conv(λ ,X ,Y ))⊃ Conv(λ ,F (X ),F (Y )), ∀λ ∈ [0,1].

The following analogs of addition, multiplication, and UIFs for McCormick objects were developed
in [33], and are presented here in the notation of [42]. As demonstrated in [33], these McCormick operations
are indeed relaxation functinos of the corresponding operations on real numbers.

Definition 21 (from [33]) Define an addition operation + : MR2→MR so that, for each X ,Y ∈MR,

+(X ,Y )≡X +Y := (xB +yB,xC +yC),

and define + : MR2
prop→MR as the restriction of + : MR2→MR to the domain MR2

prop.

The following definition of a McCormick multiplication operation is adapted from McCormick’s original
presentation [23] and [24], and is essentially replaced in this article by Definition 13 in Section 3.3. The
following operation will be denoted by the symbol “•”; the usual notation for multiplication is reserved for
Definition 13. Note that multiplication of a scalar and a McCormick object was treated as a UIF in Tables 1
and 2; the following definition instead concerns multiplication of two McCormick objects.

Definition 22 (from [33]) Define the classical McCormick multiplication operation • : MR2→MR so that,
for each X ,Y ∈MR,

•(X ,Y )≡X •Y := (xByB,z),

where z ≡ [z,z] ∈ IR is defined in terms of the intermediate quantities v := xB ∩xC and w := yB ∩yC as
follows:

z := max
(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
,

z := min
(
(yBv)+(xBw)− xByB, (yBv)+(xBw)− xByB

)
.
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Definition 23 (from [33]) Define a function mid : R3 → R as mapping to the median of its three scalar
arguments. Given a UIF u : B ⊂ R→ R that satisfies Assumption 1, define U : MB→MR so that for each
X ∈MB, U (X ) := (ũ(xB),z), where

z := [ucv(xB,mid(ζ min
u (xB),xC,xC)),ucc(xB,mid(ζ max

u (xB),xC,xC))].

B Relaxations for UIFs

This appendix presents various results concerning the UIF relaxations ucv and ucc described in Definition 3.
Satisfaction of Assumptions 1 and 2 is also discussed.

Lemma 12 Consider an interval x∈ IR, a Lipschitz continuous function u :x→R, and the convex envelope
ucv : x→ R of u on x. Then, ucv(x) = u(x) and ucv(x) = u(x). Moreover, ucv is Lipschitz continuous on x,
with the same Lipschitz constant as u.

Proof The required result is trivial if x = x, so assume that x < x. Let ku denote a Lipschitz constant for u on
x. Applying the definition of the convex envelope,

u(y)≥ ucv(y)≥ u(x)− ku(y− x), ∀y ∈ x; (8)

the first inequality above is due to u dominating ucv, and the second inequality is due to ucv dominating each
convex underestimator of u on x. Setting y to x in the above inequality chain yields ucv(x) = u(x).

A similar argument yields:

u(y)≥ ucv(y)≥ u(x)+ ku(y− x), ∀y ∈ x; (9)

setting y to x yields ucv(x) = u(x).
Thus, (8) and (9) become:

ucv(y)−ucv(x)≥−ku(y− x), ∀y ∈ x,

ucv(y)−ucv(x)≥ ku(y− x), ∀y ∈ x.

Defining D+ucv and D−ucv as the right-derivative and left-derivative of ucv described in [16, Part I, Theo-
rem 4.1.1], it follows from [16, Part I, Proposition 4.1.3] that D+ucv(x) and D−ucv(x) both exist, are finite,
and satisfy

D+ucv(x)≥−ku, and D−ucv(x)≤ ku.

Thus, ucv is continuous at x and x. Moreover, [16, Part I, Theorem 4.2.1] implies that for each y ∈ int(x),
each subgradient of ucv at y is an element of [−ku,ku]. This result, combined with the mean-value theorem
[16, Part I, Theorem 4.2.4], shows that ucv is Lipschitz continuous on x, with a Lipschitz constant of ku. ut

Lemma 13 Consider an interval x ∈ IR, and a C 1 function u : x→ R. The convex envelope ucv : x→ R of
u on x is also C 1 on x.

