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Abstract— In this paper, we consider approaches for detecting
integrity attacks carried out by intelligent and resourceful
adversaries in control systems. Passive detection techniques are
often incorporated to identify malicious behavior. Here, the
defender utilizes finely-tuned algorithms to process information
and make a binary decision, whether the system is healthy
or under attack. We demonstrate that passive detection can
be ineffective against adversaries with model knowledge and
access to a set of input/output channels. We then propose
active detection as a tool to detect attacks. In active detection,
the defender leverages degrees of freedom he has in the
system to detect the adversary. Specifically, the defender will
introduce a physical secret kept hidden from the adversary,
which can be utilized to authenticate the dynamics. In this
regard, we carefully review two approaches for active detection:
physical watermarking at the control input, and a moving
target approach for generating system dynamics. We examine
practical considerations for implementing these technologies
and discuss future research directions.

I. INTRODUCTION

Cyber-Physical Systems (CPSs), engineered systems
which apply computing, communication, and control in phys-
ical spaces, continue to evolve. CPSs involve devices with
widespread sensing, networking, and processing functionali-
ties and are used in applications that require safety, efficiency,
and reliability including manufacturing, water distribution,
waste management, health care, and the smart grid.

Ensuring security is a major challenge in CPSs. Our
interest lies in detecting integrity attacks, where malicious
agents inject inputs at sensors and actuators that drive the
dynamics of the system towards undesired paths. Passive
detection techniques, where the defender leverages finely-
tuned algorithms to make a decision about the health of the
system, can be ineffective against intelligent adversaries. As
such, we consider active detection, where the defender alters
the CPS to reveal otherwise stealthy attacks. We discuss two
approaches for active detection and system authentication:
physical watermarking at the control input, and a moving
target approach for generating system dynamics.

Authentication enables the defender to verify the identity
of components and the system as a whole. In CPSs, this op-
eration has to be performed not only in the cyber realm, but
also within the framework of the physical dynamics. Indeed,
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cryptographic tools are often vulnerable to attacks and the
extra security dimension in the physical dynamics plays a
crucial role in reinforcing security. Physical watermarking
and the moving target allow for this extra dimension.

In watermarking a known noisy input, or watermark, is
injected into the CPS. It is expected that the effect of this
input can be found in the measurement of the true output, due
to the dynamics. If an attacker is unaware of the watermark,
(s)he cannot adequately emulate the system dynamics. Thus,
the watermark acts as a cyber-physical nonce, forcing an
attacker to generate outputs unique to the given inputs at
a chosen time. In the moving target approach, we aim to
address cases where physical watermarking can not pro-
vide sufficient security such as when the defender’s inputs
are compromised or when the adversary leverages model
knowledge to inject stealthy attacks. In our first proposal,
we introduce extraneous states correlated to the ordinary
states of the system. The time varying uncertain dynamics
of the extra states can reveal integrity attacks affecting the
normal states. As an alternative moving target approach, we
examine the formulation of the system dynamics as a hybrid
control system that transitions across multiple modes. We
conclude by discussing application related challenges for
these methods and identifying necessary future directions.

Our research on active detection is motivated significantly
by recent research. In particular, previous work investigated
stealthy attack scenarios such as zero dynamics attacks [1]-
[3], false data injection attacks [4], [S], covert attacks [6],
and replay attacks [7]. Alternative active detection methods
have also been investigated. Specifically, [8] examines a
one time change in the system matrices, [9] investigates
coding sensor outputs, and [10] attempts to design controllers
which prevent system identification from the attacker’s per-
spective. When compared to the moving target [11], each
approach suffers from some drawbacks. In particular, a one
time change in parameters [8] neglects system identification
capabilities from an attacker, coding outputs does not account
for physical attacks on sensors [9], and changing a controller
degrades performance [10].

II. MODELING
A. System Model
We assume that our system is modeled as a discrete time
linear time invariant (LTI) control system as follows:

(D

Here, x;, € R™ is the state vector, up € RP is the set of
control inputs implemented, and y; € R™ is a collection
of sensor measurements, all at time k. In addition, wy ~

Tpr1 = Az + Bug +wg, yr = Czp + vg.



