

Exceptional service in the national interest

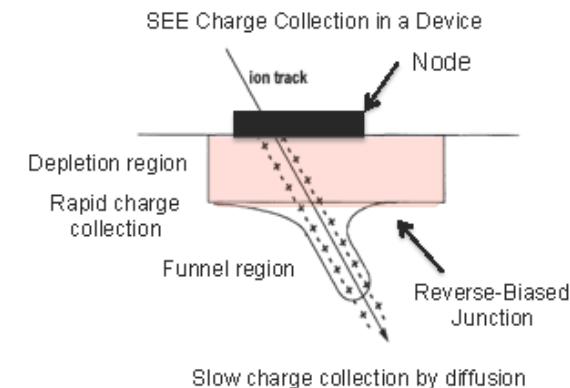
Happy
Flag
Day

Single Event Effects in Sandia's CMOS7 Devices and Acceptance Testing in Integrated Circuits

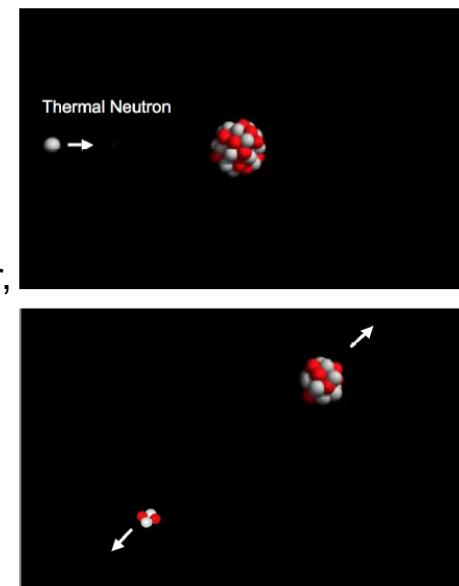
Lawrence C Musson

Dolores Black

Jeffrey Black



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX


Case Study – CMOS7 Eiger Platform

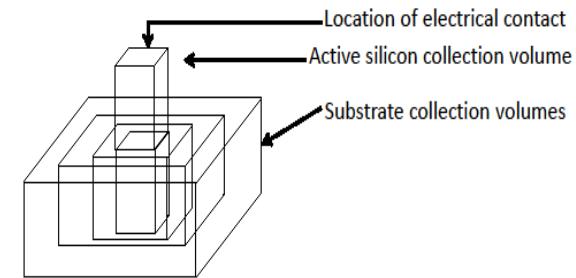
- NW Single Event Environment
 - Direct ionization from heavy ions during flight
 - Indirect ionization from heavy ions, protons, and neutrons
- CMOS7 Eiger Platform Mitigation
 - Harden logic gates with linear energy transfer (LET) onset of upsets $> XX \text{ MeV}\cdot\text{cm}^2/\text{mg}$
 - Semiconductor elements from nuclear reactions has LETs $< XX \text{ MeV}\cdot\text{cm}^2/\text{mg}$
 - W (contact plugs) has higher LET but exists over highly doped regions with low charge collection efficiency
 - Design Implementations
 - Increased drive transistors and higher nodal capacitance – density impact
 - Resistive feedback – density and timing impact

