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ABSTRACT
Moving Target Defense is an emerging security paradigm in
which systems dynamically mutate in order to shift the sys-
tem attack surface and frustrate would-be attackers. The
dynamic nature of some Moving Target Defenses opens the
possibility of modeling them with dynamic systems approaches,
such as state space representations familiar from control and
systems theory. In this paper, we present state space mod-
els for Moving Target Defenses, provide an analysis of their
properties, and suggest approaches for using them.
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1. INTRODUCTION
Moving Target Defense (MTD) approaches allow systems

to dynamically update and adjust to their operating envi-
ronment proactively or in response to perceived or detected
threats or attacks. The intention is to provide legitimate
system users and defenders with an advantage over attack-
ers, since those attackers will find it more difficult to de-
termine the current status of a system, or may not be able
to rely on the system being in the same configuration when
they launch their attack as it was when they performed re-
connaissance, developed the attack, or otherwise performed
their planning and preparation activities. Of course, MTDs
can also make it more difficult for legitimate system users,
defenders, and administrators to know the current configura-
tion of their systems, which potentially creates opportunities
for attackers. In this work, we consider state space models
for studying the dynamic interactions between attackers and
defenders with MTDs at their disposal.

2. RELATED WORK
Many MTDs have been suggested in the literature. A sur-

vey of them has been provided by Okhravi et al. [8]. The
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attacker-defender dynamics in MTD have previously been
studied using game theoretic models. Colbaugh and Glass
analyze MTD strategies against adaptive adversaries under
the assumption that the available defensive systems are inde-
pendent so that attacks are effective against a single system
[4]. Carter allows attacks to be effective against some subset
of systems, and further assumes that the defender does not
know which systems are vulnerable and is not able to detect
exploits [2]. Van Dijk introduces the FlipIt game to model
advanced persistent threats and targeted attacks in which
one player has complete control of a resource, but in which
it is not known which player controls the resource until a
player makes a move, which comes at some cost [12]. Jones
extends FlipIt to MTD by allowing defenders to ”morph”the
system to disrupt attacker knowledge [6]. Prakesh modifies
FlipIt by allowing attackers to detect when control of the re-
source is gained by the defender, and to allow multiple target
resources with objectives over the number controlled [10].
Miehling studies MTDs using partially observable Markov
decision processes [7].

State space representations have been used to study both
linear and nonlinear systems for many decades. They have
found particular success in control engineering, where they
are used to model physical systems by inputs, outputs, and
state variables, and provide a convenient means of study-
ing the time-evolution of such systems. State space models
are useful in control engineering for understanding the influ-
ence of inputs and disturbances on system state even though
the models are simplified approximations of the underlying
physical systems.

The paper is organized as follows. In Section 3 we in-
troduce our state space approach for modeling MTDs, and
present several state space representations and an analysis
of each. Section 4 describes how our representations might
be used in practice, and concluding remarks and suggestions
for further research are provided in Section 5.

3. APPROACH
We begin the modeling process by making several assump-

tions. We assume that the attacker and the defender can
each influence the system state by applying inputs to the
system. These inputs may be corrupted by noise. We fur-
ther assume that attackers and defenders can at least par-
tially observe the system state. These output observations
may also be corrupted by noise. Additionally, we assume
that there is no guarantee that either party can impact all
of the state variables, or that their observations of the state
are correct.
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Figure 1: Open-loop state space representation for
moving target defense

3.1 Open Loop
Figure 1 shows the simplest open-loop state space repre-

sentation that conforms to these assumptions. It is a mixed
deterministic-stochastic system approach for modeling the
dynamic behavior of MTD systems. By inspecting Figure 1
we see that

xk+1 = Axk +Bduk +Bamk +wk (1)

yk = Cdxk + vk (2)

zk = Caxk + qk (3)

where xk ∈ Rn is the state vector, yk ∈ Rqd and pk ∈ Rqa

are the output vectors as observed by the defender and
attacker, respectively, uk ∈ Rpd and mk ∈ Rpa are the
defender and attacker’s respective input vectors, wk is a
stochastic disturbance input, vk and qk are random vec-
tors impacting the defender’s and attacker’s respective ob-
servations of the state, A ∈ Rn×n is the system matrix,
Bd ∈ Rn×pd and Ba ∈ Rn×pa are the input matrices for
the defender and attacker, respectively, and Cd ∈ Rqd×n