Proof The required result is trivial if x = x, so assume that x < x. Theorem 3.2 in [13] implies that ucv is C 1

on (x,x) = int(x); it remains to be shown that ucv is also C 1 at x and x. Noting that u is Lipschitz continuous
on x, construct the right-derivative D+ucv and the left-derivative D−ucv as in the proof of Lemma 12. As
in the proof of Lemma 12, D+ucv(x) and D−ucv(x) each exist and are finite. Define the following function,
which extends the domain of ucv to R:

ψ : R→ R : y 7→

 ucv(x)+(D+ucv(x))(y− x), if y < x,
ucv(y), if y ∈ x,
ucv(x)+(D−ucv(x))(y− x), if x < y.

The function ψ is evidently continuous, and is C 1 at each y ∈ R\{x,x}. Applying the definitions of D+ucv

and D−ucv, it follows that ψ is differentiable at x and x as well; thus,

∇ψ(y) =

D+ucv(x), if y≤ x,
∇ucv(y), if y ∈ int(x),
D−ucv(x), if x≤ y.

This equation, together with [16, Part I, Theorem 4.2.1(iii)], shows that ψ is C 1 even at x and x, and is
therefore C 1 on R. Hence, ucv is C 1 on x. ut
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Example 7 Suppose the function u : R→ R : z 7→ z2 is considered as a UIF. Since u is convex, it is its
own convex envelope on any subinterval of R. In line with Remark 2, if i = 1, then setting ucv(x, ·) ≡ u
for each x ∈ IR is consistent with Definition 3 and Assumption 1. However, on an interval y with y < 0 <

y, ζ min
u (y) = 0 ∈ int(y), but ∇2u(0) = 2, so setting ucv(y, ·) ≡ u is inconsistent with Assumption 1 when

i = 2. Nevertheless, it is readily shown that the following choice of ucv is consistent with Definition 3 and
Assumption 1 when i = 2:

ucv(x,z) :=


z2, if 0 /∈ (x,x),

z3

(x) , if x < 0 < x and 0≤ z,

z3

(x) , if x < 0 < x and z < 0.

Observe that setting ucc(x, ·) to be the affine concave envelope of u on x is consistent with Assumption 1,
since, in this case, either x or x will be a valid choice of ζ max

u (x). Lemma 14 below shows that the relaxations
described in this example also satisfy Assumption 2.

Example 8 Suppose the function u :R→R : z 7→ |z| is considered as a UIF. In the spirit of the previous exam-
ple, it is readily confirmed that the following choice of ucv is consistent with Definition 3 and Assumption 1
for each i ∈ {1,2}:

ucv(x,z) :=


|z|, if 0 /∈ (x,x),

z2+i

x1+i , if x < 0 < x and 0≤ z,∣∣∣ z2+i

x1+i

∣∣∣ , if x < 0 < x and z < 0.

As in the previous example, observe that setting ucc(x, ·) to be the affine concave envelope of u on x is
consistent with Assumption 1.

Example 9 For some fixed k ∈ N, suppose the function u : R→ R : z 7→ z2k+1 is considered as a UIF. In line
with Remark 2, if i = 1, setting ucv(x, ·) and ucc(x, ·) to be the convex/concave envelopes of u described
in [22] is consistent with Definition 3 and Assumption 1. If i = 2, then it is readily verified that the following
choices of ucv and ucc are consistent with Definition 3 and Assumption 1:

ucv(x,z) :=


x2k+1 +(x2k+1− x2k+1)

(
z−x
x−x

)
, if x≤ 0,

x2k+1
(

x−z
x−x

)
+(max{0,z})2k+1, if x < 0 < x,

z2k+1, if 0≤ x,

ucc(x,z) :=


z2k+1, if x≤ 0,
x2k+1

(
z−x
x−x

)
+(min{0,z})2k+1, if x < 0 < x,

x2k+1 +(x2k+1− x2k+1)
(

z−x
x−x

)
, if 0≤ x.