N(0,Q) is independent and identically distributed (IID)
process noise and v, ~ N(0, R) is IID measurement noise.
We assume that (A4, C) is detectable. Moreover, (A, B) and
(A,Qz) are assumed to be stabilizable. While the above
model is relatively simple, the methods to be presented can,
in many cases, be applied to realistic nonlinear systems.

A Kalman filter is used to obtain minimum mean

squared error estimates Ty = E[zg|yo.x] and Zpp1p =
E[zk+1|yo.x]- We assume that the system has been running
for a long time (i.e. since k = —o0) so that the Kalman filter

has converged to a fixed gain linear estimator.

Try1p = AZpp + Bug, Tppp = Tppp—1 + Kzx, 2
K =PCT(CPCT+R)™, zi =yp — Cdgpp—1,  (3)
P =APAT + Q — APCT(CPCT + R)“'CcPAT. (4

B. Attack Model

We consider an adversary who is able to perform integrity
attacks on a subset of actuators and sensors. Without loss of
generality (WLOG) an attack begins at time 0.

Tpy1 = Az + Buy, + Buf + wy, (5)
yr = Czy + Dy, + vy (6)

When inserting Buj, uf € RPI, the attacker has the option
of modifying the defender’s actuators or inserting his/her
own. WLOG, B has full column rank. Additionally, assum-
ing an adversary modifies a set of sensors {s1, S2, -+, S/},
we can define D* € R™*™" entrywise as D%, = 1y—s, v
When performing an integrity attack, we assume the adver-
sary’s goal is to adversely affect the system without being
detected. Such a policy allows an attacker to affect a system
for long periods of time without defender interference.

Remark 1: One may consider authenticated encryption to
detect integrity attacks; however, this technique fails to detect
physical attacks. Physical attacks can violate security while
bypassing countermeasures from cyber security. For instance,
the secrecy, integrity, and availability of measurements from
a temperature sensor can be violated by adding an additional
unencrypted sensor, locally heating the sensor, and placing
a metal cover over the sensor, respectively.

We assume the defender knows the system model M =
{A,B,C,Q, R, 20—} as well as the input and output his-
tories given by u_o.; and y_.o.x. However, the defender
is in general unaware of the parameters of the attack model
including B¢, D, ug.;._;, and dg.,.. We assume the defender
performs passive detection to detect adversaries. In passive
detection, the defender constructs algorithms which leverage
his/her information Zj, to make a decision about the system:
if it is operating normally #, or under attack H;. In a

H
threshold based detector, this can be formulated as g(Zy) 21
H

Ni. As an example, the defender could construct residue
detectors based on the parameter zj, which characterize
the difference between observed and expected behavior.
Under normal operation, zj; has IID Gaussian distribution

N(0,CPCT + R). One example is a x? detector
k
> H(CPCT + R) M a. (7)
t=k—N+1

9(Ty) =

Here, the probability of detection [, and the probability of
false alarm «y, are given by

B = Pr(gi (Z) > mk|H1) . ar = Pr(ge (Z) > mk|Ho) -

While passive detection is often effective against benign
faults, powerful adversaries can damage a CPS if passive
detection is used alone. We next examine such scenarios.

III. STEALTHY ATTACK SCENARIOS

We now examine stealthy attacks against passive detectors.

A. Replay Attack

In [7], [12]-[14], a replay attack is considered. Here,
the adversary has the ability to read and modify all sensor
outputs. The adversary performs the following:

1) (s)he records a long sequence of outputs yo.7.

2) Starting at time 7', (s)he replaces yj, with yi_7. Thus,

Ded} =yp_r — Cxp —vp for T <k <T+T".
3) The attacker adds some harmful input B%ug.
Under certain control policies, replay attacks are asymptoti-
cally stealthy so that limy_,o, B — ax = 0, see Theorem 3
[13]. For instance, if the defender uses state feedback, u, =
Lk, a replay attack is stealthy if A £ (A+BL)(I—-KC)
is Schur stable. Additionally, if ur = h(yg) for some
function h, a replay attack is also stealthy. As an example,
the Stuxnet malware [15] in part used a replay attack to hide
attacks on centrifuges in uranium enrichment plants in Iran.