Direct ionization from heavy ion

Nuclear reaction in semiconductor, leading to ionization

Case Study – CMOS7 Eiger Platform

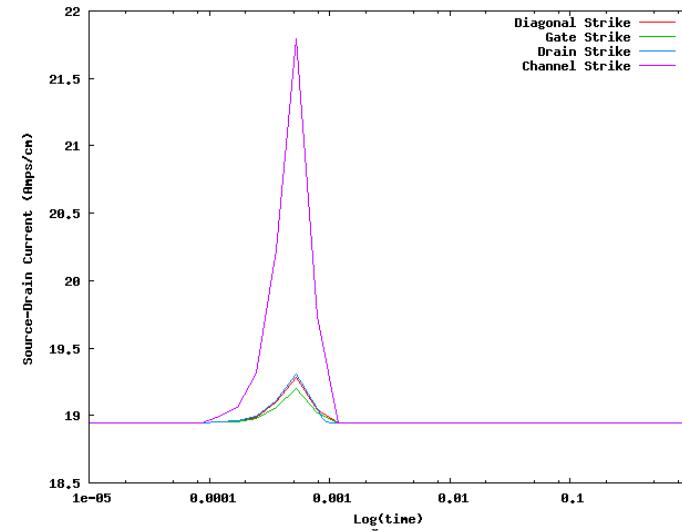
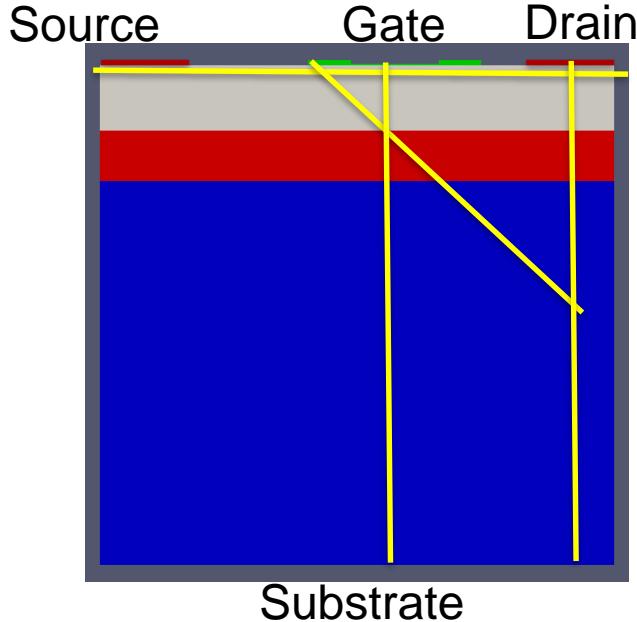
- Eiger V5 (Production version) was completed after 5 iterations including the initial platform prototype V0
 - 3 iterations were the result of designs attempting to meet radiation requirements while improving performance – evaluated after fabrication
 - Each iteration took 1 year and cost at least \$XX
 - Next Generation Platforms in CMOS8 face same and new challenges
 - Memory element radiation hardening versus performance optimization
 - Same as Eiger issue described above
 - Increased importance since hardening techniques used in CMOS7 do not scale well
 - Standard logic cell layout
 - Commercial logic cell use innovative layouts that have larger Si islands, but save on overall density
 - The layouts have larger charge collection volumes and increased body contact resistance (both bad for single event effects)
 - We are not likely to take the risk without a validated predictive modeling option

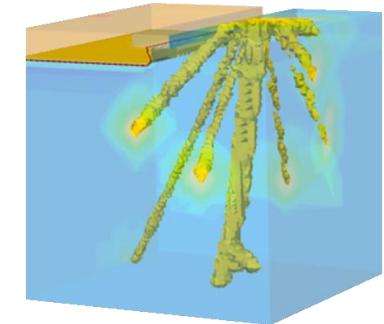

*Proposed effort would enable design trades to optimize IC performance while meeting radiation requirements and validate designs prior to fabrication.

The Team

- **Jeffrey Black**
 - Circuit designer for Sandia for 5 years with more than 12 years of prior experience.
 - 15 years of researching single event effects and developing mitigation approaches.
 - Currently leading Sandia's development of CMOS8 circuit designs to meet radiation requirements
- **Dolores Black**
 - Circuit analyst for Sandia for 3 years working with Xyce with more than 15 years of prior experience as a Circuit and ASIC designer.
 - More than 10 years experience as a System/Design Verification Engineer.
 - Researching Single Event Effects for 8 years working with MRED.
- **Lawrence Musson**
 - Charon developer for more than 10 years and a Xyce developer for 5 years.
 - Developed software to model drift-diffusion and associated models in semiconductors.
 - Has developed all the neutron radiation models for Charon 2.
- **Patrick Griffin**
 - Sandia Senior Scientist
 - Consultant to this LDRD
- **Vanderbilt**
 - Ron Schrimpf
 - Director, Institute for Space and Defense Electronics
 - Graduate student