The functions ucv(x, ·) and ucc(x, ·) described above are evidently strictly increasing on x for each x ∈ IR.
Thus, setting ζ min

u (x) := x and ζ max
u (x) := x is consistent with Definition 3. Lemma 15 below shows that the

relaxations described in this example also satisfy Assumption 2.

Lemma 14 Consider the relaxation schemes {ucv(x, ·),ucc(x, ·)}x∈IR for u : z 7→ z2 on R described in Ex-
ample 7. These schemes satisfy Assumption 2.

Proof By [6, Theorem 10], the concave relaxations of u described in Example 7 are pointwise convergent
of order 2, as are the convex relaxations described in Example 7 when i = 1. It remains to consider only the
convex relaxations of u when i = 2.

Now, if x ∈ IR but 0 /∈ int(x), then u(z)−ucv(x,z) = 0 for all z ∈ x. If, instead, x ∈ IR and 0 ∈ int(x),
then

sup
z∈x

(u(z)−ucv(x,z)) = max

{
sup

z∈[x,0]
(u(z)−ucv(x,z)), sup

z∈[0,x]
(u(z)−ucv(x,z))

}
,

= max

{
sup

z∈[x,0]

(
z2− z3

(x)

)
, sup

z∈[0,x]

(
z2− z3

(x)

)}
,

= max
{ 4

27 x2, 4
27 x2} ,

≤ 4
27 (widx)2.
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Combining the above cases,

sup
z∈x

(u(z)−ucv(x,z))≤ 4
27 (widx)2, ∀x ∈ IR,

as required. ut

Lemma 15 For fixed k ∈ N, consider the relaxation schemes {ucv(x, ·),ucc(x, ·)}x∈IR for u : z 7→ z2k+1 on
R described in Example 9. These schemes satisfy Assumption 2.

Proof Again, by [6, Theorem 10], the relaxations of u described in Example 9 when i = 1 are pointwise
convergent of order 2; it remains only to demonstrate the i = 2 case. It will be shown that the convex relax-
ations ucv(x, ·) of u are pointwise convergent of order 2; a similar argument applies to the concave relaxations
ucc(x, ·).

Consider any fixed interval q ∈ IR, and any x∈ Iq. If i= 1 or 0 /∈x, then ucv(x, ·) is the convex envelope
of u on x, which, by [6, Theorem 10], is pointwise convergent of order 2 with respect to x.

If i = 2 and 0 ∈ x, then, noting that ucv(x, ·) is increasing, we obtain:

sup
z∈x

(u(z)−ucv(x,z))≤ sup
z∈x

(u(z)−ucv(x,x))

= sup
z∈x

(z2k+1− x2k+1)≤ (x− x)2k+1 +(x− x)2k+1 ≤ 2(widq)2k−1(x− x)2.

The above results together show that ucv(x, ·) is pointwise convergent of order 2 to u with respect to x,
as required. ut

C Intermediate results

This appendix establishes key intermediate results that are used in the proof of Theorem 2.

C.1 Establishing elemental relaxation functions

The following theorem shows that Definitions 21, 13, and 23 provide relaxation functions of addition, multi-
plication, and UIFs; the remainder of this section is concerned with proving this theorem.

Theorem 5 The functions + : MR2
prop→MRprop,×i : MR2

prop→MRprop, and U : MB→MR described in
Definitions 21, 13, and 23 are relaxation functions for + : R2→R, × : R2→R, and u : B→R, respectively.

Proof This theorem combines Lemmata 16–20 below. ut

Lemma 16 The function + : MR2
prop → MRprop is coherently concave, inclusion monotonic, and a Mc-

Cormick extension of + : R2→ R.

Proof This result follows from Theorem 2.4.20 in [33], noting that for any choice of X ,Y ∈ MRprop,
xB ∩xC = xC and yB ∩yC = yC. ut

Lemma 17 The function ×i : MR2
prop→MRprop is coherently concave.

