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CRE Outline

Fundamental Properties of Oxyfuel Combustion
e Oxyfuel Combustion of Gaseous Fuels (mostly Sandia work)
e Oxyfuel Combustion of Pulverized Coal (only Sandia work)

e Conclusions
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CKE. Fundamentals of Oxyfuel Combustion — |

e 0, concentration in oxidizer can be tailored

— through global or local exhaust gas recirculation (EGR), effective O,
concentration can be tuned

— flame structure, heat release rate, and size, as well as product gas
temperature can be adjusted based on the oxidizer composition
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CRE Effect of O, Content on Flame Temperature
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CJ/ . Fundamentals of Oxyfuel Combustion — |

e 0, concentration in oxidizer can be tailored

— through global or local exhaust gas recirculation (EGR), effective O,
concentration can be tuned

— flame structure, heat release rate, size, and product temperature
can be adjusted based on the oxidizer composition

— highly enriched (or even pure) O, jets can be used to aid flame
attachment

As combustion engineers, with oxyfuel combustion we now have
significantly more freedom to design the combustion process!
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CRE. Fundamentals of Oxyfuel Combustion — Il

e Combustion generally takes place in high CO, and possibly high H,O
environment

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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CKRE. Fundamentals of Oxyfuel Combustion — I

e Combustion generally takes place in high CO, and possibly high H,O
environment

— gas transport properties are different from air-fuel combustion
— some chemical reaction fluxes are different from air-fuel combustion
— flame structure is different from air-fuel combustion

e for solid fuels, both volatiles flame structure and char combustion
reaction structure differs

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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“* Fundamentals of Oxyfuel Combustion —lli

e Primary effect of enhanced CO, and H,O concentrations
is through their high molar heat capacities

Y Con=Cymt R=[(F+2)/2]"R,
3 1, Where f = # deg of freedom
- 2 13 DOF for CO, and 10 DOF for H,0
g Fe § vs. 7 for N,
5 Fe Methane adiabatic flame temperature
= | | | | F 2800:
% Tl(::erature (}2)500 % 2600 _: N2
- CO, -
e Toreach the same temperature as 2400 Toginai e
air-fuel firing, higher O, concentrations - e
are needed in oxyfuel EGR applications ~ ** .
(i.e. need to use less diluent) R I
16004 7
e T
15 20 25 30 35 40
vol-% O,
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CRE. T_4 for Oxyfuel Combustion of Dry Coals
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CRE.

Fundamentals of Oxyfuel Combustion — IV

e Radiant heat transfer is stronger in oxyfuel flames
— for applications with high-O, firing, flame products are hotter

— concentration of radiant flame products (H,O and CO,) is greater
(i.e. effective gas emissivity is larger)

— with reduced flow of diluent, gas residence time increases
(by factor of 3.5 for pure oxyfuel combustion)
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—* Fundamentals of Oxyfuel Combustion -V

e Mass diffusion rates can be different in oxyfuel environments
(by up to ~ 20%)

Diffusion coefficient of O, in diluent

7

3 ',/" steam, +22%

(&)

CO,, -17%
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N w
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—

o
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Temperature (K)

— for non-premixed, gaseous combustion, diffusivity effects burning rate

— for solid fuel combustion, diffusivity effects burning rate of chars
(except in kinetic limit)
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CKE. Fundamentals of Oxyfuel Combustion — VI

e Pure oxyfuel flames utilize high injection velocities (up to 180 m/s)
and usually do not use swirl

— higher reactivity (flame speed) of fuel-O, mixture promotes flame
attachment to burner

— very high flame temperature will destroy burners if flame attaches
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CKREL Oxyfuel Combustion of Gaseous Fuels —
Investigations on Effects on Flame Chemistry

e Beginning in 1990’s chemical effect of CO, on flame structure was
investigated after observation that adding CO, to flame reduced
soot formation

e Zhang, Atreya, and Lee (PCl 1992)

— species measurements and chemical kinetic analysis of counterflow
flames of CH,/N, and CH,/CO,/He and CH,/H,0/He with same fuel
conc. and T4

— suggested reduction in soot formation with CO, or H,O addition is due
toH + CO, = OH + CO and H + H,0 = OH + H, in fuel-rich regions

