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Computational performance per unit cost (including energy/cooling
cost) has improved exponentially over the last > half-century
= Enabled by transistor downscaling and associated energy reductions
= But, physical limits to this scaling path are only ~10 years away
= |Intrinsic limitations of MOSFET technology
= |ndustry is still looking for the “next” technology that can replace
CMOS and enable continued efficiency scaling...

= Understanding fundamental (technology-independent) efficiency limits is
necessary to help guide us in this search

= Animportant class of energy efficiency limits arises from
fundamental quantum theory and thermodynamics

= Performing optimally within these limits will require fundamentally new
computing paradigms (not just “better transistors” for conventional logic)

= This talk will focus on new computing paradigms that may improve
the efficiency of general-purpose digital computing
= By leveraging principles such as reversibility, nondeterminism, and chaos

= Full-blown Quantum Computing would likely confer even greater benefits,
but only for more specialized types of applications. < Not our focus here
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Trend of Min. Transistor Switching Energy
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Fundamental Physics Implies
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Various Firm Limits on Computing
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Physics Interpreted Computationally

= Many (if not all) physical quantities can themselves be
interpreted in terms of information processing concepts:
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Entropy
= The amount of unknown or incompressible information in a system.

Action
= The amount of computational effort exerted in a given transformation.

Energy
= Rate at which computational effort is being exerted in a given system.

(Generalized) Temperature
= Rate of computational effort exerted per unit of information capacity.

Momentum
= “Motional” computational effort exerted per unit distance traversed.

And so on...
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Some Important Facts of Physics @

Bearing on the fundamental limits of computing:
= |nformation cannot propagate faster than light

= |gnoring here the possibility of exotic spacetime configurations

= Only mutually orthogonal quantum states can be reliably
distinguished from each other
= Limits the information content of physical systems of given energy
= The complete microscopic (quantum) state of any physical
system evolves reversibly (more specifically, unitarily).
= No microscopic information loss = 2" law of thermo.
= “Erasure” of digital information = Entropy increase = Energy loss
= Energy itself is a measure of the rate of quantum state change

= Limits the speed of even reversible computations as a function of their
energy content
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Quantum State Counting, ) i
Information, and Entropy

= Suppose a given physical system (as defined in a given
context) has N distinguishable (orthogonal) quantum states,

= Then we can say its physical information capacity is C = log N.

* The base of the logarithm determines the information unit.
— Base 2: Unitis 1 bit. Base e: Unitis 1 “nat” or kg (Boltzmann’s constant).

= Given a state of knowledge about the system expressed by a
probability distribution p; (where i indexes system states),

= Then we say the system’s entropy is its unknown information content,

= and its known information (a.k.a. negentropy) is the remainder,

N
1
K=C-S5= logN—Zpilog—.
i=1 Pi /




Quantum Time-Evolution & )
The 29 Law of Thermodynamics

= The complete evolution of any quantum system over a time t is
expressed by some unitary transformation,

U(t) — e—th/h
= where H is the system’s Hamiltonian operator, an energy-valued
hermitian (self-adjoint) linear operator.
= Unitary transformations are generalized rotations; they have the
mathematical property that angles between vectors are preserved
by the transformation.
= Thus if |¥;) and |¥,) are mutually orthogonal, then so are U|¥;) and
U|W,). States that start distinguishable, stay distinguishable.
= Therefore, the physical information capacity C of a systemis
conserved by its quantum time evolution...

= Moreover, barring measurement from outside, its entropy S can only
subjectively increase, e.g. if we don’t know H exactly and can’t track the
exact evolution. It can never spontaneously decrease. = 2" law

= |n other words, physical information cannot be destroyed.
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Landauer’s Principle ) e
= Due to the indestructibility of information, all physical
operations are microscopically one-to-one (injective)...

= Thus, any information that existed in the system before the operation,
must still exist afterwards

= Whenever we think that we have simply “erased” some information,
we must have actually only transformed it to another form

" e.g., entropy in the environment
= |f a computational operation reduces the entropy of the
logical state by an amount AS, it must increase the entropy of
some other part of the system or environment by at least AS.