Proof Consider a coherent pair (X1,Y1),(X2,Y2) ∈MR2
prop, and a scalar ` ∈ [0,1]. Since this pair is coher-

ent, define xB := xB
1 = xB

2 and yB := yB
1 = yB

2 . Define Q1 := X1Y1 and Q2 := X2Y2. Using the definition
of the squashing operation, it follows that qB

1 = qB
2 = xByB =: qB, and so Q1 and Q2 are coherent. Define

X0 := Conv(`,X1,X2), and define Y0 and Q0 analogously. To obtain the required result, it suffices to show
that X0Y0 ⊃Q0.

If qB = qB =: q, then the definition of the squashing operation implies that X0Y0 = [q,q] = Q0, as
required. Thus, it will be assumed throughout the rest of this proof that qB < qB.
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For each j ∈ {0,1,2}, define z j ≡ [z j,z j] ∈ IR such that

z j := νi

(
(yBxC

j )+(xByC
j )− xByB, (yBxC

j )+(xByC
j )− xByB, pqB

)
,

and z j := λi

(
(yBxC

j )+(xByC
j )− xByB, (yBxC

j )+(xByC
j )− xByB, pqB

)
.

Since qB
1 = qB

2 =xByB = qB, the required inclusion, X0Y0⊃Conv(`,Q1,Q2), is equivalent to the inclusion:

Squi((q
B,z0))⊃ Conv(`,Squi((q

B,z1)),Squi((q
B,z2))),

which is in turn equivalent to the inclusion:

belti((q
B,z0))⊃ `belti((q

B,z1))+(1− `)belti((q
B,z2)).

Thus, due to Lemma 8, it suffices to demonstrate the following inclusion:

belti((q
B,z0))⊃ belti(Conv(`,(qB,z1),(q

B,z2))),

which can be rewritten as:

belti((q
B,z0))⊃ belti((q

B, [`z1 +(1− `)z2, `z1 +(1− `)z2)]).

Since belti is inclusion monotonic, it thus suffices to demonstrate the inequalities:

z0 ≤ `z1 +(1− `)z2, and z0 ≥ `z1 +(1− `)z2.

The first of these inequalities will be demonstrated here; the second can be shown to hold by an analogous
argument. For each j ∈ {0,1,2}, define:

α j := (yBxC
j )+(xByC

j )− xByB, and β j := (yBxC
j )+(xByC

j )− xByB.

Now, for each j ∈ {0,1,2},

(yBxC
j ) =

 yBxC
j if yB ≥ 0,

yBxC
j if yB < 0.

Moreover, by definition of the Conv operation,

xC
0 = `xC

1 +(1− `)xC
2 , and xC

0 = `xC
1 +(1− `)xC

2 .

Combining the above results, it follows that

(yBxC
0 ) = `(yBxC

1 )+(1− `)(yBxC
2 );

an analogous argument shows that

(xByC
0 ) = `(xByC

1 )+(1− `)(xByC
2 ).

Adding these two equations and subtracting the constant term xByB, it follows that

α0 = `α1 +(1− `)α2;

an analogous argument shows that
β0 = `β1 +(1− `)β2.

Thus,
νi(α0,β0, pqB ) = νi(`α1 +(1− `)α2, `β1 +(1− `)β2, pqB ),

which, by Lemma 7, implies that

νi(α0,β0, pqB )≤ `νi(α1,β1, pqB )+(1− `)νi(α2,β2, pqB ).

Comparing this inequality with the definitions of α j , β j , and z j for each j ∈ {0,1,2}, it follows immediately
that

z0 ≤ `z1 +(1− `)z2,

as required. ut
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Lemma 18 The function ×i : MR2
prop→MRprop is inclusion monotonic.

Proof Consider any X1,X2,Y1,Y2 ∈ MRprop such that X2 ⊂ X1 and Y2 ⊂ Y1. It will be shown that
X2Y2 ⊂X1Y1. Since × : IR2→ IR is inclusion monotonic, it follows that xB

2 y
B
2 ⊂ xB

1 y
B
1 , and so pxB

2 y
B
2
≤

pxB
1 y

B
1

. By construction xC
2 ⊂ xC

1 and yC
2 ⊂ yC

1 . Define z1 ∈ IR as in Definition 13 for the product X1Y1,
and define z2 ∈ IR analogously for the product X2Y2.