High Altitude View

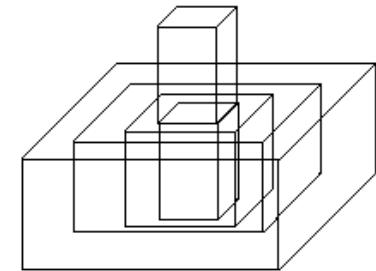
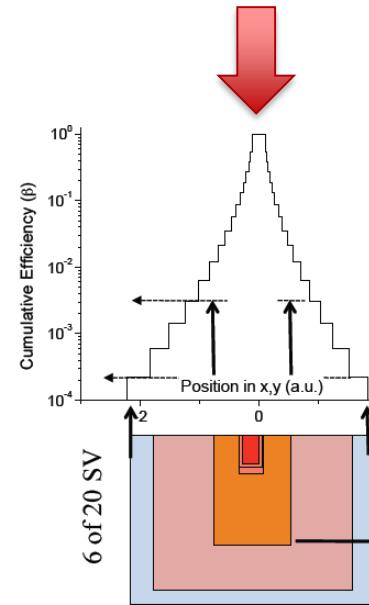
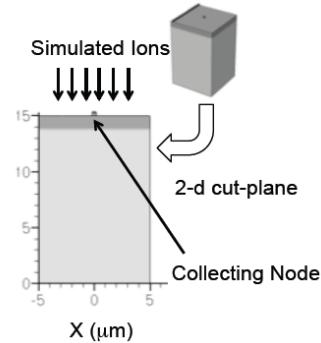
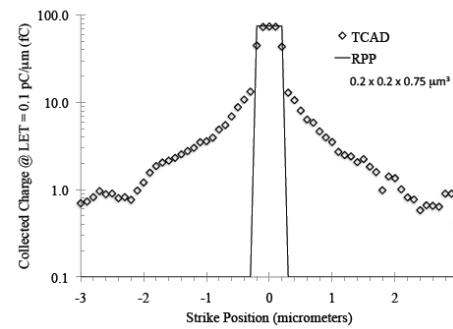


- We anticipate a union of tools & activities to satisfy the goals of what we intend in the LDRD
- **Charon**
 - Device physics
 - Drift-Diffusion Model
 - Finite Element / Finite Volume
 - Recombination / Charge generation
 - *How to inform secondary effects due to parasitic bipolar enhancement
- **Monte-Carlo Radiative Energy Deposition (MRED)**
 - Particle physics (Geant 4)
 - Nested Sensitive Volumes
 - Provides approximation for device physics at reduced cost
 - *How are nested sensitive volumes defined for silicon-on-insulator (SOI) devices
- **Xyce**
 - Circuit simulation
 - Charon/ MRED SEE informed netlists
 - *Explain current anomalies in existing CMOS7 data
- **Experiments**
 - Design of experiments
 - *Validation data for research and publication


*Overall integrated, validated workflow from TCAD to IC evaluation

*Research Aspects

Charon

- ❖ Real strikes are not user-defined
 - ❖ There is scattering
 - ❖ Energy is lost along the way
 - ❖ Use Cascade / Marlowe input?

