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Background

Beginning in mid-1980’s, many glass melting furnaces and metal
forging/shaping furnaces have been converted to oxy-fuel combustion

— increases radiant heat transfer
(greater thermal efficiency of furnace)

e higher flame temperature

e (3.5x) higher concentration of
radiant products (CO, and H,0)

e |longer residence time in furnace

— reduces emissions (NOx, SOx, particulates)

steel reheat furnaces
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CRE Effect of O, Content on Flame Temperature
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Background

Because O, is supplied (at cost), oxy-fuel furnaces operate just
slightly fuel-lean (based on CO emissions): ¢ =1

e With premium on radiant heat transfer, soot formation in flame is
desired (non-premixed combustion)

sooty flame in oxy-fuel
glass melting furnace
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O, Production

f

e To-date, oxy-fuel furnaces have used high-
purity O, (95+%) from cryogenic air separation

e Cryogenic air separation has a high capital cost,
limiting technology penetration to large
facilities and providing small improvement in
overall energy efficiency of entire system
(though furnace efficiency can be dramatically
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CRE. New Trends in O, Production

e Metal-organic frameworks (MOFs) is a new
class of engineered materials that features very 4,
high surface areas for gas adsorption "

e MOFs give possibility of low-cost air separation MOF-177 IRMOF- 1
by attracting (electrophilic) O, to the metal
coordination sites

e Sandia/NM, and others, are investigating the
generation of new MOFs for efficient air separation MOF-74

e Commercial air separation by MOFs will likely occur using pressure
swing adsorption (PSA), whose economics will likely limit O, purity
that can be generated

e |on transport membrane (ITM) air separation also produces impure
O2

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



i U
CRE, Motivation for This Investigation

Effect of O, purity on soot formation and total radiation from non-
premixed turbulent natural gas oxy-fuel flames is not well understood

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



CRE. Previous Work

Steve Turns’ group at Penn State Univ. investigated turbulent
propane and natural gas fuel jets in nearly quiescent laminar

oxidizer co-flow (CST 2002) Nozzie cerame
— fuel jet Reynolds numbers of 5000 to 15000 ' | |
— 21% to 100% O,

— wide-angle radiant emission

OXIDIZER M

INLET _\A

— line-of-sight soot concentration S

(laser extinction) “r
— NOx and CO emissions

e Soot concentrations peaked for 30-40% O, for Re =15000 and for
75% O, for Re = 5000, then decreased rapidly for higher O, purity

e Total flame radiation steadily increased with increased O, purity (as
also found by Baukal and Gebhart, 1997, for non-sooting flames)

e The PSU study did not address practical considerations of
turbulent oxidizer flow, or only providing a stoichiometric amount
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//“ :\\ flame products
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0,/N, | 0,/N,

fuel

Practical Oxy-fuel Jet Flame Configuration

turbulent mixing between central fuel jet
and surrounding oxidizer jet

turbulent mixing of oxidizer jet and
surrounding stagnant (O,-free) flame
products

combined effects of O, concentration
and turbulent mixing, since lower O,
concentration in oxidizer is, by necessity,
associated with higher oxidizer flow (to
maintain stoichiometric conditions)
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CRFE. Experimental Methods (Current Study)

e fuel/oxidizer coannular geometry with a surrounding
low velocity coflow of air (or N,)

— stainless steel fuel tube (3.3 mm ID)

— stainless steel oxidizer tube (10.2 mm ID)

e two flame series studied, in which either oxidizer
composition or flow rate (for 100% O,) were varied

treet treet

O,/N, | O,/N,
(10-21 m/s)| (10-21 mi/s)

CH,
(38 m/s)
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Experimental Matrix

giarri]:: ) CH, Oxidizer ¢T Tad:': ) i:llg:‘l”
slpm | m/s Re |%O0,*| slpm | m/s Re 5

Constant | 200 | 380 | 7680 38 40.0 104 | 3660 2.67 1467 air
Mixing 50 20 | 2240
75 1.33 2949

WV \% \V4 100 1.0 3054 \V/4

Variable | 20.0 | 38.0 | 7680 100 40.0 104 | 3660 1.0 3054 air
Mixing 60.0 156 | 5490 0.67 2971

80.0 20.8 7320 0.5 2861 W

N R 800 | 208 | 7320 | 05 | 2861 | N,

* standard conditions defined to be 298 K and 1 atm. pressure

4

balance gas of N,

1.

stoichiometry of supplied gases

+

adiabatic flame temperature of supplied gases (calculated using NASA cea code)

e all flames appeared to be attached

e heatrelease rate was 12.1 kW
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Photographs of Flames
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38% O, 50% O, 75% O, 100% O,
Constant Mixing Scrics (40 slpm)

