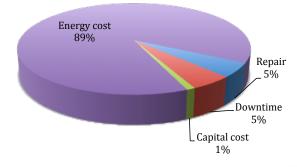
Effects of Cooling Rate on 6.5% Silicon Steel Ordering

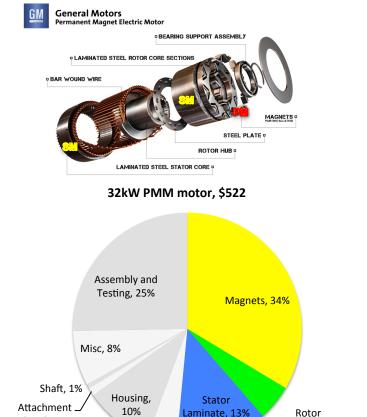
Jun Cui^{1,2}, Chad Macziewski¹, Brandt Jensen², Gaoyuan Ouyang¹, Lin Zhou², Kevin Dennis², Nikolai Zarkevich², Xiujuan Jiang³, Wei Tang², Shihuai Zhou², Emrah Simsek², Ralph Napolitano², Matthew Kramer²

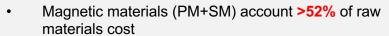
- ¹ Iowa State University, Dept. of Materials Science & Engineering
- ² Ames Laboratory, Division of Materials Science & Engineering
- ³ Pacific Northwest National Lab, Energy and Environment Directorate

IOWA STATE UNIVERSITY



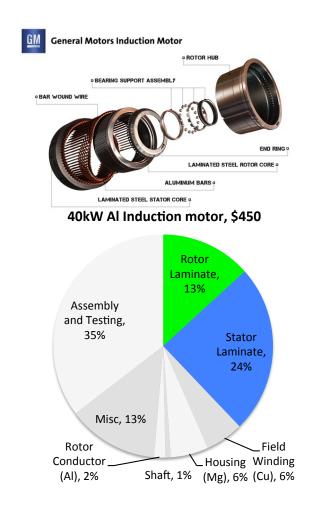
Outline


- Background
 - Overview of soft magnetic materials
 - Why 6.5% Si steel
 - Approaches and challenges
- Melt-spun 6.5% Si steel approach
 - Experimental setup and method
- Effects of cooling rates on 6.5% Fe-Si physical properties
 - Actual cooling rates
 - TEM phase fraction
 - Physical properties
 - Mechanical, magnetic, electrical
- Discussion


Cost is a top priority for electric motor industry

- Reducing capital costs is the most important consideration driving customers' decision, because people who build the plant is not the people who operate it
- 91% reported that all motor purchase decisions were made at the plant level.
- 8% included efficiency in their specifications for the motor to be purchased
- Customers most often use the size of the failed motor being replaced as a key factor in selecting the size of the new motor.
- The energy saving due to higher efficiency may command a small premium if there is any.
- A motor is competitive if it has higher efficiency while maintaining competitive price

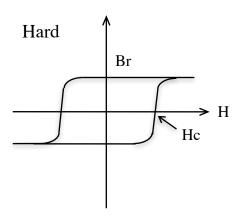
Cost Breakdown of Electric Motors

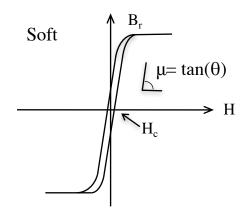


Stator_

Winding, 4%

band, 1%


Labor accounts a significant fraction, but not much room to reduce



- Magnetics (laminate) account 37% of raw materials cost
- IM is more labor intensive than PMM, less efficient, bigger in size, and require more expensive/complex drives electronics, but IM is cheaper and free of REE

Laminate, 5%

Basics of magnetic materials

- Coercivity (Hc): the field required to demagnetize magnet
- Remanent magnetization (Br): the remaining magnetization when applied field is reduced to zero
- Permeability (µ): the ratio of magnetization vs applied field

Ideal hard magnetic materials:

- High coercivity, Hc > 20 kOe
- High magnetization, Br > 1.4 T
- High energy product, BHmax > 50 MGOe
- Small temperature dependence

Ideal soft magnetic materials:

