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lonomer Melts as Single-lon Conductors ()&=,
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why single-ion? transference number
* high transference number t* = fraction of current carried by cation
o H+
Pt T+ o

Wang, J.-H. H. et al. Macromolecules 48, 7273—-7285 (2015).
Liang, S. et al. Macromolecules 47, 4428-4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589-6595 (2015).




lonomer Melts as Single-lon Conductors () &s
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why single-ion?

« high transference number electrolyte
* no concentration gradients Q
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Wang, J.-H. H. et al. Macromolecules 48, 7273—-7285 (2015).
Liang, S. et al. Macromolecules 47, 4428-4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589-6595 (2015).




lonic Aggregates in lonomers )

“ionomer peak”

* ubiquitous

 low wavevector peak in scattering
 from inter-aggregate scattering

Coulombic forces favor aggregates
polymer entropy limits size
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Yarusso & Cooper, Macromolecules, 1983
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low due to low ¢, slow polymer motion, ionic aggregates
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Wang, J.-H. H. et al. Macromolecules 48, 7273-7285 (2015) Bartels, J. et al. Macromolecules 48, 111-118 (2015)

need cpc > 104-10-2 S/cm for applications



How do we improve conductivity? @
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ceramics can be superionic conductors

f _ Dcharge

with f> 1
Dself

example: Na,,SnP,S,,

|

0.4 mS/cm at room temperature

b
'1\

f=1.8 .

Richards, W. D. et al. Nature Communications 7, 1-8 (2016).

design percolated morphologies?




Hydrated lonomers

Excess hydrogen Water
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Elliott, J. A. & Paddison, S. J. Phys Chem Chem Phys 9, 2602 (2007).
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lon Transport in Percolated Clusters [ g
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hydrated: form percolated water/ionic clusters
close sulfonic acid groups important?

Maalouf, M. et al. International Journal of Hydrogen
Energy 39, 2795-2800 (2014).

melt: ionic aggregates can help ions move collectively

EE Lu, K., Maranas, J. K. & Milner, S. T.

Soft Matter Soft Matter 12, 3943—
3954 (2016).




Rest of the Talk 3 iz,
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* melts of precise poly(ethylene-co-acrylic acid) (pAA)
 atomistic simulations
* morphology and comparison to X-ray M
« dynamics and comparison to QENS
e coarse-grained simulations

* hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)
 atomistic simulations o




Model Materials: Precise lonomers @
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PE backbone with precisely spaced carboxylic acid functional groups

POAA " pISAA N p21AA .
—— 2000F T - . : .
Neutralization —— Precisa |
level @ Random Total scattering;
f predominantly
1900 counterions in

9AA 430/ Li '5 ionomer peak
p 0 £ 1000
8
=
/ 2 < [Zn82
500 | Znd1
Precise spacer Counterion o
length (p9, p15, type (Li*, Na*,
p21) Cs*, Zn?*) 0
qlnm’]
Wagener group, University of Florida M. E. Seitz et al., J. Am. Chem. Soc. 2010, 132, 8165-8174.




Atomistic MD Simulations )

* Variations in: 0 OM*
- cation type: M* = Li*, Na*, Cs*, Zn2* {\)\/\/\/\/t
« neutralization level = % COO-M* vs COOH POAA "

* spacing length: p9, p15, p21

* All atom OPLS-AA force-field

» 80-200 polymers, n = 4 repeat units (4 acid groups)
« ~ 64 A box, total of ~25,000 atoms

* NVT ensemble, 150°C > well above T

« 30 ns (400 ns in one case)

 LAMMPS




Morphology: Li-neutralized pAA

D9AA-10%L]

1 TYPE Il (stringy)

coloring by cluster

DOAA-43%Li

TYPE Il (stringy)

021AA-43%Li
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P9AA-100%Li

(fully percolated)

TYPE Il

TYPE |

(compact, isolated)

Bolintineanu et al, ACS Macro Lett, 2013




Closer look at aggregates ) i,

D9AA-10%L]

V" QLU @o

Two mechanisms of aggregate formation:
1. Counterion-oxygen association = dominant at moderate to high neutralization

2. Hydrogen-bonded networks = dominant at low neutralization
13




Comparison to X-ray Scattering )
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p21AA-56%2Zn P9AA-43%Li pP9AA-24%Cs
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Buitrago, C. F. et al. Macromolecules 48, 1210-1220 (2015).




