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why single-ion?
• high transference number

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015).
Liang, S. et al. Macromolecules 47, 4428–4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589–6595 (2015).

transference number
t+ = fraction of current carried by cation

Ionomer Melts as Single-Ion Conductors



Ionomer Melts as Single-Ion Conductors
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why single-ion?
• high transference number
• no concentration gradients

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015).
Liang, S. et al. Macromolecules 47, 4428–4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589–6595 (2015).
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Ionic Aggregates in Ionomers
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Coulombic forces favor aggregates
polymer entropy limits size
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nm-scale ionic aggregates

“ionomer peak”
• ubiquitous
• low wavevector peak in scattering
• from inter-aggregate scattering

Yarusso & Cooper, Macromolecules, 1983



Ionic Conductivity in Ionomers
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low due to low , slow polymer motion, ionic aggregates 

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015) Bartels, J. et al. Macromolecules 48, 111–118 (2015)

need DC > 10-4-10-3 S/cm for applications



How do we improve conductivity?
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design percolated morphologies?

ceramics can be superionic conductors

with f > 1

Richards, W. D. et al. Nature Communications 7, 1–8 (2016).

Na10SnP2S12

0.4 mS/cm at room temperature

f ≈ 1.8

example: Na10SnP2S12



Hydrated Ionomers
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polymer electrolyte

Nafion

Elliott, J. A. & Paddison, S. J. Phys Chem Chem Phys 9, 2602 (2007).



Ion Transport in Percolated Clusters
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hydrated: form percolated water/ionic clusters
close sulfonic acid groups important?

melt:  ionic aggregates can help ions move collectively

Maalouf, M. et al. International Journal of Hydrogen 
Energy 39, 2795–2800 (2014).

Lu, K., Maranas, J. K. & Milner, S. T. 
Soft Matter. Soft Matter 12, 3943–
3954 (2016).



Rest of the Talk
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• melts of precise poly(ethylene-co-acrylic acid) (pAA)

• atomistic simulations

• morphology and comparison to X-ray

• dynamics and comparison to QENS

• coarse-grained simulations

• hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)

• atomistic simulations



Model Materials: Precise Ionomers
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PE backbone with precisely spaced carboxylic acid functional groups

p9AA –43%Li

Precise spacer 
length (p9, p15, 
p21)

Counterion 
type (Li+, Na+, 
Cs+, Zn2+)

Neutralization 
level

Wagener group, University of Florida

Total scattering;
predominantly 
counterions in 
ionomer peak

M. E. Seitz et al., J. Am. Chem. Soc. 2010, 132, 8165-8174. 



Atomistic MD Simulations
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• Variations in:

• cation type: M+ = Li+, Na+, Cs+, Zn2+

• neutralization level = % COO-M+ vs COOH

• spacing length: p9, p15, p21

• All atom OPLS-AA force-field

• 80-200 polymers, n = 4 repeat units (4 acid groups)

• ~ 64 Å box, total of ~25,000 atoms

• NVT ensemble, 150°C  well above Tg

• 30 ns (400 ns in one case)

• LAMMPS



p21AA-43%Li

Morphology: Li-neutralized pAA
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coloring by cluster

p9AA-10%Li p9AA-43%Li p9AA-100%Li

Bolintineanu et al, ACS Macro Lett, 2013

TYPE II (stringy) TYPE III
(fully percolated)

TYPE I
(compact, isolated)

TYPE II (stringy)



Closer look at aggregates
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Two mechanisms of aggregate formation:
1. Counterion-oxygen association  dominant at moderate to high neutralization
2. Hydrogen-bonded networks  dominant at low neutralization

p9AA-10%Li p9AA-43%Li p9AA-100%Li



Comparison to X-ray Scattering
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Buitrago, C. F. et al. Macromolecules 48, 1210–1220 (2015).