- Low coercivity, Hc < 0.1 Oe
- High resistivity, $\rho > 1000 \mu\Omega$ -cm
- High magnetization, Br > 2 T
- High permeability, μ > 10⁵

Commercial Soft Magnetic Materials

Туре	Materials	Bs (T)	Hc (A/m)	10³μ _r 1 kHz	R $(μΩ-cm)$	λ (ppm)	W _{1.5/50} (W/kg)	W _{10/400} (W/kg)	Ref
Crystalline	Electrical Steel, 0.2mm, NGO, 3.2% Si	2	26	15	57	8	0.7-1.2	11	[1,5]
	Electrical Steel, 0.2mm, NGO, 6.5% Si	1.6	45	19	82	0.01	0.6	8.1	[1,2]
	Molypermalloy, 0.5mm, Ni78Fe17Mo5	0.65-0.82	0.25-0.64	100-800	60	2-3	0.07	0.3	[3,4]
	Hiperco 50, Fe49Co49V2	2.4	16-400	5-50	27	60	4	10	[4]
Nano- crystalline	FINEMET, Fe _{73.5} Si _{13.5} Nb ₃ B ₆ Cu ₁	1.2	0.5-1.4	80	110	0-2		1.1	[4-6]
	NANOPERM, Fe ₈₈ B ₄ Zr ₇ Cu ₁	1.5-1.6	2.4-4.5	48	56	~0		3	[4-6]
	HITPERM, (FeCo) ₄₄ Zr ₇ B ₄ Cu ₁	1.6-2.0	80-200	1-10	120	36		20	[4-6]
Amorphous	Metglas, Fe78Si9B13	1.54	3	2.1	135	27	0.7	2-5	[7]
	Metglas 2650CO, Fe ₆₇ Co ₁₈ B ₁₄ Si ₁	1.8	3.5	50	123	35	0.3	3	[4,8]
Ferrite	Ferrite, MnZnFeO	0.36-0.5	10-100	0.5-10	10 ⁷ -10 ⁸	5			[4]
	Ferrite, NiZnFeO	0.25-0.42	14-1600	0.01-1	10 ¹¹	-20			[4]

Fe-3.2%Si steel offers the most attractive cost/performance ratio (raw materials ~\$2.8/kg, stamped laminate ~\$4.7/kg)

REF

^[1] http://www.jfe-steel.co.jp/en/products/electrical/supercore/jnex/04.html

^[2] H. Haiji, K. Okada, T. Hiratani, M. Abe, M. Ninomiya, J. MMM, 160 (1996) 109-114

^[3] G. Herzer, Ch. 3. Nanocrystalline soft magnetic alloys, Handbook of Magnetic Materials, V.10, 1997

^[4] O. Gutfleisch, M. Willard, E. Bruck, C. Chen, S.G. Sankar, J.P. Liu, Advanced Mats. (2011), 23, 821-842

Q:

How much does a 12-ounce can of soda weigh?

A:

It weighs at least 368.7 grams (aluminum can ~13.7 grams; 12 ounces of soda ~355 grams).

If you pay a \$ at vending machine, that is \$2.7/kg for the can of soda.

We can't lower our labor cost...

We can't reduce raw materials cost...

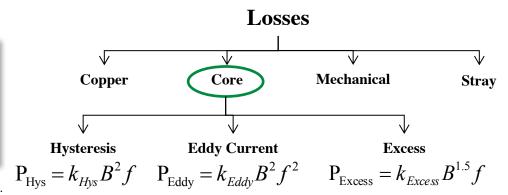
What can we do?