Quasi-Elastic Neutron Scattering )

wr , Ky Energy transfer
E = hw = h(wf—w;)
Wi , kz
—p Sample

Momentum transfer

P = hQ = h(k;—k;)

incoherent, inelastic: sensitive to self-motion of hydrogens
scattering intensity proportional to 1(Q,®)

B f Terp(Q, w)eWdw

S(Q’ t) o Tw
J R(Q,w)e™'dw G(r,t): probability that atom is at r at
time t, given it was at 0 at time t=0
rsin(Qr)
Q

dr

S(0, 1) = / G, 1)
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Dynamics: QENS and MD )

a) DCS QENS
d ] @ Measured S(Q. 0) L
QENS : Total Fit ’
{m— Resolution
100 5 Fast Lofentzian 3
DCS instrument at NIST AL :
n |
g 11
&5 ] :
1
0.1 l—f

2 15 10 5 0 5 10 15
E (meV)

MD simulations

new simulations: all chains similar length ( = 84 carbons/backbone)

calculate self-part of van Hove correlation function G,(r,t) for hydrogens
exclude chain ends
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Force Field )
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OPLS-AA: PE crystallizes at 150° C! (T, =130 °C)

L-OPLS: newly parameterized for long hydrocarbons
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hexane C5-C8-C11-C14 (°)

« correct gel-to-liquid transition temp in pentadecane
« improved viscosity, diffusion coefficients

Siu, S. W. I, Pluhackova, K. & Bockmann, R. A. J Chem Theory Comput 8, 1459-1470 (2012). 17



Test of L-OPLS Force Field

hexadecane, 90 °C
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PE, 204 °C
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Morhenn, H., Busch, S. & Unruh, T. J Phys-
Condens Mat 24, 375108 (2012).

100

Arbe, A. & Colmenero, J. Phys Rev E 80,
(2009).
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Our data: PE )

ADMET PE, M, = 44.9 kg/mol
MD simulations, 84 C’s, 1.2 kg/mol

1.0 4
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0.0 <+

time (ns)
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Acid Copolymers

1.0 g

p21AA S(Q,t) +0.05
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excellent agreement between QENS and MD

amorphous halo: Q= 1.35 A"

relevant length scales:

ionomer peak: Q= 0.3 -0.6 A

10

Intensity (a.u.)
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Fit S(Q,t) to Two KWW Functions ) i
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Dynamics from KWW ) i,
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fast process: [B-process, local motions
slow process: structural (segmental) motion
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National

Local Dynamics ) e,

)100~ N e AT
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short times: H1 motion much slower than middle of chain
long times: aggregates rearrange, all H motion similar
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Li lonomers: L-OPLS rh) deiea

021-37%Li 015-38%Li




Early-time dynamics in p21-x%Li ) .

hydrogen dynamics

—— q=0.45/A
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ionic aggregates further slow polymer motion
25
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Longer times with MD

ion dynamics require longer simulations
« compare to QENS
* look at ion transport mechanisms

for better statistics at long times: coarse-grained simulations

lons in the polymer backbone: lons pendant to the backbone:
“ionenes” ‘pendants”

backbone beads
per repeat unit o o-

ooy SR odt S

® e

Ny, =3,5,7,9 (1) bulk dielectric constant =4
800 polymers counterion size = Y26
100% neutralization Bjerrum length = 35.7c




Aggregate Morphology: Architecture Matters (i) e
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2 ¢ . 7 - Nop, =9
W € = 4 A &
lonenes: percolated Pendants: not percolated

\‘____________,._--—-“"___-"
Small clusters Large clusters
Only charged beads shown

Hall et al., Phys. Rev. Lett. (2011) 27




Mean Squared Displacement (02)

10000 s

1000

100 =

10

0.1

0.01

0.001

Mean Squared Displacements
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* lonenes, pendants similar at short times

* Pendants slower but qualitatively similar at long times

10000 5

1000 =

Periodic Pendants
Nbb=9

1 Periodic lonenes
—anion
E -*-uncharged polymer bead
] ——counterion
“*polymer COM
0.01 0.1 1 10 100 1000 10000 100000 1000000

time (1)

Mean Squared Displacenent (0?)