and Ca ∈ Rqa×n are the defender’s and attacker’s respective
output matrices.
To represent an MTD with this model we must determine

how to construct each of these matrices and vectors. We
have previously developed a dependency graph based ap-
proach for analyzing cyber defenses [5]. In that approach
different classes of actors, such as system users, administra-
tors, and attackers, are each assumed to have some set of
dependencies that they must fulfill in order to accomplish
their goal. Some of these may be shared between the dif-
ferent classes of actors, while others will not be. Each of
the dependencies has some costs associated with fulfilling it.
We interpret the state of the system at time k as a vector
of costs for satisfying each of the n edges in the dependency
graph. It is then natural that the system matrix, A, be an
adjacency matrix representation of the dependency graph.
Consequently, aij = 1 if there is an edge from node i to
node j in the dependency graph, and Aij = 0 otherwise.
The n × pd matrix Bd maps the defender’s control input
uk. One option is for the input uk to define the change in
each cost metric for each edge in the dependency graph as a
result of some defender action. Consequently, we will have
pd > n. In this interpretation Bd will be a block diagonal
matrix with its entries averaging the impact of the metrics
to obtain an overall change in cost for an edge. For example,
if there are six metrics and we use an unweighted average to
combine them into a cost, then Bd will have the form



α 0 0 . . . 0 . . . 0
0 α 0 . . . 0 . . . 0
0 0 α . . . 0 . . . 0
...

...
...

. . .
...

...
0 0 0 . . . α . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 0 . . . 0


where

α =
[
1/6 1/6 1/6 1/6 1/6 1/6

]
0 =

[
0 0 0 0 0 0

]
The attacker’s input matrix Ba and input vector mk are
defined similarly, but will have nonzero entries along the en-
tire diagonal. Alternatively, we can have Bd ∈ Rn×n and
Ba ∈ Rn×n, which will cause the input matrices to impact
each metric equally. In this formulation, the input vectors
uk andmk represent the change in cost for fulfilling a depen-
dency. This form is more amenable to analysis of closed-loop
feedback systems.

We interpret yk = Cdxk + vk as the defender’s view of
the current system state xk. Consequently, each of the qd
rows of Cd will have a single 1 in a column corresponding to
one of the dependency graph’s edges. If qd < n then some
of the edges are not visible to the defender. Oftentimes this
will be the case, since we do not necessarily assume that
the defender has knowledge of all of the attacker’s depen-
dencies. Similarly, the attacker’s view of the system state
is zk = Caxk + qk and so Ca also has a single 1 in each of
its qa rows. In general, we can have qa < n to indicate that
the attacker has incomplete knowledge of the dependency
graph. However, in accordance with Shannon’s maxim that
”the enemy knows the system” [11] we will usually assume
that qa = n and that Ca = I, providing the attacker with
visibility into each of the graph’s edges. Note, however, that
while the attacker may have knowledge of each of the edges,
the random vector qk may prevent the attacker from having
perfect knowledge of xk.

We say that the system is defender observable if

Od =
[
Cd CdA CdA

2 . . . CdA
n−1

]T
(4)

has rank n and that it is defender controllable if

Cd =
[
Bd ABd A2Bd . . . An−1Bd

]
(5)

has rank n. Similarly, the system is attacker observable if

Oa =
[
Ca CaA CaA

2 . . . CaA
n−1

]T
(6)

has rank n and it is attacker controllable if

Ca =
[
Ba ABa A2Ba . . . An−1Ba

]
(7)

has rank n.
Now, consider the defender’s view of the system’s transfer

function. Taking Z-transforms, we obtain

zX(z)− zx0 = AX(z) +BdU(z) +BaM(z) +W (z)

Y (z) = CdX(z) + V (z)

by rearranging the state equation and substituting into the
expression for Y (z) we obtain

Y (z) = Cd(zI −A)−1zx0

+ Cd(zI −A)−1 [BdU(z) +BaM(z) +W (z)] + V (z) (8)



Figure 2: Output feedback state space representa-
tion for moving target defense.