We can go for higher frequency

A 100 kW motor at 50 Hz with 90% efficiency would deliver 200 kW when running at 100 Hz. [1]

Higher frequency will lead to higher power density, smaller size, less raw materials, thus lower cost

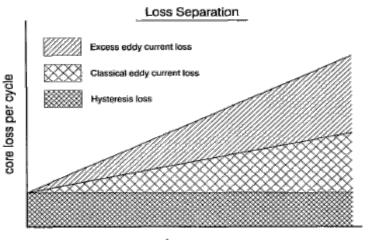
- Increasing f increases RPM, HP
- Increasing # of poles increases power density (due to shorted end winding & back iron) but it also increases f.


$$HP = \frac{Torque \times RPM}{5252}$$

$$RPM = \frac{120f}{\#P}$$

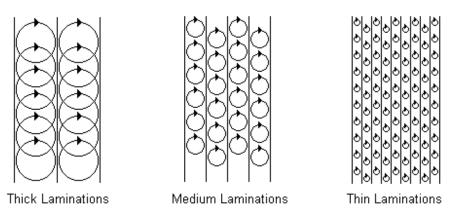
However, higher frequency leads to higher loss and lower efficiency

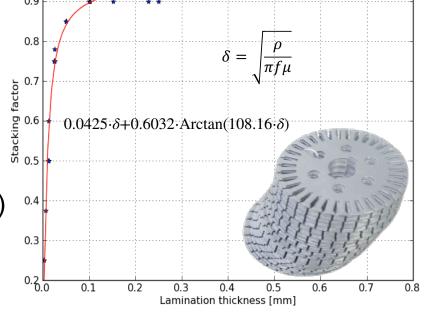
A 100 kW motor at 50 Hz with 90% efficiency would deliver 200 kW when running at 100 Hz, but efficiency would decrease to 80%. [1]


Ref: Beckley, Philip. Electrical steels for rotating machines. No. 37. IET, 2002.

 To improve machine power density without compromising efficiency, it requires SM with

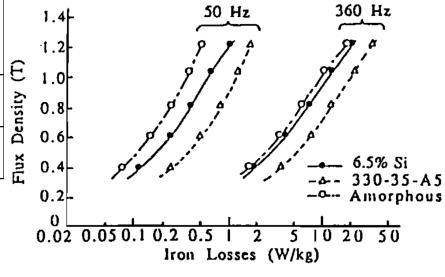
- Higher Resistivity
- Lower Hysteresis
- Higher flux density
- Maintaining mechanical properties

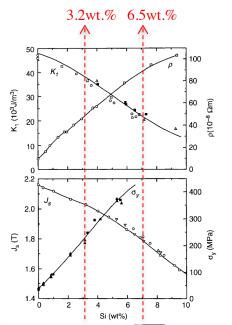

Total losses per cycle vs. Frequency



Thinner laminate reduces eddy current, increase excitation frequency:

- Skin depth is due to the circulating eddy currents (arising from a changing H field) cancelling the current flow in the center of a conductor and reinforcing it in the skin.
- Thinner laminate allows higher frequency

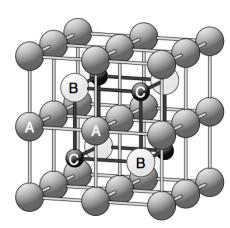



However, thinner laminate increase laminate fabrication cost, and reduce stacking factor.

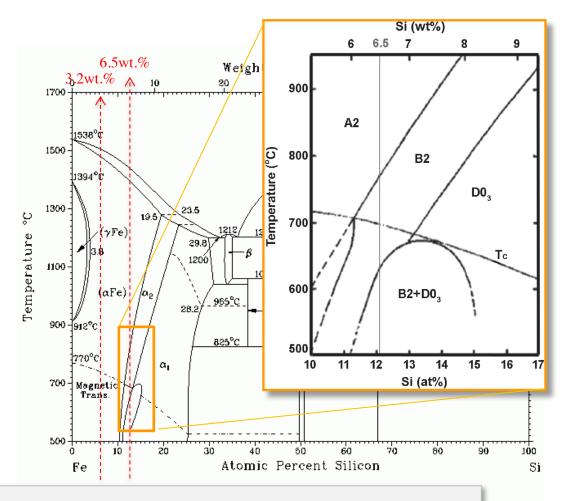
With the thickness of laminate at its practical limit, go for a higher frequency is beneficial only if a new soft magnetic material with higher e-resistivity and lower coercivity is cheaply available

High Si content electrical steel promises more efficient motors

FeSi steels	Saturation Magnetization (T)	DC Max relative permeability	Electric resistance $(\mu\Omega\text{-cm})$	Magnetostriction (ppm)	Core loss W10/400 (W/kg)
3.2% Si	1.96	18,000	52	7.8	14.4
6.5% Si	1.8	23,000	82	0.1	5.7