0.1 =
0.01 1
0.001 =

0'0001 T T TTTTI
0.01

—anion
-*-uncharged polymer bead
—+counterion

“*polymer COM

100 1000 10000 100000 1000000
time (1)



Counterion Diffusion Constants (),
(r?(t)) = 6Dt

0.007 ‘ ‘ 0.01
+— 0.006 —®—jonenes | | -
c —B— pendants c
8 0005 | i 8
z :
S 0.004 - J S 0001 - B
C C
§ 0003 - ] S
(7)) (7))
2 "% ] 2 not percolated
S 0.001 | ] T 0.0001 |- ]
0 \ \ \ \
2 12 01 02 03 04 05 06

ion mole fraction

* lonenes have faster diffusion than pendants
* Percolated systems have faster diffusion

Hall et al., Macromolecules (2012) 29




MSDs in an External E Field )
diffusion drift in the E field
(r2) ~ Dt (ra(t)?) & — (r2(t)%)o = (v3)t?
ionene N = 3 pendantN =9
10°F == E=00 105" == E=00
1t " E=0.10 {04 — E=010
. == E =025 /
f:"g 103
“t” 10%} i
\% i
101t -
10° "'"
- 1 .
102 10° 10* 10°

dashed = anion, solid = cation

t (1)




Conductivity ) s,

\ \ \
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5 discrete, non-percolated morphology
10 |- _
\ \ \ \ \ \ \

2 3 4 5 6 7 8 9 10

« conductivity decreases with decreasing ion concentration
» lowest for non-percolated aggregate morphology

Ting et al., Macromolecules, 2015 31




lon motion is correlated D=

from non-equilibrium simulation in field:  Mi = <%,i>/E

from equilibrium Einstein relation fi = Z€D7g/kT

0.6
0.55 -
0.5 -

ILL_|_ 0.45

— 04
M+ o35
0.3
0.25

—@® —jonenes |-
—B— pendants
: ffactor < 1

. ionic aggregates slow conduction

0.2 \ \ \ | | ! |

Ting et al., Macromolecules, 2015 32
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Rest of the Talk A iz
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* melts of precise poly(ethylene-co-acrylic acid) (pAA)
» atomistic simulations
* morphology and comparison to X-ray {\)\N\/\/}
« dynamics and comparison to QENS
e coarse-grained simulations

* hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)

 atomistic simulations o
& O O O

/S
[X-Aes

H+




SDAPP Membranes )
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H* - -E: 120 - ) N
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* ° I0OBPSH  AsPI |
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0 . . : . ]
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0.24
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. - —* SDAPP 1.4
* highT, § 0% < Soapp25
. (%] -
* high modulus Z 0.6 % \
« high thermomechanical stability 2 o ‘{\
» high conductivity 8 a7 = N
§ 008 ¢ 4 N0 O
a 14 TR ~
E N x5 - - - B
g ooddo . ~3%_
Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D. 0.00 R
Macromolecules 38, 5010-5016 (2005); Tang, Z. et al., J s 4 8 1@ 18
Electrochem Soc 161, A1860—-A1868 (2014). Bathing Sulfuric Acid Molality mol-kg™

34




SDAPP Simulations ) e

short SDAPP chain

yellow = sulfur
red = oxygen
cyan = carbon
white = hydrogen

70 chains # sulfonic acids/monomer=S =1, 2,4
3 monomers/chain # waters/sulfonic acid = A =3, 5, 10

OPLS-AA, improvements for aromatics

TIP4P/2005 water model
35




Static Structure Factors T
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35

30 L

25 L

S(a)

20

15 |

10

show an ionomer peak at low q
intensity decreases as add water

36



Cluster Morphologies )
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increasing water




Cluster Morphologies ) &,
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A=3

increasing sulfonation level

How do we better characterize percolated morphologies?

38
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New Clustering Algorithm )
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A. Rodriguez and A Laio, Science 344, 1492 (2014)

base on density as well as distance:

1. compute two quantities for every atom of interest:
1. p: number of other atoms closer than cutoff
2. &: distance from the closest atom with a higher density p
2. define cluster centers as atoms with high p and high &
3. outliers have low p and high 6
4. remaining atoms go in the same cluster as their nearest neighbor with higher p

A B
o @ 5 1'0__ @
® @ 2 0.8 )

@® ® ® .

@ @ @ @ r 0.6 @
@ & 3) °04-

@ 18
) 0.2

@ @
1 2 3 5
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Examples of Density-Based Clusters @
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SDAPP Clusters )
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Distance-based
algorithm

Density-based
algorithm

Increasing hydration level Increasing sulfonation level

density-based algorithm resolves differences in percolated systems

41




Cluster Size and Shape

Shape anisotropy, k°

Shape anisotropy, k*

radius of gyration Ry =X+ A2+ X3

anisotropy
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S=1,A=3,x=04

S=4,1=10,k%=0.05
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Hydronium Coordination

probability of H;O* near SO5; and H,O

Number of sulfonates

Number of sulfonates

0.0 [T, 0 25

S=1,A=3

8-

6 -

4.