(reverse of normal oxidation reactions)
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CKE Oxyfuel Combustion Flame Chemistry — |

e Beginning in mid-2000’s have been several studies
of oxyfuel combustion chemistry of methane and

2000

syngas -
e Glarborgand Bentzen (ENF 2008) ' o
3 " Egguguux g X
— flow reactor study of highly diluted CH, and O, w| . e |
in N, or CO, e
— wide range of T (1200 - 1800 K) and ¢ (0.5 -4.0) g, gAzmgmmAﬁ
— starting at 1300 K, CO produced at all s ™| :
stoichiometries, but especially for rich conditions | s eennanesennsnnnnns
0 sugad I I \ L I
— kinetic analysis shows H + CO, is dominant CO, ™[ wee
. . . A 4000 - e  Set5(N2) ab
reaction, with some contribution from A
L3CH, + CO, = CH,0 + CO 8
— at T > 1700 K, some CO production from direct B T Sttt
dissociation Of COZ 1100 1200 1300 1412,“9;2),?,,,5/1:00 1700 1800 1900
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Oxyfuel Combustion Flame Chemistry — Il

/ e Williams, Shaddix, and Schefer (CST 2008)

measured stability limits and emissions for CH, and various syngas
compositions burning in air and 0,/CO, soo-% """""""""""""""""""""""""""""""""" ]

—— Slurry-feed syngas/Air

premixed dump combustor (Re = 22000) 4°°'_ @ Slumy-feed syngas/30% 0,€O,

13% 07 C0O2[0.25 5] 15% 07 C05[0.25 5] 20% 0z C0O,[0.05 s] 25% 0y C03[0.05 5]

CO, ppm_ (3/ 0, dry)
S
1 N I

Equivalence Ratio (¢)

CO emissions inconsequential in stable combustion regime

CO emissions increase similarly for oxyfuel combustion and air-fuel
combustion for ¢ >0.95

at lean instability limit, CO emissions also increase similarly

verified Glarborg conjecture that H + CO, reaction in flame zone
merely displaces region where most of CO gets oxidized in combustor
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CRE. Oxyfuel Combustion Flame Chemistry — Il

2\

e Watanabe, Arai, and Okazaki (CNF 2013)

— fuel-rich flat flame experiments and modeling

— demonstrated that H + CO, reaction leads to faster consumption of
hydrocarbons in fuel-rich regions through abstraction reactions with

Calculated OH profiles Calculated OH reaction fluxes
Ll ! : " g 00 | ' ' S 00 - '
Alr —— o . ) —_
0,/C0, (Tait) ————- ‘o Air f T 02/ CO2
0,/C0, (Tair, RIO) —o— 7 @
— g 50 | E 50 (matchedT)
g ! E g
S 00002 - I - =
2 3 g o
& | & =
2 f £ =
g 5 § -50 | g -50
o 0.0001 ¢ 3 g
= fr E‘ -160 0+1,=H+0H \\ g- =100 - O+H,=H+0OH —— "-\, y.
; S H+0,=0+0H ----- . b H+0,=0+0H - Yy, 7
/ . 2 OH+H,=H+H,Q -—--- a OH+H,=H+H,0 ——- e
| e = +OH=CH,+H,0 —o— +OH=CH, +H,0 —o
Y 4. -150 |- 0+ OH =GO, +H —e— 4 150 - €O, +H=CO+60 ——
0 : : — : HOp+CHy =OH+CH;0 —=— , H02+C.ﬁ3=0HTCH3O T |
-10 0 10 L 20 8 6 4 2 0 3 0 8 6 4 2 0 2
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CRE,. Other Important Areas of Research in

Oxyfuel Combustion of Gaseous Fuels

e Flame radiation

e Flame shape and size

— e.g. Kim et al., Energy & Fuels 2007
(collaboration between Hanyang Univ. and KIMM)

e Flame stability

— e.g. Oh and Noh, Fuel 2013 and 2014 (KIER)
e Soot formation
e Emissions (esp. NOXx)