= |f this entropy ends up in an environment at temperature T, this
implies an amount of heat AQ = TAS must have been added to the
environment (by def'n of temperature).

= Erasing 1 bit (k; In 2) of information -

"= kgzTIn2 =~ 18 meV energy dissipated to heat in thermal environment
= Implies £ ~350 Eb erased per second (Exa=10*%) per Watt in room-T env.
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Reversible Computing ) .

= A general definition of a computational operation on a state
set S is a (possibly partial) mapping from initial states x € S to
probability distributions over final states y € S.

= Typically in computing, we wish to carry out deterministic
operations in which the final state distributions are singular.

= However, nondeterministic operations are also possible and useful.

= Call a computational operation reversible if and only if all of
its final state distributions are non-overlapping.
= Every possible final state has (at most) one predecessor.

= Reversible computing refers to computing with reversible
operations.

= Wherever reversible operations are used, the entropy of the logical
state is not decreased, and so Landauer’s principle does not require

any minimum energy dissipation for those operations.
10




Types of Computational Operations
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Unconditionally Reversible Gates — [@&:.

Any complete reversible, deterministic operation is simply a
permutation (bijective transformation) of the state set.

Some example reversible operations (“gates”) on binary-

encoded states: '@'
= NOT(a) a:=-—a In-place bit-flip $
= cNOT(a,b) if =1 then b :=—b Controlled NOT
= ccNOT(a,b,c) if ab=1 then ¢ := —c A.k.a. Toffoli gate
= cSWAP(a,b,c) ifa=1thenb & c A.k.a. Fredkin gate i
ccNOT and cSWAP are each universal gates
= The latter in the case of functions on dual-rail-encoded bit-strings %
No set of 1- and 2-bit reversible gates is universal

= However, cNOT plus 1-bit quantum (unitary) gates is a universal set




Conditional Reversibility (CR) ) i
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= Definition: An operation O is conditionally reversible under
precondition P € S if and only if the restriction of O to P is a
reversible operation (as a partial function).

= Given an initial probability distribution p over states in S such that
p(x) = 0 for all x & P, the application of the operation O does not
reduce the entropy of the computational state, and so incurs no
minimum dissipation under Landauer’s principle.
= Examples of some conditionally reversible operations:
= Green denotes the restriction of the operation to the precondition

= Red: States that would result in dissipation b/c precondition not met

abc a'b'c'

a a' a a' rab1 ra'b’1 rab1 ra’b’1
O @ %) o) (00)—(00) 00 /(00)
L ' (0D)——01
Q)—=Q1 GQ—=Qv

. J J . J \_ J

rSET rCLR crSET rCOPY
Reversible SET Reversible CLEAR Controlled reversible SET Reversible COPY
(a=0) a:=1 (a=1) a:=0 (ab=0) ifathenb:=1 (b=0) b:=a rOR — Reversible OR

(c=0) c:=avb 13




Implementing CR Operations ) 5.

Not very difficult!

Easy to do with adiabatic switching

= This structure can be used to do/undo

rOR operations
Example of 2LAL logic family
= Based on CMOS transmission gates

= Implicit dual-rail complementary
signals (PN pairs) in this notation

Operation Sequence:

Initial state:

= g, b are inputs, other nodes are logic 0
Latch control L, goes high (open)

= jand c tied together (purple)
Gate drive D, goes high

= j& cgo high, dependent on avb (yellow)
Latch control L, goes low (closed)

= cis now disconnected, independent
Gate drive D, reverts low

= jreturns tointermediate state

Dpy

Apy

bpy [ Cpn

Hardware Schematic




Simulation Results (Cadence/Spectre)

Average power dissipation per nFET, W

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL
2LAL = Two-level adiabatic logic (invented at UF, ‘00)
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= in 8-stage shift register.

At moderate frequencies
(1 MHz),
= Reversible uses

< 1/100% the power of
irreversible!

At ultra-low power
(1 pW/transistor)
= Reversible is 100 X faster
than irreversible!
Minimum energy dissip.
per nFET is< 1 eV!
= 500 X |lower than best
irreversible!
= 500X higher
computational energy
efficiency!
Energy transferred is still
~10 fJ (~100 keV)

= So, energy recovery
efficiency is 99.999%!