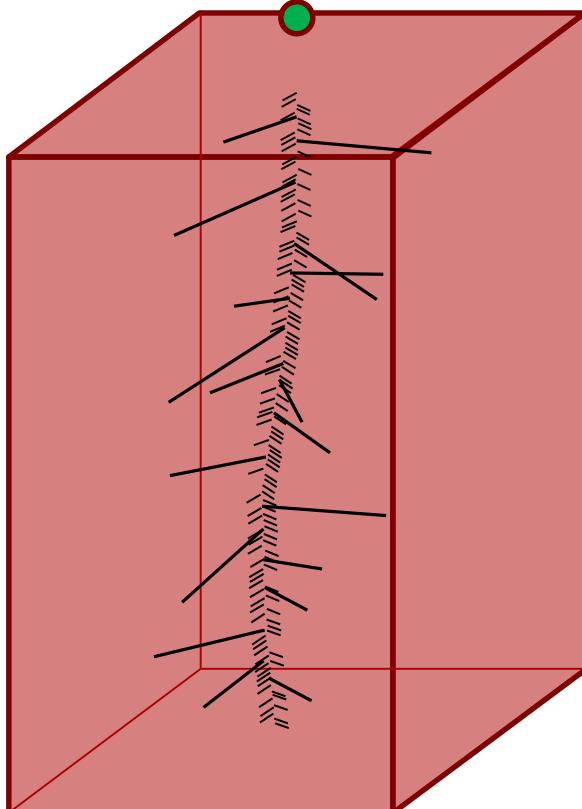




MOSFET manufactured in CMOS7 SOI technology

- User defined particle strike
 - Shape/location of the strike
 - Intensity of the strike
 - 0th order approximation to SEE
- ❖ Real analysis requires many evaluations
 - ❖ Must examine broad spectrum of strikes
 - ❖ Must examine multiple devices that provide identical function, but have different SEE response

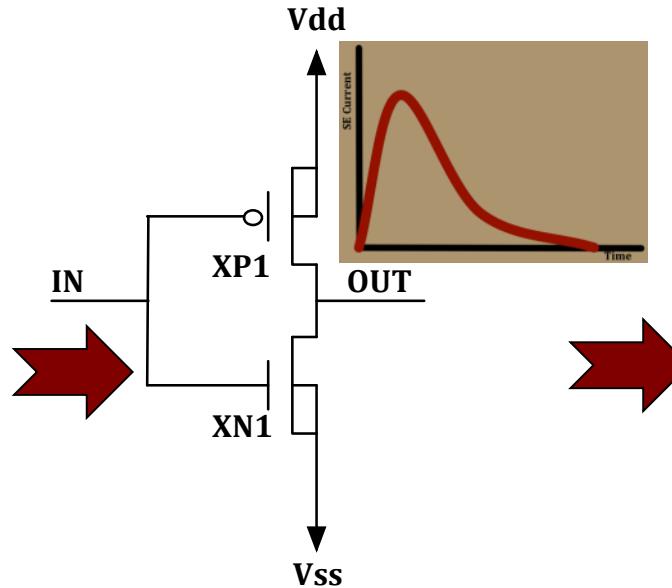
***The problem is not deterministic; it is stochastic**
There is a better, more efficient way... Use TCAD informed MRED

Charon->MRED (in SOI)

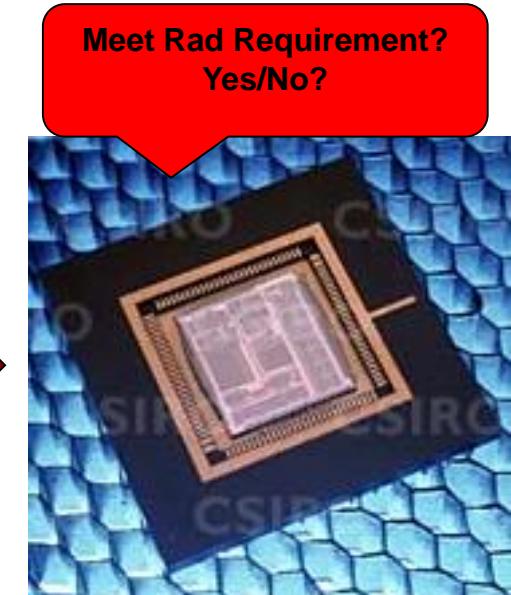
- Charon
 - Computationally intensive – Monte Carlo simulations are computationally intractable
 - Implements ion strikes at line of charge – actual deposition is random and involves nuclear interactions
- MRED device physics approximation
 - Overcomes computation and single event simulation limitations
 - Charon is used to calibrate volumes and efficiencies