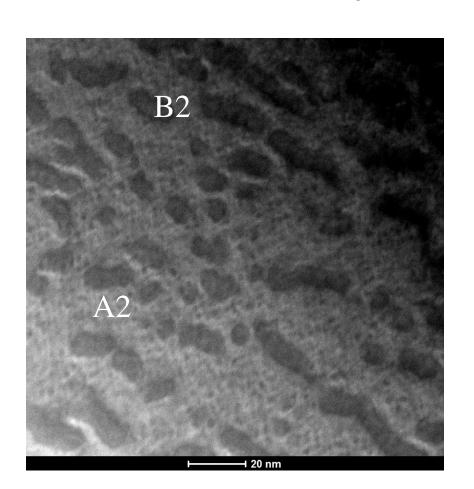


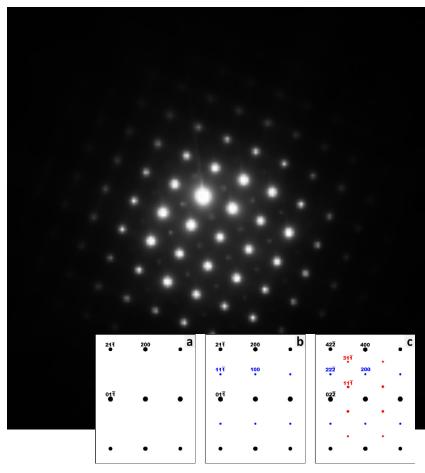
- Increasing Si wt.% improves magnetic/electric properties (6.5% Si is the optimum, lower Eddy current, smaller hysteresis loss, near zero noise
- Less heat, less demand on cooling system, higher carrier frequency, higher power density, smaller size



^[2] JFE-STEEL, http://www.jfe-steel.co.jp/en/products/electrical/supercore/jnex/03.html

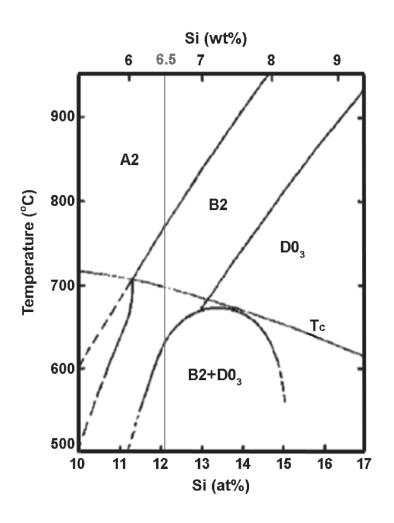
However, 6.5% Si steel is brittle


Fe (A) Fe (B) Si (C)						
α- FeSi	A2	All sites are randomly occupied by Fe or Si				
α ₂ - FeSi	B2	C, B sites are randomly occupied by Fe or Si				
α ₁ - FeSi	D0 ₃	C sites are randomly occupied by Fe or Si				



The heterogeneous formation of α -FeSi and Fe₃Si(α_1) ordered phases is responsible for severe materials embrittlement.

The B2/D0₃ phases in 6.5% Si steel



HAADF STEM image and [100] diffraction pattern. The A2 phase has less Si compared with B2 phase, as a result, A2 is brighter than B2 in the STEM image

The questions are

- 1. What are the effects of B2/D0₃ phases on mechanical, electrical, and magnetic properties?
- Can we manipulate these phases?
- 3. If so, what are the consequences?