= Not including losses in
power supply, though




Some Possible Uses for )
Nondeterminism

= Given appropriate device mechanisms, can be used to
temporarily reduce entropy of environment (cooling it)
= Entropy is moved from environment into computational bits

= Source of randomness for use in probabilistic (randomized)

algorithms.
= |n some cases, such algorithms have computational complexity
advantages over the best-known fully-deterministic algorithms
= Can’t prove the same results for pseudo-random number generators
= |n cases where nondeterminism doesn’t hurt, allowing it to
occur permits us to use operations that are less reliable due
to lower signal energies which may be contaminated by
thermal noise. Doing so may improve energy efficiency
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Boltzmann Distribution ) i,

= Derived from very general thermodynamic arguments about
the interaction of a system at equilibrium with a much larger
thermal environment at some temperature T.

= |.e., independent of the technology used in the system

= Apart from quantum-mechanical corrections for assemblages of fermions
(Fermi-Dirac distribution) or bosons (Bose-Einstein distribution)

= The probability that the system will be found in any given
state having energy E is proportional to e “E/XT

= Thus, if we wish for the probability that a system at equilibrium is not
in a certain desired state to be less than some small amount p, K 1,
then we must arrange for any non-desired state to have energy

1—p, 1
E > kT In ~ kT In|— ],
Pe Pe

or even higher than this if there are multiple non-desired states.

= |less energy > Greater likelihood of thermally induced error

17




Quantum Speed Limit )
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* The energy E of any quantum system (above its ground state)
determines the rate at which it exerts a certain quantum-
theoretic measure F of computational effort.

= Average angular distance traversed by the state’s complex coefficients =
Twice the total complex-plane area swept out = Imag. trajectory length.

dF E(t) — EO (here dimensioned in
—_— = ] angular velocity units)
dt h

= F.g.: An excitation of 1 eV corresponds to 1.52 X 10'° rad/s.

= A minimum effort of F = m/2 (rad), applied appropriately, is
required to flip a bit, and we need F = m to progress one step
along a non-repeating sequence of distinguishable states.

= Any specific computational task has a minimum worst-case effort or
difficulty, which determines the minimum energy-time investment
required to carry out that computation on worst-case input states. 18




Temperature as “Clock Speed” ) .
= Thermodynamically, temperature T is defined by

aS

1
T 0
= Partial derivative of the system’s entropy S (at equilibrium) with respect
to the thermal energy E of the system.

= For simple systems with heat capacity proportional to temperature
(e.g. an ideal Fermi gas), we find that T o< E/S.

= With a constant factor determined by a constant of integration.
Equilibrium (maximum) entropy is just information capacity.
= Temperature is thus () energy per unit information capacity...

= Computational effort per bit.
= Note this quantity is well-defined even for non-equilibrium states!

= Example: Room-temperature Fermi gas 2
= Rate of effort sufficient for at most 4.33 X 1012 transitions / sec. / bit
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= Typically, the dynamical behavior of real-world physical
systems exhibits chaos

= Extreme sensitivity to initial conditions

= When the microstate is not known precisely, the long-term evolution
cannot be accurately predicted even when the macroscopic state is
known fairly accurately. = System behavior appears nondeterministic.

= This feature persists despite the underlying determinism and
reversibility of the microscopic quantum-mechanical dynamics!

= |t’s simply too hard to know the parameters of a system’s Hamiltonian
precisely enough to predict its macroscopic dynamics exactly

= Also, imperfect isolation of a system means that unavoidable interactions
with its unknown environment will cause decoherence of its quantum
state, effectively increasing its entropy

= Given that some degree of chaos appears unavoidable, can
we harness it for computation, rather than be harmed by it?

20




Chaotic Computing? = i
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= What are some potential advantages of utilizing chaotic dynamical
systems for computation?

= |n a conservative chaotic system, the strange attractor to which the
dynamics converges represents a thermodynamic equilibrium state

Once converged onto the attractor, there is no further energy dissipation

This remains true even if the system is interacting with an external thermal
environment once the system and
environment temperatures equilibrate,
due to the fluctuation-dissipation theorem

= The identity of the attractor reflects
information about the initial state and
the time-series of external forcings being
applied to the system

Automatically computes a function of
these inputs (possibly a useful one)

Cheaply maps a simple input into a much
higher-dimensional space of trajectories

— This can be useful for learning, as in
reservoir computing




Computing Below the Noise Floor ) .