CMOS7/8 devices present unique challenges for this conversion

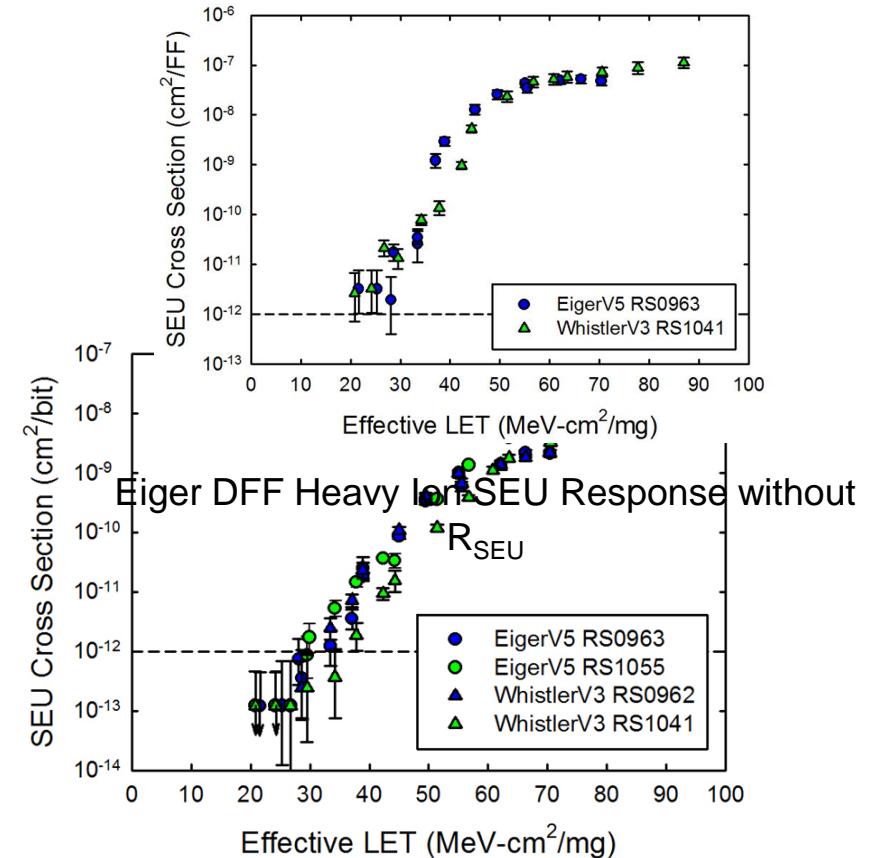
Research Contribution – Charon to MRED to Xyce


Single Integrated Simulation Tool Flow

- Radiation transport to IC response for ionizing particles.
- Translation across several layers of abstraction


Radiation transport

Circuit-level simulation


IC-level simulation

*Results in the reduction of test space across boundaries

Experimental Validation

- Existing CMOS7 Test Data
 - D Flip-Flops (DFF)
 - With and without feedback resistance
 - Large transistors, mainly BUSFETs, but no transistor variations
 - Dual Port SRAM (DPSRAM)
 - With and without feedback resistance
 - Smaller transistors with large shallow implant islands for access ports
 - Analog Blocks
 - Lots of transistor sizes and variations in each block
 - Not good for calibration, but good for validation

Eiger DPSRAM Heavy Ion SEU Response with R_{SEU}

Experimental Validation

- Calibration with existing data
 - Currently provides two layout variations (DFF vs. DPSRAM) with some circuit variations (with or without feedback resistance)
 - Layout differences include different size transistors, use of shallow implants in extended drains in DPSRAM, and transistors in the same island
 - It will be difficult to extract these layout differences independently with this test data – too many variations and not enough distinct data sets
 - *Explanation of anomalous responses in existing data
- We propose the development and evaluation of new test structures
 - Perform a design of experiments to better distinguish responses due to layout variations
 - Experiment data then used to validate the radiation modeling
 - *Validation of parasitic bipolar enhancement model