B. Model Aware Adversaries

Knowledge of the system model can be a powerful tool
for adversaries, allowing them to construct stealthy attack se-
quences. Dynamics may be well known from first principles
or available to malicious insiders. In this section, we will
briefly revisit zero dynamics attacks and stealthy false data
injection attacks. In a zero dynamics attack [8], the nonzero
attack inputs {uf}, {d}} satisfy the following equation

zy, = Ax), + By, 0= Cuzxj, + DY, (8)

for some z(; € R". A nontrivial zero dynamics attack exists
as long as A, B® C, D" is not strongly observable [16].
Here, x{, must belong to the weakly unobservable subspace
V(A,B* C,D*). V C R™ can be described as the largest
subspace [16] for which there are maps F; and F; satisfying

(A+B*F)VCV, (C+DF)V=0. (9
A feasible attack sequence is to select x, € V and have
Tpir = (A+ B Py, up = Ry, di = Paj. (10)

A zero dynamics attack is stealthy when the defender has no
knowledge of x( [8]. Even when the defender has uncertain
knowledge, the attack leads to vanishing bias on the residues
2y In particular let 23} be the residue under normal operation



and assume the system is under attack. The residue’s bias is
given by Az, £ 2, — ;. We have the following result, with
proof omitted due to spacing.

Theorem 2: Under a zero dynamics attack,

Az, = —C(A— AKC)*z). (11)
Because (A, C) is detectable, we know that (A — AKC)
is stable and thus Az, converges to 0. It can be easily
seen that in a x2 detector, limy_o0 B — o, = 0. More
generally, smaller magnitudes of Az, result in poor detection
performance. In fact we have the following result from [17].
Theorem 3: Let 0 < § < 1 and assume
lim supy_, o ﬁsz:}f AP (CPCT + R)7'Az, > e
Then, there exists a detector such that

1
Br > 1—20, Vk, limsup —— log(ay) > €

(12)
k—o0 k

The converse also holds if yy, is ergodic.

Motivated by the relationship of residue biases to de-
tection performance, Mo et al. in [18] and [19] examine
stealthy false data injection attacks and integrity attacks
where AzI'(CPCT + R)™'Azj is bounded. The authors
investigate the perturbations an adversary can introduce to
the state while remaining stealthy.

IV. ACTIVE DETECTION: WATERMARKING

Previously, we observed that some stealthy attacks can
not be detected passively. In this section, we consider active
detection using physical watermarking to expose adversaries.

A. Motivation from Cyber Security: Nonces

Let us consider the Needham Schroeder protocol [20],
which establishes a session key between 2 users, Alice A
and Bob B, by leveraging access to a trusted third party,
server S. In this protocol, Alice shares a session key Kp
with Bob by sending {Kap, A}k, where Kpg is Bob’s
shared key with .S and {} i« denotes encryption with key K*.
This message is vulnerable to a replay attack. For instance,
suppose Eve E recovers an old session key K 5. She can
replay the message { K% 5, A} i, to Bob. Bob now believes
he shares key K’ with Alice, when he truly shares a key
with Eve. This lets Eve engage in a man in the middle attack.

To counter this attack, Alice receives a nonce or random
number, Ng, from Bob encrypted with Kpg. After commu-
nicating with S, Alice sends {K4p, A, Np} K, to Bob. The
random nonce serves as a challenge to Alice. By including
the encrypted nonce in her response to Bob, Alice proves
that the message is fresh, and has not been replayed.

B. Physical Watermarking

Motivated by the use of nonces in cyber security, we
propose watermarking to detect replay attacks in control
systems. A physical watermark, Awuy, is a secret noisy
control input inserted on top of the optimal control input
uj, to authenticate the system. In particular, uy, is given by

up = up, + Aug. (13)

Here, the adversary can not read the defender’s control
input uy and does not know real time watermarks. Physical
watermarking was first introduced in [7] as an IID additive
input Aug ~ N(0,W). Extensions have been examined
in [12]-[14], [21]-[27]. We consider a stationary Gaussian
watermark generated by a hidden Markov model [14] below:

Coa1 = AnCre + Vi, e ~N(0,9), (14)
Auk = ClLCka COV(C_OO) = A},COV(C_OO)A;T; + \If,

where Ay, is Schur stable with spectral radius less than or
equal to a user defined constant p. As the watermarks are 0
mean with bounded covariance, the closed-loop system re-
mains stable. The watermarks act as a cyber-physical nonce.
Under normal conditions, the watermark will be embedded
in the sensor outputs due to the system dynamics, a valid
response to this challenge. However, under replay attack,
the measurements contain physical responses to an earlier
sequence of watermarks. Unable to detect recent watermarks
in the sensor outputs, the defender can not verify freshness.