The transfer function observed from the defender’s perspec-
tive is Hd(z) = Y (z)/U(z) and so

Hd(z) = Cd(zI −A)−1

[
Bd +

BaM(z) +W (z)

U(z)

]
+ V (z)/U(z)

(9)

Ideally for the defender the BaM(z) term will be null, indi-
cating no attacker activity. The defender can estimate the
value of this term from output measurements by solving eqn.
8 for BaM(z), which yields

BaM(z) = C−1
d (zI −A) [Y (z)− V (z)]−BdU(z)−W (z)

(10)

Similarly, the transfer function from the attacker’s per-
spective isHa(z) = P (z)/M(z). Manipulating the equations
produces the attacker’s view of the output as

P (z) = Ca (zI −A)−1 [BdU(z) +BaM(z) +W (z)] +Q(z)
(11)

and

Ha(z) = Ca(zI −A)−1

[
Ba +

BdU(z) +W (z)

M(z)

]
+Q(z)/M(z)

(12)

The attacker can estimate the defender’s influence on the
system by solving eqn. 11 for BdU(z) to obtain

BdU(z) = C−1
a (zI −A) [P (z)−Q(z)]−BaM(z)−W (z)

(13)

From both the attacker’s and the defender’s perspective,
this open loop system is stable if the eigenvalues of A fall
within the unit circle.

3.2 Output Feedback
Now, we add output feedback and set points to our rep-

resentation, as shown in Figure 2. This allows the defender
and the attacker to attempt to drive the system state, as
they observe it, to some desired value. State feedback is not
an option for defenders since in general the state is not ob-
servable to the defender, and in practice may not be visible
to the attacker, either. Considering Figure 2 we first note
that

xk+1 = Axk +Bduk +Bamk +wk (14)

yk = Cdxk + vk (15)

zk = Caxk + qk (16)

where

uk = rk −Kdyk (17)

mk = sk −Kapk (18)

and where we have

Kd ∈ Rpd×qd is the defender’s feedback gain

Ka ∈ Rpa×qa is the attacker’s feedback gain

and where rk and sk are the defender and attacker set points,
respectively. We begin by finding the defender and attacker
transfer functions. Considering the defender first, we assume
zero initial conditions and take z-transforms of the state and
output

zX(z) = AX(z) +BdU(z) +BaM(z) +W (z)

U(z) = R(z)−Kd [CdX(z) + V (z)]

Y (z) = CdX(z) + V (z)

substituting U(z) into the first expression and expanding
and rearranging terms yields

X(z) = (zI −A+BdKdCd)
−1 ×

[BdR(z) +BaM(z)−BdKdV (z) +W (z)] (19)

Substituting this into the expression for Y (z) produces

Y (z) = Cd (zI −A+BdKdCd)
−1 ×

[BdR(z) +BaM(z)−BdKdV (z) +W (z)] + V (z) (20)

and so we obtain the closed loop transfer function seen by
the defender as

Hcld(z) =
Y (z)

R(z)
= (21)

Cd (zI −A+BdKdCd)
−1

[
Bd + BaM(z)−BdKdV (z)+W (z)

R(z)

]
+

V (z)
R(z)

Now, in the defender’s ideal case the BaM(z) term is the
null vector. The defender can use a measurement of Y (z) to
estimate the value of BaM(Z). Solving for BaM(Z) in eqn.
20 gives

BaM(z) = C−1
d (zI −A+BdKdCd) [Y (z)− V (z)]

−BdR(z) +BdKdV (z)−W (z) (22)

The defender may be able to use this estimate of the at-
tacker’s influence on the system to counteract the attacker’s
actions.

We may also desire to express the transfer function from
R to Y while incorporating the attacker’s input vector mk.
If we assume knowledge of the attacker’s behavior and de-
sign a control system that incorporates it, we may then be
able to study how closely we can approximate this situation
when the defender either does not have knowledge of the at-
tacker’s system, or when the defender can only estimate the
attacker’s influence, for instance, with eqn. 22. We begin by
considering the system state and both defender and attacker
inputs

zX(z) = AX(z) +BdU(z) +BaM(z) +W (z)

U(z) = R(z)−Kd [CdX(z) + V (z)]



M(z) = S(z)−Ka [CaX(z) +Q(z)]

Substituting the expressions for U(z) and M(Z) into the
expression for X(Z) we obtain

X(z) = (zI −A+BdKdCd +BaKaCa)
−1 ×

[BdR(z) +BaS(z)−BdKdV (z)−BaKaQ(z) +W (z)]
(23)

Now, since we have that Y (z) = CdX(z) + V (z) then the
transfer function from R to Y is

Y (z)

R(z)
= Cd (zI −A+BdKdCd +BaKaCa)

−1 ×[
Bd +

BaS(z)−BdKdV (z)−BaKaQ(z) +W (z)