— e.g. Kim et al., Energy & Fuels 2006 and 2009, PCI 2007
(collaboration between Hanyang Univ. and KIMM)
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CRE. Recent Study at Sandia — Effect of Oxygen Purity

on Soot Formation and Flame Radiation

e Paperin press, Proceedings of the Combustion Institute, to be
presented at Combustion Symposium (next week)

e |dea: try to separate effects of turbulence intensity (mixing) from
flame effects of oxygen purity of oxidizer
— investigated 2 series of methane-air non-premixed flames

— one in which the oxidizer concentration varied but its flow rate stayed
the same
— one in which pure oxygen was used, but its flow rate was varied

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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38% O, 50% O, 75% O, 100% O,
Constant Mixing Scrics (40 slpm)

Photographs of Investigated Flames

40 slpm 60 slpm 80slpm  80/N;
Variable Mixing (100% O,)
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.CRFE Additional Considerations in Oxyfuel Combustion

of Pulverized Coal (relative to gaseous fuels)

O,-flue mix —>
coal-flue mix —> O
O,-flue mix —2

SOOI

Coal jet heat-up and ignition

Volatiles burning rate

Char particle combustion

Radiant heat transfer

Pollutant formation (and capture in CO, CPU)

Ash particle formation and deposition, influence of S recycle, etc.
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Sandia studies

CRF. Additional Considerations in Oxyfuel Combustion

of Pulverized Coal (relative to gaseous fuels)

O,-flue mix —>
coal-flue mix —> O
O,-flue mix —2

SOOI

Coal jet heat-up and ignition

Volatiles burning rate

Char particle combustion

Radiant heat transfer

Pollutant formation (and capture in CO, CPU)

Ash particle formation and deposition, influence of S recycle, etc.
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Micropore Filter = Exhaust
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%b Quartz Chimney Coded Aperture
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Particle Feed Laser Line Filter

Photo Multipliers

Sandia Optical Entrained (Laminar) Flow Reactor
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5cm X 5cm X 46 cm
quartz chimney

furnace flow from
compact, diffusion-
flamelet burner

= T from 1100-2300 K
= O, from 0-60%
= CO, from 4-98%

coal/biomass/char
particles introduced
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particle-sizing
pyrometry for
temperature, velocity,
and size of individual
char particles

CCD/ICCD imaging of
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(ignition studies)
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Patrticle image

[ 1 trigger slit

wide slit
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Oxy-Fuel Char Combustion
— Key Diagnostic: Particle-Sizing Pyrometry
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CRF,  Coal Feeder: Key to Accurately Measuring
Combustion Ignition Delay

Maintaining steady coal feed is difficult, especially at small scales

— custom coal feeder developed from design
originated by Sarofim at MIT

— test tube with vibrator
— outflow is through fixed hypodermic needle

— feed rate determined by rate of displacement
of coal-containing test tube (electric motor drive)

— coal entrained by as little as 0.033 slpm feed gas

3.0

2.5

Coal feed 20 :
calibration 15 Photograph of pulverized
olot E coal feeder

Coal Mass Feedrate (g/min)

0.5

0.0 . T T T T T T T T T T T T T T T T T T T T
0 500 1000 1500 2000

Motor Speed (arb. units)
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CRE. Motivations for Study of PC Combustion

Ignition Delay

e No previous detailed study on ignition delay of pulverized coal
streams in well-controlled laminar flows

e Conflicting reports in literature on magnitude of effect of CO, on
particle ignition

e Conjecture (by modelers) that ignition delay in laminar systems
should correlate with particle group number (in analogy to liquid
droplets)

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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CRE. PC Combustion Ignition Delay Study

e Pittsburgh hvbit, Black Thunder subbit, Shenmu hvbit, and Guizhou
hvbit coal

e variable coal feed rates

— particle size cuts from 54-125 um
— 12,16, and 20 vol% O, in N, at 1230-1320 K
— 20vol% O, in CO, at 1280 K

e fixed coal feed rate
— 20vol% O, in N, and in CO, at 1200 K, 1340 K, and 1670 K

e 80.0slpm bulk gas flow
e 0.033slpm N, or CO, flow to deliver particles

e ignition based on CCD camera image of 10 cm height in furnace
through CH* filter (431 nm, 10 nm FWHM)
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CRFE.  Combustion Ignition Delay — Photographs