$=1,A=10

0 2 4 6 8 10 12

S=4,A=3

0 2 4 6 8 10 12

Number of waters

0 2 4 6 8 10 12
Number of waters
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§=1,A=3:25%

$5=4,1=10:11%

H;O* more loosely bound with more water, percolated clusters




Conclusions )

« MD simulation can reveal ionic aggregate morphologies
* good agreement with X-ray scattering
« MD in agreement with QENS for acid copolymers
« chain dynamics are heterogeneous
» slowed by acid aggregates
» even slower with ionic aggregates
« MD for SDAPP
 increasing water, sulfonation leads to percolated clusters
+ density-based algorithm for more information on percolated clusters

Future work: continued correlation of dynamics with morphology
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Building and Equilibrating )
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Monte Carlo simulation
5 boxes with different initial conditions/system

pressure annealing temperature annea“ng

L — _ 1000

13f

12¢ P, ... = 10,000 atm . 100 -

14E

10F

plgem™®
(AL () | A2
)

09}

08l

0.7F

final densities match experiment: = 1.2 g/cm3
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Cluster Size from NMR F

spin diffusion experiments can measure domain sizes

* magnetize one kind of proton
« watch the magnetization diffuse to other protons as a function of time
« fit the data to extract a distance = domain size

« new: use MD morphology (acids, waters) as input

« calculate expected spin diffusion

« compare to measured spin diffusion by NMR

magnetization in acid/water domains

sulfonic acid/water
domains

1.0 d=1nm v ¥

aromatic , > e magnetization with
MD morphology

©
oo

domains

o
o

Normalized Intensity
o
~

o
)

@ sgrt(mixing) vs normalized intensity
¥ sqrt{mix) vs N Int

. dried fit (1D) vs Col 14

— as necieved fitvs Col 17

0 2 4 6 8 10 12
Diffusion Time Sqrt(@) (ms'?)

P P e e P T e
1 10 9 8 7 6 5 4 3 2  ppm
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Time-dependent Structure Factors =
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14 | —> ionene, N =3 i
12 pendant, N=9|
decay of counterion-counterion 3 12 I ]
scattering peak D6 i
4 _
S(k,t)/S(k,0) = exp|(—t/7)"] 2l -
0 1 2 3 4 5

0.66 < 8 < 0.96 k (1/0)

ionenes N = 3 pendants N =9

Log[s(k, t)/s(k,0)]
Log[s(k, t)/s(k,0)]

50 100 150 200 0 20000 40000 60000 80000
t (1) t(7)
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lon Trajectories: CG MD

periodic pendants N,,=9

2 separate clusters ’ M

Follow one counterion

w Clusters have collided

Sandia
National _
Laboratories

M lon has moved to other cluster.

NEVER separated from a cluster.

ions move by cluster
rearrangment/collision W

Hall et al., Macromolecules (2012)

M & Clusters reform with ion moved
49




Counterion Diffusion Constants ()&

* lonenes conduct better than pendants
* Greater concentration of ions increases diffusion
* Blocky random copolymerization increases diffusion

lonenes Pendants
0.007 0.007
0.006 ==Periodic 0.006 - ~~Periodic
0.005 7 =8-Random Block 0.005 - ~®-Random Block
DZCI 0.004 - =*=Fully Random 0.004 =*=Fully Random
(0 /T) 0.003 0.003
0.002 0.002
0.001 0.001
0 T T T 0 —{2
3 5 7 9 11 11
Nbb
Hall et al., Macromolecules (2012) &=4 0




Li MSDs =W

100 |
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\ | \
0.01 0.1 1 10 100
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CG MD: Comparison to X-ray Scattering i,

* Experimental/Simulation Agreement

» Peak location similar
* Increasing spacing moves peak to left
« Random spacing moves and broadens peak

Experiment Simulation
90 12
R Na*
80 - 0,0 @
S(K) 10 -
pa; 707 " Seralld -
- 8 )
60 0._0- Nat
50 - M Random block
“ V=5 [N o@e
40 - 1 |
4 -
‘Pseudorandom’
15C-C per COOH 2 -
| N
10 T T T O \ T T T T 7| T T
0 2 4 14 16 0 2 4 6 8 10 12 14 16
k [nm™]

Hall et al., J. Am Chem. Soc. (2012)
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HOS SO3H
S H

OO
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BPSH

Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D.
Macromolecules 38, 5010-5016 (2005)