= Shannon teaches us that reliable communication remains
possible when SNR << 1, just at a low bit rate

S
C =Bl 1+ —
082( +N)

= A computational dataflow can be considered as just a special
case of a communication channel that happens to transform
the data in transit!

= Therefore, it ought to be possible to carry out reliable
computations as well using signals that have less than the
thermal energy, just at a correspondingly slow rate

22
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Chaotic Network Model of Logic L

= Combinational logic via nonlinearly
interacting degrees of freedom in @
classical conservative dynamical systems

_._\ NE
= Let each “node” be a generalized position G2 J—2#
coordinate g, continuous range incl. 0,1

Ng
-— Ny
® —]

o
@
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= There is a corresponding momentum p; —5 Gg} \
= Init. w. a thermally distributed kinetic energy ~

= Logic “gates” become terms in a classical N, - N,
Hamiltonian energy function & @
= Coupling neighboring degrees of freedom

B

Ns

@

= Potential energy minimized = Adiabatic updating in one step:
= Each node traverses a complex (generally = Gradually transition inputs 0 <> 1

chaotic) trajectory in its phase space

= Overall configuration is thermally distributed distributed equilibrium state
around the global ground state configuration throughout the transition

= Network inputs can be tightly constrained

= System remains close to a thermally

= Asymptotically zero heating of the

= Deep potential well —low error probability system = no energy dissipation
= Although outputs fluctuate randomly, = Measure final state over a long
= Long-term average statistical behavior still period = learn result

conveys information about ideal result
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Example of a Nonlinear Interaction @&s.

A Quadratic Potential Energy Function for a NOT gate
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o
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=
]
=
g
=X
=
-
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Y (OUTPUT NODE)




Example Interaction Functions

= Here are some simple quadratic interactions:
= NOT gate coupling input X; to output x;:

1
Ei =E ka(xl + Xj— 1)2

= AND gate coupling inputs X;, X, to output x;:

1
E; = 5 a kT(xl- - xjxk)z
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DYNAMIC simulator ) i

= | am currently prototyping (in Python) a simple simulator
called DYNAMIC for these types of dynamical networks.
= Nodes interacting via arbitrary Hamiltonian interactions
= Centered-difference leapfrog-style updates of fixed-point coordinates
= Ensures reversibility of simulation (no entropy loss)
= Planis to simulate chaotic dynamical network model with this
simulator to validate that it can be used to do logic
= Visualizations
= phase portraits, equilibrium distributions
= Current status:
= Core simulation framework is working
= Testing on complex networks is still needed
= Visualizations still needed

26
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DYNAMIC Software Architecture

‘examples

halfAdder.py B fullAdder.py %
' boolean
dynamicNOTGate.py B dynamicANDGate.py
' network
dynamicNode.py dynamicComponent.py dynamicNetwork.py

' simulator
dynamicFunction.py B dynamicVariable.py B hamiltonian.py

' functions

differentableFunction.py B quadraticFunction.py

~arithmetic
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Some Possible Next Steps .

= Add an external thermal environment to the model

= Parallelize simulator so that simulating very large networks
becomes feasible

= Explore possible implementation technologies
= Superconducting circuits
= Other?




Conclusions ) i

= Certain physical limits of computing are fundamental.
= |ndependent of implementation technology!

= Reflect fundamental aspects of the computing paradigm used.

= Performing as well as possible requires new computing paradigms!
= Not simply “better devices.”

= We saw some examples of fundamental limits:
= Energy dissipation limit from Landauer’s Principle
= Can be avoided by (at least conditionally-) reversible computing

= Quantum-mechanical limit on parallel step rate per unit temperature
= On the order of 15 GHz / degree Kelvin
= Unavoidable, but still fairly far away

= \We must maintain awareness of the above factors when
developing future computing technologies

= |t seems likely that the best new technologies will be those that

closely reflect the computational structure of physics itself
29