K/ Black Thunder (subbituminous) coal, 12 vol-% O, in N,

1230 K 1320 K

A O

flow
(~2.5m/s)
burner
surface
6 10 20 40 80 133200 10 20 40 80 133 200
T coal feedrate (x 0.005 g/min) coal feedrate (x 0.005 g/min)

coal
stream
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@ Radially Binned, Background Corrected

CCD Image Profiles

Shenmu coal, 20% O, in CO,, 1280 K Pittsburgh coal, 12% O, in N,, 1320 K

500 450
coal feed rate |
5 400 - 12
404 |—— 15 | — 30
—— 30 3507 — 50
) - 188 — 300 —— 100
T 3004 = —— 150
3 200 S 250 200
) —— 400 2 ] —— 300
g 200 1332 % i S o
g - —_— Z’ - 500
.GC_J, mg/min o 150+ —— 667
= = 1 833
100 - 100 ——1000
J 50 -
10 20 30 40 50 10 20 30 40 50
Residence time (ms) Residence time (ms)

e ignition criteria: location where signal equals 0.5*I __.
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CRE.  Major Findings of Ignition Delay Study — |

30 -
r?portedl range 1 1 2
il or coal in pc .
Pittsburgh coal 25+ feed pipes ¢ 06 o um
12% 0,inN, £
1320 K i, « 75— 105 um
L ——— 5474 pm
15 .\\O\././ H
10 +————Frrr—————rtrrrry
10° 10° 10" 10"

Particle Number Density (1!m3)

e ignition delay is very sensitive to particle size
(implications for lab studies)

e minimum ignition delay correlates with particle number density
(across range of particle sizes) — does not correlate as well with G
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CRE.  Major Findings of Ignition Delay Study — Il

Pittsburgh coal, 20% O,

50
: matched furnace temperatures

40 — 0.10 g/min coal feed
= ] ¥ CO, diluent
E . -® N, diluent
. 30—
& i
m —
o) a
c -
S 20
= ]
E) -

10 -

0 Ll I 1 1 I 1 LI I I 1 I 1 Ll I LI LI I I 1 1 I I 1 I 1 I
1100 1200 1300 1400 1500 1600 1700

Furnace Temperature (K)

e ignition delay is very sensitive to ambient temperature

e ignition delay is slightly delayed in CO, environments, when injecting
diluent gas/particle mix
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~ CRFE. A Funny Thing Happened on the Way to

/ Measuring Oxy-Fuel Combustion Kinetics

4

-

e Comparisons of char combustion models (simplified and detailed)
to data over range of O, concentrations showed oxidation-only
models overpredict char particle T rise as [O,] increases

NA, A=(0.6,0,0), Ea=(60,251,221.8), n=(0.5,1,1) US, A=(0.5,0,0), Ea=(60,251,221.8), n=(0.5,1,1)
2600 | (%0,,%H,0), Di.

2600/ T T T T T Te0,9%H,0), bi.

2400 2400

¥ 2200 ¥ 2200

o o

8 2000 ....... 5 8 2000 - N ,
& =

o o

= —

1800 1800

1600 1600

4 1 1 | [ | | | 4 1 1 1 [ | | |

50 60 70 80 90100 120 140160180 210240 50 60 70 80 90100 120 140160180 210240
Particle Diameter (um) Particle Diameter (um)
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CRE. Tool to Explore This: Detailed Particle Modeling

SKIPPY (Surface Kinetics in Porous Particles) — Brian Haynes, U. Sydney
— 1D steady-state model of spherical porous char particle

— Detailed surface kinetics and gas-phase kinetics provided through links
to CHEMKIN Il

— Heterogeneous mechanism, char properties and combustion
environment specified by user

— Allows evaluation of boundary layer reactions and
different kinetic mechanisms or rate parameters

A E

Reaction (g/lcm?2s) (kJ/mol)

Heterogeneous oxidation:

(R1) C s+0,=>CO+0 s 3.3E+15  167.4
(R2) O_s+2C(b)=>CO+C_s 1.0E+08 0.

(R3) C_s +0,=>0, s+ C(b) 9.5E+13 1423 )
(R4) O, s+ 2C(b)=>C_s + CO, 1.0E+08 0.