Effect of cooling rate on B2/D0₃ phases formation

Rapid cooling is expected to

- Suppress the formation of D0₃ phases, and
- Reduce B2 phase fraction

Experimental methods

Sample preparation:

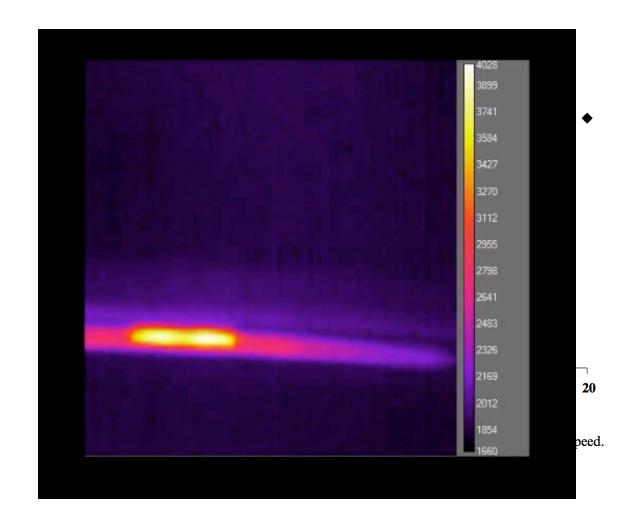
- Melt spin method is used to prepare Fe-6.5%Si ribbons
- Wheel speed is used to achieve various solidification rates

Characterization methods:

- IR thermal camera: solidification rate
- VSM: magnetic properties
- 4 point probe and wire: electrical resistivity
- Hardness, tensile/compression: mechanical properties
- XRD, SEM, TEM: microstructures

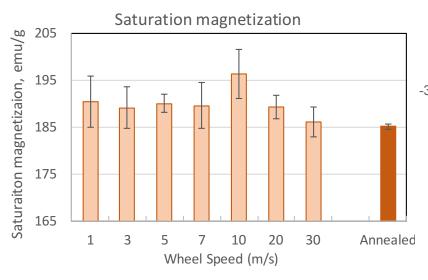
Solidification rates

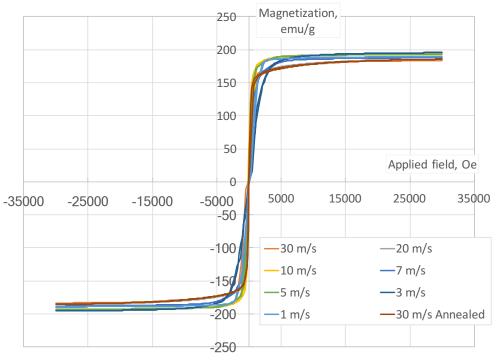
Imaging Dynamic Instabilities in Melt Spinning


TMS Spring Meeting February 19, 2002

M.J. Kramer, R. E. Napolitano, H. Meco, M. Sawka, B. Kappes, K.W. Dennis and R.W. McCallum

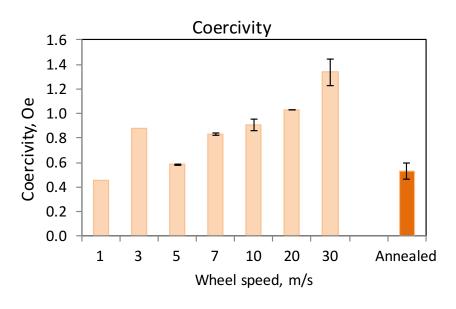
Metal and Ceramic Sciences Program, Ames Laboratory (USDOE) and *Department of Materials Science and Engineering, ISU

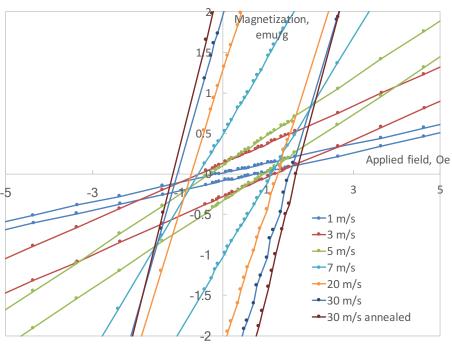

U.S. Dept. of Energy, Division of Materials Sciences, Office of Basic Energy Sciences under contract No. W-7405-ENG-82 at Ames Laboratory. Additional support through the Processing Science Initiative, Materials Preparation Center, a USDOE user facility.