Due to Lemma 9 and the inclusion xB
2 y

B
2 ⊂ xB

1 y
B
1 , it suffices to show that z2 ⊂ z1. It will be shown

that z2 ≥ z1; an analogous argument shows that z2 ≤ z1. In turn, due to Lemma 6 and the inequality pxB
2 y

B
2
≤

pxB
1 y

B
1

, it suffices to demonstrate the inequalities:

(yB
1 x

C
1 )+(xB

1 y
C
1 )− xB

1 yB
1 ≤ (yB

2 x
C
2 )+(xB

2 y
C
2 )− xB

2 yB
2 ,

and (yB
1 x

C
1 )+(xB

1 y
C
1 )− xB

1 yB
1 ≤ (yB

2 x
C
2 )+(xB

2 y
C
2 )− xB

2 yB
2 .

Noting that xC
j = xB

j ∩xC
j and yC

j = yB
j ∩yC

j for each j ∈ {1,2} by construction, the proof of [33, Theo-
rem 2.4.23] demonstrates the above inequalities. ut

Lemma 19 The function ×i : MR2
prop→MRprop is a McCormick extension of × : R2→ R.

Proof Choose x,y ∈R, and set X0 := ([x,x], [x,x])∈MRprop and Y0 := ([y,y], [y,y]) ∈MRprop. Observe that
[x,x][y,y] = [xy,xy], and that p[x,x] = p[y,y] = p[x,x][y,y] = 0. Thus, according to Definition 13 and the established
properties of γi and σi, it follows that:

X0Y0 = Squi(([x,x][y,y],z)),

where z ≡ [z,z] is defined as follows:

z := νi

(
(y[x,x])+(x[y,y])− xy, (y[x,x])+(x[y,y])− xy, 0

)
= νi(xy,xy,0) = γi(xy,xy,0) = xy,

z := λi

(
(y[x,x])+(x[y,y])− xy, (y[x,x])+(x[y,y])− xy, 0

)
= λi(xy,xy,0) = σi(xy,xy,0) = xy.

Thus, X0Y0 = Squi(([xy,xy], [xy,xy])) = ([xy,xy], [xy,xy]). ut

Lemma 20 (Theorems 2.4.27, 2.4.29, and 2.4.30 in [33]) For any UIF u : B ⊂ R→ R, the function U :
MB→MR is coherently concave, inclusion monotonic, and a McCormick extension of u.

C.2 Establishing continuous and twice-continuous differentiability

The results in this section show that for any natural or unconstrained C i McCormick extension of a fac-
torable function, the convex/concave relaxations suggested by Proposition 4 are indeed C i on their interval
domains, and their gradients may be evaluated using the standard forward or reverse modes of automatic
differentiation [14].

In particular, Lemmata 24 and 25 effectively correct McCormick’s proposed sufficient condition for
differentiability of relaxations of composite functions [23, p. 151], by applying Assumption 1.

Theorem 6 Consider any i∗ ∈ {1,2}. For fixed intervals x1,x2 ∈ IR, the mappings

(y1,y1,y2,y2) 7→+C
(
(x1, [y1,y1]),(x2, [y2,y2])

)
,

(y1,y1,y2,y2) 7→+C
(
(x1, [y1,y1]),(x2, [y2,y2])

)
,

(y1,y1,y2,y2) 7→ ×C
i

(
(x1, [y1,y1]),(x2, [y2,y2])

)
,

and (y1,y1,y2,y2) 7→ ×
C
i

(
(x1, [y1,y1]),(x2, [y2,y2])

)
described in Definitions 21 and 13 are each C i∗ on {(y1,y1,y2,y2)∈R4 : y1≤ y1,y2≤ y2, [y1,y1]∈x1, [y2,y2]∈
x2}.
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Next, consider a UIF u : B⊂R→R that satisfies Assumption 1 with i := i∗, and choose any fixed interval
x ∈ IB. The mappings

(y,y) 7→ uC((x, [y,y])) and (y,y) 7→ uC((x, [y,y])),

described in Definition 23, are each C i∗ on {(y,y) ∈ R2 : y≤ y, [y,y]⊂ x}.