40 slpm 60 slpm 80slpm  80/N;
Variable Mixing (100% O,)
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CRE. Measurements Performed

e Narrow-angle total radiant emission
e Planar Laser-Induced Incandescence (PLII) — soot concentration fields
e Planar soot two-color pyrometry — soot T (data is being analyzed)
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CRE. Radiometry Measurements

e thin-film thermopile with a CaF, window
e sensitive from 0.13-11 um
e 32 msresponse time

e black-anodized, 100 mm long steel tube
(3 mm ID), restricted detection solid angle
(Q) to 1.61x103 sr (cone 9 mm wide at
flame)

e 10 sectime records recorded at 1000 samples/s
e calibrated with a blackbody
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CRE PLIl Measurements

e 1064 nm laser sheet excitation (37 mm high, 52 mJ/pulse, 0.47 J/cm?)

e LIl detection through 600 nm short pass filter onto 512 x 512 Gen Ill
PI-MAX ICCD with 100 ns prompt detection

e 2000-image averages with background correction

e f, calibration against 3-pt Abel-inverted 532 nm extinction-derived
soot volume fractions on laminar CH, flame, using Bouguer law with
K, =6.7 (Williams et al., JHMT 2007)

K
— _Clvd
I/IO = exp” 2 v

single-shot LIl images
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CRE Two-Color Pyrometry Imaging

e 50 mm beamsplitter with dual ICCD detection at 550 nm and 675 nm
(20 nm bandwidth) — aligned to optical pattern at flame location

e 25 ms gate width; 400 image pairs at each location

e Dblackbody calibration, with high-temperature extrapolation verified
with calibrated tungsten lamp (2919 K)
e assume 1/A spectral variation of soot emissivity from 550 to 675 nm

— using 1/A139 (Hottel and Broughton) assumption would give soot
temperatures 60-90 K lower
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CRE.  Experimental Results: Thermal Radiation
(Centerline)
Effect of O, Purity Effect of Turbulent Mixing
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e For constant mixing, increasing e For constant [O,], enhanced
[O,] results in somewhat mixing results in much shorter
enhanced radiation (7% lower for flames and much lower radiation
75% 0O,, 14% lower for 50% O,) (20% lower for each 20 slpm)

e Radiant flame heights are e For strong mixing, N, ambient
invariant results in 25% lower radiation
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_CRE,. PLII Results (Sample Mean f, Fields)
// cm | ppm ppm
= 0.006
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Effect of O, Purity

— 100% O, [O,]
0054 — 75% 0,
0.044 — 50%0;
] — 38%0,

f, (ppm)

0 10 20 30 40 50
Height Above Burner (cm)

e For constant mixing, soot f, peaks
for ~50% O,, then decreases
rapidly as [O,] increases further

f, (ppm)

Mean LIl Results (Centerline)

Effect of Turbulent Mixing

0.03

slpm

0.02 4

0.01

000 _- T T
0 10 20 30 40 50
Height Above Burner (cm)

e For constant [O,], enhanced
mixing results in much lower soot
production

e For strong mixing, N, ambient
results in enhanced, delayed soot
production
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Effect of O, Purity

2800
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e soot T asymptotes for 38% and
50% O, consistent with CH,/air

* higher O, content gives hotter
flame (also, has greater stoich. of
supplied oxygen)

T(K)

Measured Mean Soot Temperatures
(Centerline)

Effect of Turbulent Mixing

2800
2600
2400 -
— &0 slpm
2200 — 60 P
— 40
80 (Ny)
2000
|||||||||I|||||||||I|||||||||||||||||||I|||||||||I||||
0 10 20 30 40 50

Height Above Burner (cm)

e tailing of T with N, ambient
suggests continual dilution of
supplied O, with ambient

e higher O, flow yields higher flame
T (less dilution by ambient)
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Interpretation of Results

Soot T results demonstrate that entrainment of ambient gas into upper
regions of flame (where soot forms) is important (also true of actual
oxyfuel furnace flames, but ambient T/composition is different)

As [O,] decreases from 100% to 50% (in constant mixing flames), soot
formation increases by factor of 3, tempering the reduction in thermal
radiation to only 14%

— Baukal and Gebhart found 200% variation in thermal radiation for [O,]

between 100% and 35% for non-sooting flames

Increasing turbulent mixing intensity in pure oxyfuel flames has a
marked influence on flame height, thermal radiation, and soot
formation (all decreasing with mixing intensity), despite soot
temperatures increasing

Having a chemically inert ambient has a strong effect on thermal
radiation (decreasing it) and soot production (increasing it)

— minimizing the mixing rates between the 3 streams (fuel, oxidizer,
ambient) is clearly desirable to optimize soot formation and radiation
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CRE. Summary

Recent developments in materials science point to potential low-
cost methods for air separation, but yield impure O,

e Varying the oxygen concentration in commercial oxyfuel
applications necessarily impacts the oxidizer flow rate and
turbulent mixing field (because ¢ constrained to be 1)

e We measured soot concentration, soot temperature, and radiation
in two series of oxyfuel flames in which mixing intensity and [O,]
were varied, separately

e Measurements show soot formation increases with decreasing
purity of O, (at least down to 50% O,), tempering the trend of
lower flame radiation

e Turbulent mixing rates have large impact on soot formation,
temperature, and flame radiation

e Minimizing the mixing rates between the 3 streams (fuel, oxidizer,
ambient) is desirable to optimize soot formation and radiation
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