Solidification rate

Magnetic properties (saturation magnetization)

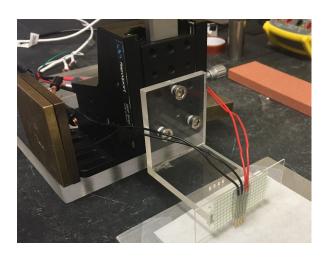
- Quantum Design Versalab VSM was used to measure saturation magnetization
- 5 samples per wheel speed were measured for error bar

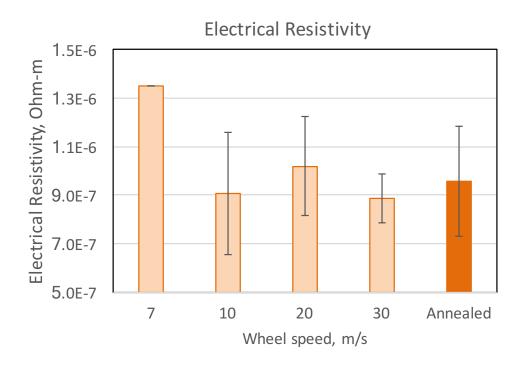



Ms decreases with increasing wheel speed, except the 10 m/s sample

Magnetic properties (coercivity)

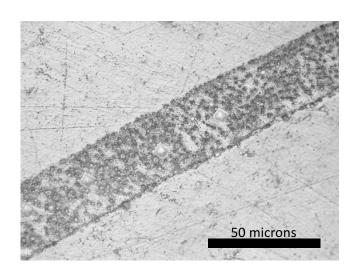
- Microsense VSM was used to measure coercivity
- 2-5 samples per wheel speed were measured for error bar

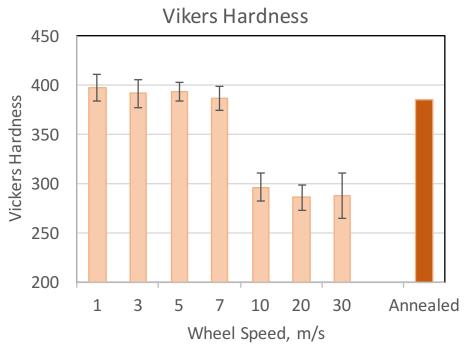



Ms decreases with increasing wheel speed, except the 10 m/s sample

Electrical resistivity

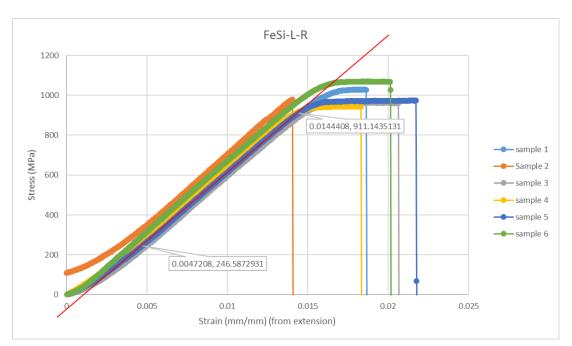
- 4 point probe method was used
- The method is calibrated using a copper foil (measured 1.71 E-8 Ω/m, theoretical 1.68 E-8 Ω/m)





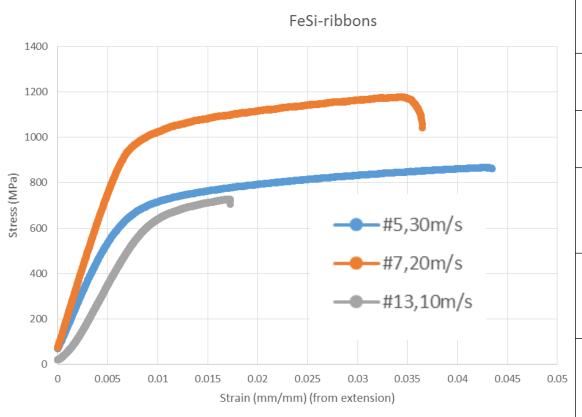
While no clear trend is observed, annealing shows signs of impact

Mechanical properties: hardness


- Micro hardness indenter was used to measure Vicker hardness
- 3 samples per wheel speed (except 1 m/s), and 10 locations per sample

The critical wheel speed is between 7 and 10 m/s.