Proof This theorem collects the results of Lemmata 21–25 below. ut

Lemma 21 For fixed intervals x1,x2 ∈ IR, the mappings

(y1,y1,y2,y2) 7→+C
(
(x1, [y1,y1]),(x2, [y2,y2])

)
,

and (y1,y1,y2,y2) 7→+C
(
(x1, [y1,y1]),(x2, [y2,y2])

)
are each C 2 on {(y1,y1,y2,y2) ∈ R4 : y1 ≤ y1,y2 ≤ y2, [y1,y1] ∈ x1, [y2,y2] ∈ x2}.

Proof The definition of + : MR2
prop 7→ MRprop implies that the mappings in question are linear, and are

therefore C 2. ut

Lemma 22 Suppose that scalars a,b,c,d ∈R are such that ab = ad = cb = cd. At least one of the following
conditions must hold:

– both a = c and b = d hold simultaneously,
– a = c = 0,
– b = d = 0.

Proof Suppose that the first condition does not hold; it will be shown that either the second or third condition
must hold in this case. Thus, suppose that either a 6= c or b 6= d. If a 6= c, then the equations (a− c)b = 0 =
(a− c)d imply that b = d = 0, as required. Otherwise, if b 6= d, then the equations a(b−d) = 0 = c(b−d)
imply that a = c = 0, as required. ut

Lemma 23 For each i ∈ {1,2}, given fixed intervals x1,x2 ∈ IR, the mappings

(y1,y1,y2,y2) 7→ ×C
i

(
(x1, [y1,y1]),(x2, [y2,y2])

)
,

and (y1,y1,y2,y2) 7→ ×
C
i

(
(x1, [y1,y1]),(x2, [y2,y2])

)
are each C i on {(y1,y1,y2,y2) ∈ R4 : y1 ≤ y1,y2 ≤ y2, [y1,y1] ∈ x1, [y2,y2] ∈ x2}.

Proof The cases in which wid(x1x2)> 0 and wid(x1x2) = 0 will be considered separately.
Firstly, suppose that wid(x1x2)> 0. For any c∈R, (6) and (7) imply that the mappings (v,w) 7→ (c[v,w])

and (v,w) 7→ (c[v,w]) are both linear on {(v,w)∈R2 : v≤w}, and are therefore C i. This observation, together
with Lemma 5, Lemma 10, and Definition 13, implies that the required result holds.

Secondly, suppose that wid(x1x2) = 0, in which case x1x2 = x1x2 = x1x2 = x1x2. Applying Lemma 22,
it suffices to consider separately the cases in which x1 = x1 = 0, x2 = x2 = 0, and both x1 = x1 and x2 = x2.

If x1 = x1 = 0, then x1x2 = [0,0], in which case the outer squashing operation in Definition 13 implies
that (x1, [y1,y1])× (x2, [y2,y2]) = ([0,0], [0,0]). Thus, each of the two mappings in the statement of the
lemma is the zero mapping, which is trivially C i. The case in which x2 = x2 = 0 is analogous.

Lastly, if both x1 = x1 =: x1 and x2 = x2 =: x2, then x1x2 = [x1x2,x1x2], in which case the outer squashing
operation in Definition 13 implies that (x1, [y1,y1])× (x2, [y2,y2]) = ([x1x2,x1x2], [x1x2,x1x2]). Thus, each
of the two mappings in the statement of the lemma is a constant mapping, which, again, is trivially C i. ut

The following two lemmata essentially show that McCormick’s proposed sufficient condition for differ-
entiable relaxations of composite functions [23, p. 151] becomes valid when Assumption 1 is applied.

Lemma 24 Consider a UIF u : B⊂R→R that satisfies Assumption 1. For any intervals x,y ∈ IB for which
y ⊂ x,

ucv(x,mid(ζ min
u (x),y,y)) = ucv

I (x,y)+ucv
D (x,y)−ucv(x,ζ min

u (x)),

and ucc(x,mid(ζ max
u (x),y,y)) = ucc

I (x,y)+ucc
D (x,y)−ucc(x,ζ max

u (x)).
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Proof The first required equation will be shown to hold; the second can be demonstrated analogously. By
construction,

ucv
I (x,y)+ucv

D (x,y)−ucv(x,ζ min
u (x)) (10)

= ucv(x,max{y,ζ min
u (x)})+ucv(x,min{y,ζ min

u (x)})−ucv(x,ζ min
u (x)).