CO, gasification reaction:

(R5) C s+CO,=>CO+0O_s+C(b) \wvariable 251.0
Steam gasification reaction:

(R6) C_s+H,O=>H,+0O_s+ C(b) variable 222.8

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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CRE. Oxyfuel Char Combustion — The Role of

Gasification Reactions

e The combination of experimental measurements of char
combustion temperatures and modeling indicates gasification

reactions are important during oxyfuel combustion, particularly
because of their reaction endothermicity

Reaction AH_, . (kJ/mole-C,)
2C(s)+0, - 2CO -110.5
C(s) +CO, - 2CO 172.5
C(s)+H,0 > CO+H, 131.3

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



1850
¥ 1800
= 1750

/// 1900

—
~]
=
(=)

Xo,
Lo
SO ——
SR ARNOON

Xco,

COMBUSTION RESEARCH FACILITY

SKIPPY Modeling of Oxy-Fuel Char Combustion
— Effect of Gasification Reactions
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CRF, Combined Oxidation-Gasification of Coal Char

4

'

e [ncorporation of gasification reactions, at rates supported by kinetic
studies in the literature, gives much better agreement with optical

-

pyrometry data
NA, A=(0.9,3,800), Ea=(60,125.5,221.8), n=(0.5,0.5,1) US, A=(0.54,1.8,480), Ea=(60,125.5,221.8), n=(0.5,0.5,1)
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i i i 0 (11,14), CO, |
4 B 14), .
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i i A4),N, ]
— T — I~ ’ )’ -1
< 2200 . < 2200 |- 14N,
g ] o , .
> - > =
g 2000 . g 2000 .
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CRFE. Competition Amongst Heterogeneous Reactions

e Because the activation energies of gasification reactions are large,
they become increasingly important at high particle T

€O, + C(s) » 2CO (E, = 250 kJ)
H,0 + C(s) » H, + CO (E, =220 kJ)
0, + 2C(s) - 2CO (E, = 160 kJ)

e Atthe low to intermediate temperatures where coal
devolatilization occurs, gasification rate is extremely slow —
irrelevant over timescales of interest for combustion

e At 2000 K, the kinetic rate coefficient for CO, gasification is still
= 100x slower than oxidation, but is still important

— large CO, concentration
— deep penetration of particle (accessible surface area)
— large endothermicity of reaction

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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CRE. SKIPPY Evaluation of Effects of

Char Gasification Reaction

100 um, low-ash subbituminous coal char particle burning in 1690 K gas

Wet recycle (25% H,0) /_\

Dry recycle (14% H,0)
B I I I I I I I I I
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Effects of Char Gasification Reactions

e Endothermicity of gasification reactions substantially decrease char
temperature (and even has effect for combustion in air)

e Reduction in char temperature reduces char oxidation rate

— decrease in C oxidation rate is slightly overcompensated by the added
char consumption from gasification (i.e. overall char conversion rate

increases)

Simulation results for
reacting porous
particles with detailed
transport and
chemistry: subbit.
char particle burning
in 0,/CO, mixtures
(Hecht et al. CNF 2012)
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Work in Progress

g

Evaluation of effect of gas diffusivity on applicability of apparent
kinetics models

e Evaluation of the high-temperature (~ 2000 K) CO, gasification rate
of pc chars

e Oxyfuel char combustion kinetics at elevated pressures
(up to 10 bar)
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fuel environments
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Measurement of CO, Gasification Kinetics

e Optical particle temperature and burnout measurements used to measure pc char
gasification kinetics in CO, at high temperatures characteristic of char burning in oxy-
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CRE, Pressurized Combustion and Gasification Reactor

solid fuel
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fuel injection—. |

SIC reactor tube
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" Gas Preheater

Main

P optical ports
/(1", 5w dway)

Reactor 7

1
H

\ hailer-rated

steel pipe
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Summary

Oxyfuel combustion already has significant technological
importance in the glass and metallurgy industries and is posed for
application in the power industry, pending adoption of CO,
emission regulations

e Oxyfuel combustion allows greater control of flame temperature
and heat transfer

e For oxyfuel recycle applications, the first-order effect is due to
higher heat capacity of CO, and H,O (relative to N,)

e For oxyfuel combustion of gaseous fuels, there is a reduction in
peak flame temperature and a reduction of H/O system radicals
due toH + CO, = CO + OH

e For solid fuels, the CO, and H,O gasification reactions reduce char
combustion T and increase the char consumption rate
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CRE.