Research & Risks

- *Proposed effort would enable design trades to optimize IC performance while meeting radiation requirements and validate designs prior to fabrication.
 - *How to inform secondary effects due to parasitic bipolar enhancement (Charon)
 - *How are nested sensitive volumes defined for SOI devices (MRED)
 - *Explain current anomalies in existing CMOS7 data (Xyce)
 - *Validation data for the research and publication & bipolar enhancement model (Experiments)
 - *Overall integrated, validated workflow from TCAD to IC evaluation
 - *Results in the reduction of test space across boundaries
 - *CMOS7/8 devices present unique challenges for this conversion
- ❖ Too much uncertainty in the model
 - ❖ Is it sufficiently predictive?
 - ❖ Can we capture the bipolar effect?
- ❖ Scheduling build & test
 - ❑ The whys, what-fors, outputs
 - ❑ In the call, “introduce advanced models for single-event effects.”
 - ❑ Should save years and \$Ms
 - ❑ Validated process w/ mod-sim to assess ICs for radiation susceptibility prior to build & test
 - ❑ No one else has taken this approach

Objectives & Milestones

- **Year 1**
 - Develop sensitive volumes and their associated parameters in CMOS7 & CMOS8 silicon-on-insulator transistors
 - Validate the Charon TCAD models to CMOS7 & CMOS8 transistor layout variations in a normal, non-irradiated environment
 - Determine the transistor layout variations which significantly affect charge collection due to single events
- **Year 2**
 - Develop MRED to Xyce Process
 - Demonstrate simple circuit netlist (flip-flop) being exercised with MRED using Xyce
 - Validate flip-flop and SRAM circuit response in MRED to Xyce with test data.
- **Year 3**
 - Develop SEE evaluation process for designed schematics and layouts
 - Demonstrate Monte Carlo sampling of a circuit netlist for single event effects evaluation
 - Validate process with integrated circuit single event prediction against existing test data

Planning & Reporting

- Phenomena Identification Ranking Table (PIRT)
 - These have been developed for most CMOS7 devices in re dose rate
 - Should be straightforward to modify for SEE
- Predictive Capability Maturity Model (PCMM)
 - V&V Planning documents
 - Comprehensive framework including verification, validation, UQ...
 - ...but was not developed with smaller research projects in mind
 - Will follow the framework, but likely without the detailed formalism
- Reporting
 - Briefing as appropriate
 - Annual SAND Report

Code Verification (CVER)			
Apply Software Quality Engineering (SQE) processes		1	0.5
Provide test coverage information		2	1.5
Physics and Material Model Fidelity (PMMF)			
Assess interpolation vs. extrapolation of physics and material model		3	2
Technical review of physics and material models		2	1.5
Representation and Geometric Fidelity (RGF)			
Characterize Representation and Geometric Fidelity		3	2.5
Geometry sensitivity		2	1
Solution Verification (SVER)			
Quantify numerical solution errors		3	2.5
Quantify Uncertainty in Computational (or Numerical) Error		2	2
Validation (VAL)			
Define a validation hierarchy		2	2
Apply a validation hierarchy		3	3
Uncertainty Quantification (UQ)			
Aleatory and epistemic uncertainties identified and characterized		2	1
Perform sensitivity analysis		2	2

Summary

- Target BUSFETs in Single Event Environments
 - Should work for other environments (dose rate)
 - Methods employed can be brought to bear on other devices or materials (GaAs, GaN)
 - 1700 currently has single event test articles
 - Data not created to discriminate by device specifics, i.e. in layout-vs-schematic, devices of different doping depths, for example, appear identical even though they have varied SEE responses.
- Simulation Informs Decision Making in Layout
 - TCAD (Charon) models charge transport
 - Monte Carlo Radiative Energy Deposition (MRED) tool is informed by TCAD
 - Nested sensitive volumes
 - Bringing this tool to SNL from Vanderbilt
 - Xyce
 - Radiation informed netlists
- Partner with Academia
 - Ron Schrimpf, Vanderbilt
 - Fund Graduate Student