Since y ≤ y, at least one of the following three cases must apply: ζ min
u (x) ≤ y ≤ y, y ≤ ζ min

u (x) ≤ y, or
y≤ y≤ ζ min

u (x). These cases will be considered separately.
If ζ min

u (x)≤ y≤ y, then y = mid(ζ min
u (x),y,y), and (10) becomes

ucv
I (x,y)+ucv

D (x,y)−ucv(x,ζ min
u (x)) = ucv(x,y)+ucv(x,ζ min

u (x))−ucv(x,ζ min
u (x)) = ucv(x,y).

If y≤ ζ min
u (x)≤ y, then ζ min

u (x) = mid(ζ min
u (x),y,y), and (10) becomes

ucv
I (x,y)+ucv

D (x,y)−ucv(x,ζ min
u (x))

= ucv(x,ζ min
u (x))+ucv(x,ζ min

u (x))−ucv(x,ζ min
u (x)) = ucv(x,ζ min

u (x)).

If y≤ y≤ ζ min
u (x), then y = mid(ζ min

u (x),y,y), and (10) becomes

ucv
I (x,y)+ucv

D (x,y)−ucv(x,ζ min
u (x)) = ucv(x,ζ min

u (x))+ucv(x,y)−ucv(x,ζ min
u (x)) = ucv(x,y).

In each case, the required result is satisfied. ut

Lemma 25 Consider a UIF u : B⊂R→R that satisfies Assumption 1, and an interval x∈ IB. The functions
ucv

I (x, ·), ucv
D (x, ·), ucc

I (x, ·), and ucc
D (x, ·) are each C i on x.

Proof It will be shown that ucv
I (x, ·) and ucv

D (x, ·) are C i; the remaining results can be demonstrated analo-
gously. The cases in which x < ζ min

u (x)< x, ζ min
u (x) = x, or ζ min

u (x) = x will be considered separately.
Suppose first that x < ζ min

u (x)< x. Since the mapping φ := ucv(x, ·) is C 1 on x, regardless of the value
of i ∈ {1,2}, it follows that ∇φ(ζ min

u (x)) = 0. Using this result, it is readily verified that φI := ucv
I (x, ·) and

φD := ucv
D (x, ·) are C 1 on x, with

∇φI(z) =
{

0 if z≤ ζ min
u (x),

∇φ(z) if z > ζ min
u (x),

and ∇φD(z) =
{

∇φ(z) if z < ζ min
u (x),

0 if z≥ ζ min
u (x).

(11)

Furthermore, if i = 2, then Assumption 1 implies that φ is C 2 on x, and that ∇2φ(ζ min
u (x)) = 0. Using this

result, it is readily verified that φD and φI are C 2 on x, with

∇
2
φI(z) =

{
0 if z≤ ζ min

u (x),
∇2φ(z) if z > ζ min

u (x),
and ∇

2
φD(z) =

{
∇2φ(z) if z < ζ min

u (x),
0 if z≥ ζ min

u (x).

Next, suppose that either ζ min
u (x) = x or ζ min

u (x) = x. In these cases, the functions φI and φD are each
equivalent on x to either φ or to the constant mapping φ∗ : z 7→ φ(ζ min

u (x)), and are therefore C i on x. ut

C.3 Establishing convergence order

This section shows that both natural and unconstrained C i McCormick extensions are (1,2)-convergent,
provided that each employed UIF satisfies Assumptions 1 and 2. Thus, convex/concave relaxations based on
these McCormick extensions exhibit second-order pointwise convergence. Each univariate function in Table 2
satisfies Assumption 2 except the absolute-value function; the nonsmoothness of the absolute-value function
prevents second-order pointwise convergence from being achievable [6, Example 5].