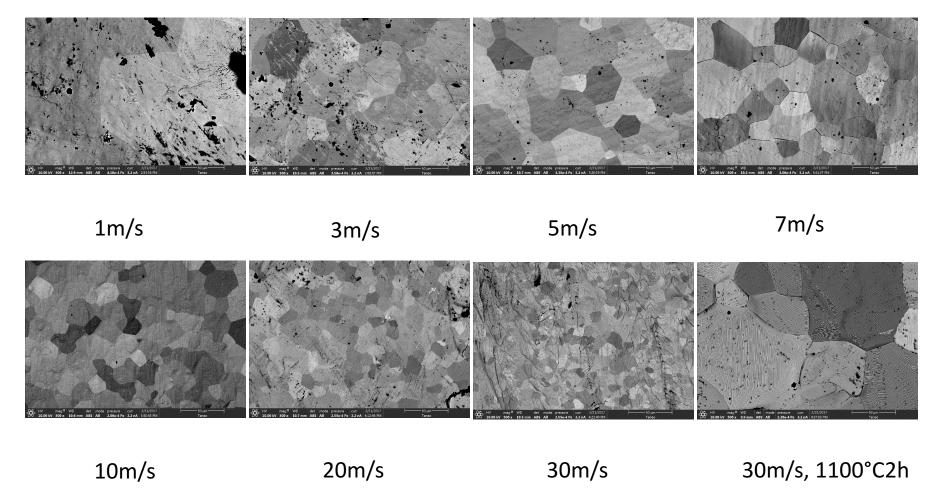
Mechanical properties: tensile (30 m/s)


- Specimens were cut into ASTM D638-14 standard. Edges were grounded down with 1200 grit sand paper.
- Tests were done using Instron 3369 with 30KN load cell, 0.01 mm/s extension rate.
- Strain was measured using grip separation. For some tests, clip on extensometer was used to measure the true strain.

specimen number		s1	s2	s3	s4	s5	s6	average	STD
ultimate tensile strength	Мра	1029.23	978.40	962.77	944.32	974.41	1070.31	996.21	52.12
elongation % in 25mm	extension	1.87	1.41	2.07	1.84	2.18	2.02	2.00	0.14
elongation % in 25mm	extensometer	0.62		0.91	0.78	1.02		0.83	0.17
Break in gauge?		yes	no	yes	yes	yes	yes		
Extensometer on?		yes	yes	yes	yes	yes	no		
comment		s2 excluded in all calculations.							

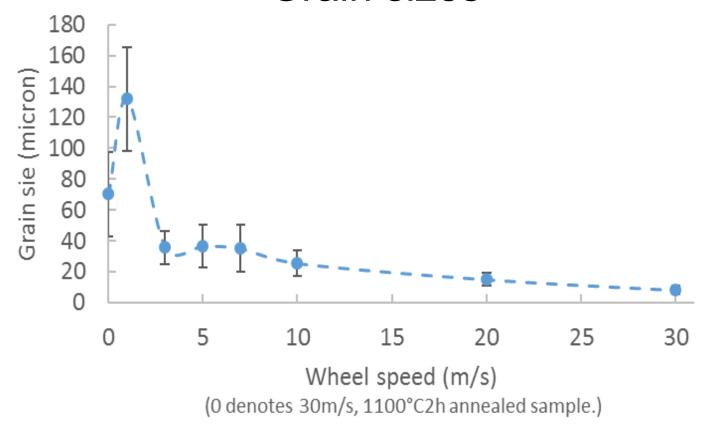
Typical values for steel:

- modulus: Structural ASTM-A36 steel: 200 GPa, AK steel oriented M6 silicon steel 124 GPa parallel, 200 GPa Transverse
- Ultimate tensile strength: Structural ASTM-A36 steel: 400–550 Mpa, AK steel M15 (2.7 Si%): 490 MPa
- Elongation: AK steel M15 (2.7 Si%): 23 % in 50mm.