To perform detection, the defender can exploit the dif-
ference in distributions of the residue z; under attack and
normal operation. For instance, if uj, = szk| &, then

5)
(16)

2k ~ N(0,CPCT + R), Ho : no attack,

2p ~ N(pr, CPCT + R+ X)), My : attack,
where pj, £ —C Zf:_ioo AF=1=iBAy,; and ¥ is a linear in-
creasing (in the semidefinite sense) function of the watermark
covariance in the IID case, and a linear increasing function
of the autocovariances in the stationary case, see [14]. A
X2 or Neyman Pearson detector can be used. Alternatively, a
correlator detector [13] can be considered. Here, the defender
computes an output y; by running a simulated version of
the system with the same chosen watermarks, and then
calculates g(Zy) = —yly;. Under replay attack, y; and y;
have no correlation because they are generated by different
independent watermarks. However, under normal operation,
a positive correlation between y;, and y;; exists. The corre-
lation detector can distinguish between faulty scenarios and
malicious attacks [12]. Additional asymptotic detectors (with
finite statistical approximations) that guarantee zero average
distortion power in sensors are proposed in [24], [25].
When deviating from an optimal strategy, performance
loss must be weighed. We can use the degrees of freedom
in our watermark, the (auto)covariance functions, to balance
trade-offs between detection and control. While increasing
the size of the covariance improves security, watermarks
with larger magnitudes decay control. Semidefinite programs
have been proposed in both [13] and [14] to address this
trade-off. For instance, the authors in [13] maximize the
expected bias inserted into the 2 detector subject to an
upper bound on additional linear quadratic Gaussian (LQG)
costs due to watermarking. Watermarking can be effective in
other scenarios. Under certain attack strategies, watermarking
can detect adversaries who know the system model [22] and
attackers who attempt to learn the model [26], [27].



We test physical watermarking on the quadruple tank
process, a four state system [28]. The goal is to control
the water level of two of four tanks using two pumps. Two
sensors measure water heights. We use an LQG controller
with weights following suggestions in [29]. ) and R are
created by generating a matrix from a uniform distribution,
multiplying it by its transpose, and dividing by 100. A
stationary Gaussian watermark [14] (p = 0.5) is inserted.
Experiments were averaged over 1000 trials.

In Fig. 1 we examine security and performance trade-offs
through relationships between the probability of false alarm,
the probability of detection, and the percent increase in LQG
cost due to watermarking. A x? detector with window size
10 is implemented for detection. In Fig. la, we plot ROC
curves at different additional LQG costs. In Fig. 1b, we plot
the probability of detection as a function of the additional
LQG cost for different fixed false alarm probabilities. In Fig.
2, we plot our x? detection statistic (window size 10) during
a replay attack for a system without watermarking (Fig. 2a)
and a system with watermarking (Fig. 2b). Replay attacks
commence at time 10 sec. The probability of false alarm in
Fig. 2 is 0.05 and the LQG cost is increased by 30%.
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V. ACTIVE DETECTION: MOVING TARGET

Watermarking detection unfortunately fails against model
aware zero dynamics attacks and false data injection attacks
where the bias on residues Az are independent of the de-
fender’s inputs. Accordingly, we investigate a new approach.

A. Motivation from Cyber Security: MACs

In cyber security, message authentication codes or MACs
can verify the integrity of a message. Suppose Alice sends

message m to Bob. Eve can modify the contents of the
message before forwarding it to Bob, leaving Bob unable
to verify the integrity of m. To prevent this, Alice appends
a MAC [k, (m) to the message m. Here, K 4 is a shared
secret key between Alice and Bob and fx ,,(m) is a keyed
pseudo-random function of the message. Upon receiving m,
Bob computes fx , ,, (m). Under normal operation, the MACs
Bob receives and computes are identical. Alternatively, if Eve
modifies m to m/, she will likely be unable to compute a
valid fx , 5 (m') unless she knows K 4 g or replays a previous
message. A replay attack can be prevented by including a
timestamp in m, while K4p is only shared between Alice
and Bob. Thus, the MAC assures message integrity.