Approach:
— use laminar entrained flow reactor to

Different diluents are used to change the
reactant penetration

produce same T combustion

environments with N,, CO,, and He diluents
e He has very high diffusivity
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— measure 70 um PRB subbituminous char particle combustion
temperatures and burnout rates in different environments

— compare measurements against intrinsic and apparent kinetics models
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| Cé\/f\?F Particles ignite faster with a He diluent, but
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in He, but burn cooler than
in N, (Aye =5 4y,)

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



Vo<l

f
CRE.

2

DAF Unburnt Fraction

Char Burnout Measurements:

Although the temperatures are much lower,
the burning rate in He is similar to N,

N2 a C02 He
O o
o \
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Char mass burning rate
is similar in N, and He
environments, and is

enhanced in CO,
(gasification reaction)
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A"A:RF An optical probe allows for in-situ, individual

particle temperature measurements

— use calibrated fiber-optic coupled probe for in-situ particle
temperature measurements

— cold target limits background radiation from hot walls

cold target
probe

fiber bundle face

visible ND filter wheel

visible PMT module

IR ND filter wheel visible current-voltage

optical IR PMT module ?;n . -
. current-voltage
collection amplifier
probe
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[] tungsten
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sheath affixed to reactor)
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F. Statistically significant data is collected to
capture variability in individual particle reactivit
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temperature (K)
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CRF, Recent Accomplishments: Oxy-fuel Combustion

Improved semi-detailed char kinetic oxidation model developed, for the first time
accurately predicting observed O, pressure dependence of key CO/CO, production
ratio

Q-JIIIIIIIIIIIIIIIII
0 5%0o

2C( )+0,—2C(0) | . w0,
— O 100% 02
C()+C,+0,—2>Co+C(0)

------ Power Law
— Kin. Model

O
C, +C(0)+0,—C0, +C(0) 5

C, +CO0)—"—»co+C()

'IIIIII-.

C, +20(0)—>C0, +20( ) I

6 8 10 12 14
(10000 KY/'T

Enables accurate predictions of pc char burning behavior over range of T, [O,], and
pressure conditions

SKIPPY modeling validated assumptions used in analyzing experimental data (Tognotti
and Sarofim)
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Other Predictions of New Mechanism — Reaction Order

Global Reaction order

Oxy-Fuel Char Combustion
— Semi-Detailed Char Combustion Mechanism
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CRE. The Simple Math Argument for Carbon Capture

74

209 Gt  Est. carbon emissions to give 2 deg C global mean T rise
700 Gt  Est. current recoverable fossil reserves (coal, oil, gas)
4600 Gt  Est. fossil reserves + 30% of the fossil resource base

“We have a choice — we either keep the fossil fuels in the ground
or utilize CCS ... keeping it in the ground is most unlikely”
ﬂ -- Filip Johnsson, Chalmers University

carbon capture
and sequestration
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CRE. Other Potentially Important Reactions during

4 Oxyfuel Combustion

'

e H/O system radical recombination reactions: CO, and H,O are both
very effective 3"9%-bodies, e.g. in

O+0+M->0,+M chaperon efficiency of
O+H+M->0OH+M CO, is 3.8 x that of N,
H+H+M->H,+M and efficiency of H,O
H+ OH + M- H,0 + M is 12 x that of N,

H+0,+M-»HO,+M (Li et al., 1JCK 2007)

e Flame modeling to-date indicates effect of CO, and H,O on radical
recombination pales in comparison to H + CO, reaction
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CRE. CO, Dissociation

Some researchers attribute observed high CO concentrations in flame
zone to thermal dissociation of CO,

— CO is readily oxidized at high temperatures, so balance of CO and CO,
is typically determined by H + CO, reaction equilibrium

— thermal dissociation is strongly temperature dependent
e generates 1% CO (from 100% CO,) at 1920 K, 2% CO at 2050 K
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