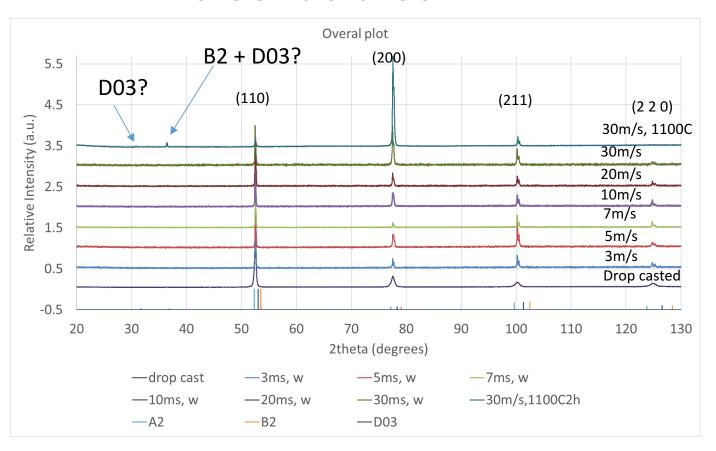

Mechanical properties: tensile (10, 20, 30 m/s)

Sample	30 m/s	20 m/s	10 m/s
UTS (Mpa)	867	1177	755
Elongation %	4.53	3.65	2.25
Elastic modulus (GPa)	96.7	137	77.3
Average thickness (um)	29	35	50
Gauge Length (mm)	12.17	6.48	8.07

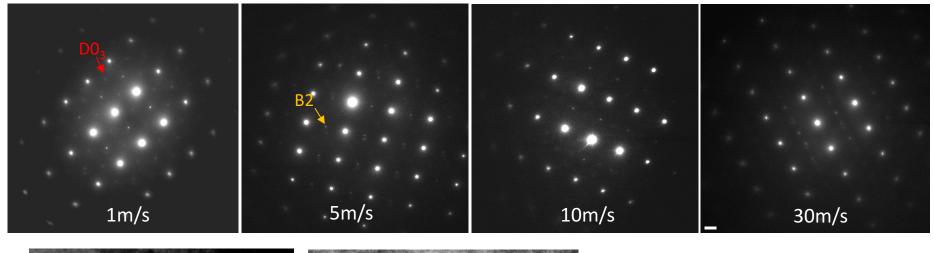
From 30m/s to 20m/s, a trend of specimens being less ductile is observed.

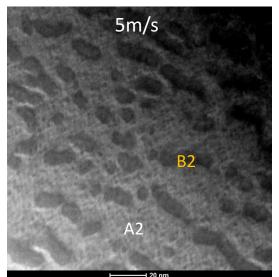

Microstructure: grain sizes (500X, BEC)

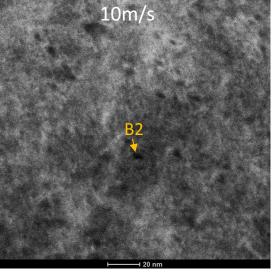
- All SEM taken on wheel side of the samples, samples were not polished.
- Backscattered images showed to reveal grain contrast.


Grain sizes

- Intercept method was used for grain size measurement. 15 grains were measured on the line for grain size analyze. 5 grains were used on 1m/s sample due to limited grains in view.
- Critical wheel speed is about 10 m/s




Microstructures: XRD



- All ribbons revealed only A2 phase.
- Major peaks of B2 and D0₃ overlap with A2. Peaks between 30-40° for B2 and D0₃ do not overlap with A2, but only somewhat visible for the long annealed sample.

Microstructure: TEM

Decrease of B2 and $D0_3$ phase volume fraction with increasing wheel speed. The $D0_3$ phase is only observed in the 1m/s sample.

Discussion

- Rapid cooling may reduce B2 phase formation, suppress D0₃ phase formation, reduce grain size
- Rapid cooling may increase mechanical properties
- Higher cooling rate may
 - Lower saturation magnetization
 - Increase coercivity
 - Not have clear impact on electrical resistivity

Acknowledgement

This material is based upon a grant by the Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007794*.

Disclamier: Neither the U. S. Government, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy or completeness of any information, product, or process disclosed, or represents that its manufacture or use would not infringe privately owned rights. Any reference to a commercial product, process, or service does not constitute an endorsement or favoring by the U. S. Government. The views and opinions of the authors stated do not necessarily reflect those of the U. S. Government.