Quasi-Elastic Neutron Scattering
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incoherent, inelastic:  sensitive to self-motion of hydrogens
scattering intensity proportional to I(Q,)

G(r,t): probability that atom is at r at 
time t, given it was at 0 at time t=0



Dynamics: QENS and MD
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QENS

DCS instrument at NIST

MD simulations

new simulations: all chains similar length ( ≈ 84 carbons/backbone)

calculate self-part of van Hove correlation function Gs(r,t) for hydrogens
exclude chain ends



Force Field
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OPLS-AA: PE crystallizes at 150° C!  (Tm ≈ 130 °C)

L-OPLS: newly parameterized for long hydrocarbons

Siu, S. W. I., Pluhackova, K. & Böckmann, R. A. J Chem Theory Comput 8, 1459–1470 (2012).

• correct gel-to-liquid transition temp in pentadecane
• improved viscosity, diffusion coefficients



Test of L-OPLS Force Field
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Morhenn, H., Busch, S. & Unruh, T. J Phys-
Condens Mat 24, 375108 (2012).

hexadecane, 90 °C PE, 204 °C 

Arbe, A. & Colmenero, J. Phys Rev E 80,
(2009).
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Our data: PE
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ADMET PE, Mn = 44.9 kg/mol
MD simulations, 84 C’s,  1.2 kg/mol

time (ns)



Acid Copolymers
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excellent agreement between QENS and MD

amorphous halo:  Q ≈ 1.35 Å-1

ionomer peak: Q ≈ 0.3 – 0.6 Å-1
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Fit S(Q,t) to Two KWW Functions
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Dynamics from KWW

22

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1E-3

0.01

0.1

1 Structural

Fast

R
e

la
xa

ti
o
n

 T
im

e
 (

n
s)

Q (A-1)

p9AA
p15AA
p21AA
PE

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.0

0.2

0.4

0.6

0.8

1.0

S
tr

e
tc

h
in

g
 P

a
ra

m
e
te

r 
B

e
ta

Q (A-1)

p9AA

p15AA

p21AA

PE

Fast

Structural

fast process:  -process, local motions
slow process: structural (segmental) motion



Local Dynamics
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short times:  H1 motion much slower than middle of chain
long times:   aggregates rearrange, all H motion similar



Li Ionomers: L-OPLS
p21-37%Li p15-38%Li p9-20%Li

p21-100%Li p15-100%Li p9-100%Li



Early-time dynamics in p21-x%Li
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Ions in the polymer backbone: 
“ionenes”

backbone beads 
per repeat unit - Na+

Ions pendant to the backbone:
“pendants”

Nbb = 3 

Nbb = 3, 5, 7, 9 (11)
800 polymers
100% neutralization

Longer times with MD

bulk dielectric constant = 4
counterion size = ½
Bjerrum length = 35.7

ion dynamics require longer simulations
• compare to QENS
• look at ion transport mechanisms

for better statistics at long times: coarse-grained simulations



Ionenes: percolated

Nbb = 9

εr = 4 

Small clusters Large clusters
Only charged beads shown

Pendants: not percolated

-

+ +-

Aggregate Morphology: Architecture Matters

27Hall et al., Phys. Rev. Lett. (2011)



• Ionenes, pendants similar at short times

• Pendants slower but qualitatively similar at long times

Mean Squared Displacements
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• Ionenes have faster diffusion than pendants

• Percolated systems have faster diffusion

Counterion Diffusion Constants
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Hall et al., Macromolecules (2012)
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MSDs in an External E Field
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diffusion drift in the E field

ionene N = 3 pendant N = 9

dashed = anion, solid = cation



Conductivity
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discrete, non-percolated morphology

• conductivity decreases with decreasing ion concentration
• lowest for non-percolated aggregate morphology

Ting et al., Macromolecules, 2015
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Ion motion is correlated
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from non-equilibrium simulation in field:

from equilibrium Einstein relation
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Ting et al., Macromolecules, 2015

f factor < 1

ionic aggregates slow conduction



Rest of the Talk
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• melts of precise poly(ethylene-co-acrylic acid) (pAA)

• atomistic simulations

• morphology and comparison to X-ray

• dynamics and comparison to QENS

• coarse-grained simulations

• hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)

• atomistic simulations



SDAPP Membranes
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• high Tg

• high modulus
• high thermomechanical stability
• high conductivity

Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D. 
Macromolecules 38, 5010–5016 (2005); Tang, Z. et al., J 
Electrochem Soc 161, A1860–A1868 (2014).