Lemma 26 The squashing operation is (1,2)-convergent for each fixed i ∈ {1,2}.
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Proof Choose any X ∈MR. If widxB = 0, then

widM (Squi(X )) = 0 = widM X +2ap(widxB)2.

If widxB > 0, then, using Lemma 3, and noting that Squi(X ) ∈MRprop, it follows that:

widM (Squi(X )) = wid(belti(X ))

= σi(xC,xB, pxB )− γi(xC,xB, pxB )

≤min{xC + pxB ,xB}−max{xC− pxB ,xB}

≤min{xC + pxB ,xB + pxB}−max{xC− pxB ,xB− pxB}

= min{xC,xB}−max{xC,xB}+2pxB

= widM X +2ap(widxB)2. (12)

Noting that X was chosen arbitrarily, the required result follows. ut

Lemma 27 The multiplication operation described in Definition 13 is (1,2)-convergent for each fixed i ∈
{1,2}.

Proof Choose any q≡ (q1,q2) ∈ IR2, and any X ∈ (Mq1)prop,Y ∈ (Mq2)prop, in which case widM X ≤
widxB ≤ widq1, and widM Y ≤ widyB ≤ widq1. Construct the interval z ∈ IR described in Definition 13.
Define Z := (xByB,z) ∈MRprop and p := pxByB for notational convenience.

Applying Lemma 3.9.19 in [31], and noting that xB
1 = xB and yB

1 = yB by construction, there exist
a1,a2 > 0 (which may depend on q1, but are independent of X and Y ) for which

widM (X •Y )≤ a1 widM (X ,Y )+a2(wid(xB,yB))2.

(Recall that the symbol “•” refers to the classical McCormick product described in Definition 22.) Define the
following intermediate quantities:

n1 := (yBxC)+(xByC)− xByB, n2 := (yBxC)+(xByC)− xByB,

n3 := (yBxC)+(xByC)− xByB, n4 := (yBxC)+(xByC)− xByB.

Using Lemma 7,

widM Z ≤ widz

= λi(n3,n4, p)−νi(n1,n2, p)

≤ 1
2 (min{n3 + p,n4}+min{n3,n4 + p})− 1

2 (max{n1− p,n2}+min{n1,n2− p})
≤min{n3 + p,n4 + p}−max{n1− p,n2− p}
= min{n3,n4}−max{n1,n2}+2p

= widM (X •Y )+2p.

Define the absolute value of any interval a ∈ IR as |a| := max{|a|, |a|} ≥ 0. Using [25, Equation 4.3],

wid(xByB)≤ |xB|widyB + |yB|widxB ≤ |q1|wid(xB,yB).

Thus,
p≤ ap(|q1|wid(xB,yB))2.

Combining the above results, Lemma 26, and (12),

widM (X Y ) = widM (Squi(Z ))

≤ widM Z +2p

≤ widM (X •Y )+4p

≤ a1 widM (X ,Y )+a2(wid(xB,yB))2 +4p

≤ a1 widM (X ,Y )+(4ap|q1|2 +a2)(wid(xB,yB))2;

this yields the required result, since a1, a2, ap, and |q1| are each independent of X and Y . ut
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Theorem 7 Given some i∗ ∈ {1,2} and a factorable function f : B⊂Rn→Rm whose composed UIFs each
satisfy Assumptions 1 and 2 with i := i∗, any natural C i∗ McCormick extension F : MBprop →MRm of f
is (1,2)-convergent. Any unconstrained C i∗ McCormick extension Func : MB→MRm of f is also (1,2)-
convergent.

Proof As discussed in [31, Section 3.9.7], the composition of (1,2)-convergent functions is itself (1,2)-
convergent. The addition operation + : MR2

prop→MRprop is (1,2)-convergent [31, Lemma 3.9.17], as is any
UIF which satisfies Assumption 2 [31, Lemma 3.9.23]. Lemmata 26 and 27 show that the squashing operation
and the multiplication operation described in Definition 13 are each (1,2)-convergent as well. Combining
these results, F and Func are each (1,2)-convergent. ut
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16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. A Series of

Comprehensive Studies in Mathematics. Springer-Verlag, Berlin (1993)
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