B. Moving Target

We now introduce the moving target approach, first ex-
amined in [11]. Here, an authenticating subsystem with time
varying dynamics is introduced on top of the original system:

T A A T B W

k+1| _ | ALk 2,k ko | PE up + k| (17)

Th+1 0 A Tk B Wi
Moreover, we introduce additional sensors g € R™ to
measure the extraneous states,

| _ |Crk 0] |Zk 4 U,

y| |0 CJ |aw Vg |
WE: assume that the
[w’“] ~N(0,9),
wy,

are assumed to be IID variables which are independent of
the sensor and process noise with distribution

At g, Aok, B, Crq1 ~ (A1, A2, B, C).

(18)

rocess and sensor noise is IID with

zk ~ N (0,R). The system matrices
k

19)

The sequence of time varying system matrices is determined
by a pseudo-random number generator (PRNG), the seed of
which is known by the defender, but hidden from the adver-
sary. We consider an attacker who knows (4, B,C,Q, R)
and has the ability to read and modify all inputs and outputs
U0k, Yok, Yo:k- Yk acts as a cyber-physical MAC, preventing
the adversary from constructing a stealthy integrity attack.
In particular, suppose the message m corresponds to
outputs y; while the MAC is g. The MAC gy is correlated
to the message yj through the state xj_; and the input
ui—1. The key is the seed which determines the sequence of
system matrices. The defender uses knowledge of y;, and the
sequence of system matrices to estimate 7. Under normal
operation, g and its estimate gjk closely agree, as seen by a
residue based detector, and as a result the MAC is verified.
However, suppose an adversary performs integrity attacks
using knowledge of (4, B,C,Q,R). The attacker could
generate convincing outputs y, while biasing the states xj
through a false data injection or zero dynamics attack. At
the same time, (s)he will also bias the states 2 and thus the
MAC outputs gy, if the time varying matrices are properly
chosen. Having no knowledge of the seed, the adversary
can not know the time varying matrices. Moreover, the time
varying dynamics act as a moving target, hindering system



identification. As a result, the attacker can not generate a
convincing cyber-physical MAC output g;. Bounds charac-
terizing how well an adversary can construct outputs y; and
9x to fool residue detectors are obtained in [11, Theorem 3].

We apply the moving target to the quadruple tank process.
4 extra states and 2 extra outputs are added. The time varying
matrices Aj i, A2k, By, Cr4+1 are somewhat sparse (50%
of entries nonzero). The non-zero elements follow a mul-
tivariate Gaussian distribution with means generated from
U(—0.5,0.5). The covariances of the nonzero parameters are
created by generating a matrix from a uniform distribution,
multiplying it by its transpose, and dividing by 100.

We consider an adversary who, starting at time 200 sec,
adds a constant input (in Volts) to the optimal LQG input and
avoids detection by trying to subtract his own influence [11]
from the measurements. First, in Figs. 3a, 4a, we assume the
attacker knows the time varying system matrices. Secondly,
we assume the attacker does not know the realization of
A1k, A2k, Bi, Cr41, but instead performs his attack by
sampling the matrices from (19), (Figs 3b, 4b). We plot the
x? detector statistic (window 10, a = 10~7) in Fig. 3 and
system performance in Fig. 4, both averaged over 1000 trials.

Given full knowledge of the system matrices, the attacker
can significantly affect water levels while remaining perfectly
stealthy. However, with stochastic knowledge of the system
matrices, the attack is easily revealed, even for small system
perturbations and small «. In practice, the attack can be
improved by using the measurements g to perform system
identification. We expect improvements to be marginal since
the system changes at each time step. As a result, character-
izing the effectiveness of an attacker who performs machine
learning in a scenario where the moving target changes
at a lower frequency is an immediate goal. The theory of
estimation with stochastically varying parameters [30] might
also be useful for developing stronger attack strategies.
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C. Alternative Formulation of Moving Target

Consider the scenario where the plant is modeled as a
hybrid system which transitions across multiple modes:

Tpy1 = Aprr + Bug +wi, yr = Crzp +vp. (20)

We assume that (Ay,C}) belongs to some finite set I' £
{(A(1),C(1)),---,(A(l),C(1))}. This alternative moving
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Fig. 4. Mean absolute deviation of heights (cm) of 2 tanks from desired
equilibrium.

target formulation was considered in [31]. Here, the system
periodically and randomly transitions across modes in I, for
instance according to an aperiodic and irreducible Markov
Chain. The authors consider how this moving target could
be used to identify sensor attacks from an adversary whose
attack inputs do not leverage knowledge of the prior in-
puts/outputs. In this case, the goal is not only to detect sensor
attacks, but to determine which sensors have been corrupted.