SDAPP Simulations
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short SDAPP chain

yellow = sulfur
red = oxygen
cyan = carbon
white = hydrogen

70 chains
3 monomers/chain

# sulfonic acids/monomer = S = 1, 2, 4 
# waters/sulfonic acid = 

OPLS-AA, improvements for aromatics
TIP4P/2005 water model

H3O
+



Static Structure Factors
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Cluster Morphologies
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S = 1

increasing water

 = 3  = 5  = 10



Cluster Morphologies
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 = 3

increasing sulfonation level

S = 1 S = 2 S = 4

 = 3

How do we better characterize percolated morphologies?



New Clustering Algorithm
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base on density as well as distance:

1. compute two quantities for every atom of interest:
 : number of other atoms closer than cutoff
 : distance from the closest atom with a higher density 

2. define cluster centers as atoms with high  and high 
3. outliers have low  and high 
4. remaining atoms go in the same cluster as their nearest neighbor with higher 

A. Rodriguez and A Laio, Science 344, 1492 (2014)



Examples of Density-Based Clusters
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SDAPP Clusters
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density-based algorithm resolves differences in percolated systems



Cluster Size and Shape
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radius of gyration

anisotropy

S 2= 0.4

S 2= 0.05



Hydronium Coordination
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probability of H3O
+ near SO3

- and H2O

H3O
+ more loosely bound with more water, percolated clusters



Conclusions
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• MD simulation can reveal ionic aggregate morphologies

• good agreement with X-ray scattering

• MD in agreement with QENS for acid copolymers

• chain dynamics are heterogeneous

• slowed by acid aggregates

• even slower with ionic aggregates

• MD for SDAPP

• increasing water, sulfonation leads to percolated clusters

• density-based algorithm for more information on percolated clusters

Future work: continued correlation of dynamics with morphology
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Building and Equilibrating

46

Monte Carlo simulation
5 boxes with different initial conditions/system

pressure annealing temperature annealing

final densities match experiment: ≈ 1.2 g/cm3



Cluster Size from NMR
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spin diffusion experiments can measure domain sizes

• magnetize one kind of proton
• watch the magnetization diffuse to other protons as a function of time
• fit the data to extract a distance = domain size

• new: use MD morphology (acids, waters) as input
• calculate expected spin diffusion
• compare to measured spin diffusion by NMR

magnetization in acid/water domains

aromatic 
domains

sulfonic acid/water 
domains

magnetization with 
MD morphology
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Time-dependent Structure Factors
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ionenes N = 3 pendants N = 9

decay of counterion-counterion
scattering peak

0.66 <  < 0.96



Ion Trajectories: CG MD
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periodic pendants Nbb=9

ions move by cluster 
rearrangment/collision

2 separate clusters
Follow one counterion

Clusters have collided

Ion has moved to other cluster.
NEVER separated from a cluster.

Clusters reform with ion moved

Hall et al., Macromolecules (2012)



• Ionenes conduct better than pendants

• Greater concentration of ions increases diffusion

• Blocky random copolymerization increases diffusion

Counterion Diffusion Constants

Ionenes

εr = 4
50

Hall et al., Macromolecules (2012)



Li MSDs
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• Experimental/Simulation Agreement

• Peak location similar

• Increasing spacing moves peak to left

• Random spacing moves and broadens peak

Experiment Simulation

Hall et al., J. Am Chem. Soc. (2012)
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CG MD: Comparison to X-ray Scattering
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