Prior results in deterministic scenarios state that a system
must remain observable after removing any 2q sensors to
identify ¢ sensor attacks [3]. Weerakkody et al. argue [31]
that a moving target approach increases the number of
sensors that can be identified. Design recommendations are
made which guarantee the perfect identifiability of all sensor
attacks in deterministic systems. Additionally, in stochastic
systems, the authors show they can construct robust fusion
based estimators and detectors, which identify sensors that
are subject to destabilizing integrity attacks.

VI. CONSIDERATIONS AND FUTURE WORK

In this section, we discuss next steps towards implement-
ing physical watermarking and the moving target.

A. Physical Watermarking

In physical watermarking, previous work [13], [14], [22],
addressed trade-offs between detection and control perfor-
mance by solving semidefinite programs to obtain watermark
(auto)covariances. These semidefinite programs attempt to
maximize a statistic related to detection, subject to a con-
straint on LQG cost. In practice, however, LQG controllers
may not be used. Ideally, system designers will formulate
convex constraints and objectives, which adequately summa-
rize necessary system goals for different controllers. Alterna-
tively, designers can formulate LQG constraints which best
capture performance requirements and perform simulations
to verify proper behavior. We must also account for a
system’s nonlinearity. A watermark should never be so large
that it takes a system out of the region of operation.

Designers must consider the composition of watermarks
with other security primitives. To implement watermarking
effectively, a nonempty subset of the actuators must deliver
control inputs which are kept secret from the adversary
[22]. For instance, knowledge of the input can be used to
completely break security if a model aware adversary uses



this information to generate virtual outputs by simulation.
The secrecy of control inputs can be preserved for instance
through encryption. Actuators typically have more compu-
tational resources than sensors, allowing them to implement
cryptographical primitives. Prior work assumes that water-
marks are generated by true random number generators. In
practice, we are restricted to PRNGs. Thus, the selection of
cryptographically secure PRNGs must be done carefully.

As an example, suppose an IID Gaussian watermark is
generated by: 1) A linear congruential generator which
evolves according to X,,11 = (aX,,+¢) mod M, 0 < a,c¢, <
M. Here, % approximates a uniform random variable,
2) The Box-Muller transform which converts a uniform
random variable to a Gaussian random variable, 3) A linear
transformation to obtain a watermark of the appropriate
covariance. A malicious insider with model knowledge, and
some prior input and output history, can learn the secret key
of the PRNG (a, ¢, M) as follows. 1) Run a linear filter using
the input/output history to estimate prior watermarks. The
convergence to the true watermarks is exponential. 2) Take
the inverse of the linear and Box-Muller transformations
to obtain the sequence of uniform random variables. 3)
Intelligently search over space of M (as low as 232 possible
values), and algebraically solve for a and c. If the key is not
changed, the attacker can predict all future watermarks.

We recommend the examination of alternative watermark-
ing designs. In principle, there is no need to restrict wa-
termarks to be Gaussian or stationary. For example, results
in [23] suggest that Gaussian watermarks could be optimal
against Gaussian attackers. See also [27] for non-stationary
and non-Gaussian watermark designs. In our current work,
we are evaluating the effectiveness of a watermark obtained
by dropping the control input randomly according to IID
Bernoulli and Markovian strategies in combination with a
Gaussian additive input. From an application perspective, im-
plementations are necessary to validate watermark designs.
Ko et al. [32] have examined watermarking in vehicular
systems while Rubio-Hernan et al. [27] have experimented
on a SCADA testbed. We are investigating watermark im-
plementations with quadrotors and plan testing on a smart
grid testbed.

B. Moving Target

Developing a mechanism for generating time varying
dynamics is important in the moving target. It will be ideal
to leverage the dynamics that already exist in a system, (e.g.
the heat released by a reaction or the frictional signatures
of mechanical components). Alternatively, we can introduce
physical hardware to generate the authenticating subsystem.
When devoting resources to develop new hardware, eco-
nomic costs must be balanced with potential benefits of
security against powerful attacks.

We envision that a moving target device could contain
simple circuits which take a portion of the state as an input
and emit g as the output. We can affix such a device to
system components (e.g an electric generator or reactor).
The time varying behavior can be implemented by using

adaptive components in the circuit, for instance variable
capacitors and resistors. Such a device would likely also
contain a PRNG whose output would determine real time
resistances and capacitances and whose seed is known to
the defender. In the alternative moving target, we assume
that there exist sufficiently many degrees of freedom in the
plant, allowing the defender to periodically transfer across
modes of operation as determined by a PRNG.

The integration of the moving target with other security
primitives has to be investigated. The root of the trust
is the seed of our PRNG. Thus, it is desirable to use a
cryptographically secure PRNG. Additionally, a secure key
sharing protocol [33] must be used to ensure both the plant
and operator agree on the secret seed so that the defender
can perform proper estimation and detection.

We should consider trade-offs between detection and con-
trol performance when implementing the moving target. In
[11], it is assumed that the defender does not care about
controlling Z,. If this assumption is true, then we can utilize
optimal control inputs uj derived from yg.; and avoid a
loss in performance. Such a design also prevents a control
input from leaking information about the time varying system
dynamics. However, this assumption should be rigorously
verified in practice. The alternative moving target, as a
consequence of unplanned transitions, likely does not obtain
peak control performance. Theoretical and practical studies
must be performed to understand the trade-offs.

Further theoretical developments are also needed. In the
original moving target, it is important to examine the proper-
ties of the time varying matrices A j, A2 i, B, Ci+1. Some
matrix parameters may not be time varying and are possibly
0. For instance C}, can be constant and B}, can be 0, without
eliminating the advantages of the moving target. Likewise,
system transitions need not be at every time step, but can
instead occur after a realistic period (accounting for system
inertia) that still hampers an attacker’s system identification.
Moreover, in practice, time varying parameters in a moving
target will be sampled from a discrete (though possibly
quite rich) distribution. Nonlinear designs of a moving target
should also be investigated.

A number of necessary conditions for the design of system
matrices can be obtained. For instance, the original states xj
should be observable from the sensors g, Additionally, given
partial channel access for the attacker, the zero dynamics
in the nominal system should not remain as zero dynamics
when the authenticating subsystem is added.

While ample design suggestions have been provided for
the alternative moving target [31], the attack model is limit-
ing. In particular, it is assumed that the attacker does not
leverage channel information. In a stochastic scenario, it
would be worthwhile to examine what guarantees can be
provided when measurements and control inputs are public
and used by the adversary.

Ample testing is also required in the moving target.
We wish to perform simulations to investigate the bounds
characterizing how well an adversary can construct outputs
Yy, and g to fool residue based detectors (Theorem 3, [11]).



We also plan to determine effective attack strategies which
utilize system identification. Once we identify an application
and build suitable hardware for generating the moving target
dynamics, a testing phase could commence.

The development of a unified approach to detection is
a clear goal. A defender is not restricted to use only one
of these strategies, especially since the proposed approaches
vary in terms of their effectiveness for detecting specific at-
tacks. In this respect, it is important to identify an adversarial
model which characterizes the resources and knowledge an
operator anticipates an attacker could procure. From here,
the defender can choose defenses to expose feasible attack
strategies. For instance, if the system model is unknown
and the inputs are private, a defender may determine that
physical watermarking is effective on its own. Alternatively,
against stronger adversaries, the moving target and physical
watermarking can be strategically combined to detect attacks
while limiting costs and performance loss to the system.

Another direction to investigate is a game theoretic for-
mulation of the attack detection problem [21] where an
attacker wishes to maximize performance loss while ensuring
stealthiness, while the defender wishes to limit the impact
of a stealthy attacker through active strategies. Analyzing
potential equilibria can illustrate the effectiveness of the
proposed approaches against strategic, intelligent adversaries.
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