R(z)

]
+
V (z)

R(z)
(24)

which is the same as eqn. 21 when Ba is the zero matrix.
Finally, we also note from eqn. 23 that the system is stable
if the roots of zI − A + BdKdCd + BaKaCa are within the
unit circle.
We can determine the attacker’s transfer function Ycla =

P (z)
S(z)

by taking z-transforms of the state and output, substi-

tuting the expression for M(z) into the expression for X(z),
expand and rearrange terms and substitute the result into
the expression for P (z) to obtain

P (z) = Ca (zI −A+BaKaCa)
−1 ×

[BdU(z) +BaSz −BaKaQ(z) +W (z)] +Q(z) (25)

and so the attacker’s closed loop transfer function is

Hcla(z) =
P (z)

S(z)
= (26)

Ca (zI −A+BaKaCa)
−1

[
Ba + BdU(z)−BaKaQ(z)+W (z)

S(z)

]
+

Q(z)
S(z)

The attacker can use eqn. 25 to estimate the defender’s
influence on the system, BdU(z), by calculating

BdU(z) = C−1
a (zI −A+BaKaCa) [P (z)−Q(z)]−BaS(z)+

BaKaQ(z)−W (z)

Now, let’s consider the controllability and observability of
this system. We begin by writing

uk = rk −Kdyk = rk −Kd (Cdxk + vk) (27)

mk = sk −Kapk = sk −Ka (Caxk + qk) (28)

considering the defender first, we substitute this expression
for uk into the expression for xk+1 to obtain

xk+1 = Axk + (Bdrk −BdKdCdxk −BdKdvk) +Bamk +
wk

grouping terms provides

(A−BdKdCd)xk +Bd (rk −Kdvk) +Bamk +wk

and so the defender’s observability and controllability ma-
trices are

Od =
[
Cd Cd (A−BdKdCd) . . . Cd (A−BdKdCd)

n−1
]T

(29)

Cd =
[
Bd (A−BdKdCd)Bd . . . (A−BdKdCd)

n−1 Bd

]
(30)

Figure 3: State feedback with state observer state
space representation for moving target defense

Considering the attacker’s perspective, we substitute the
expression for mk into the expression for xk+1 from which
the attacker’s observability and controllability matrices are

Oa =
[
Ca Ca (A−BaKaCa) . . . Ca (A−BaKaCa)

n−1
]T

(31)

Ca =
[
Ba (A−BaKaCa)Ba . . . (A−BaKaCa)

n−1 Ba

]
(32)

Here, the system is defender stable if the eigenvalues of
A − BdKdCd are within the unit circle. The system is at-
tacker stable if the eigenvalues of A − BaKaCa are within
the unit circle.

3.3 State Feedback
To overcome the defender’s inability to measure the cur-

rent state, we can also consider state observer feedback rep-
resentations, as shown in 3. Before beginning, we note that
the defender may not be aware of all of the attacker’s edges,
and that this prevents the defender from having an observ-
able system. Due to this, if the defender constructs a state
observer feedback system then information about unobserv-
able modes will not be included in the output prediction
error term, and the defender’s state observer will only be
stable if all of the unobservable modes are stable [9].

Considering Fig. 3, we first write down the state equations



as

xk+1 = Axk −DdKdx̂d,k +Bdrk −BaKax̂a,k +Bask +wk

(33)

x̂d,k+1 = Ax̂d,k +Bduk + Ld (yk − Cdx̂d)
(34)

x̂a,k+1 = Ax̂a,k +Bamk + La (pk − Cax̂a)
(35)

yk = Cdxk + vk

(36)

pk = Caxk + qk

(37)

uk = −Kdx̂d + rk
(38)

mk = −Kax̂a + sk
(39)

where x̂d,k and x̂a,k are the defender’s and the attacker’s
estimates of the state at time k, respectively and

Ld ∈ Rn×qd is the defender’s observer gain

La ∈ Rn×qa is the attacker’s observer gain

We begin by finding the transfer function from the defender’s
perspective. First, we take the z-transform of eqn. 33 and
solve for X(z), to obtain

X(z) = (zI −A+BdKd)
−1 ×

[BdKdEd(z) +BdR(z) +W (z) +BaM(z)] (40)

Substituting this into the z-transform of eqn. 36 and divide
by R(z) to find

Y (z)

R(z)
= Cd (zI −A+BdKd)

−1 ×[
Bd +

BdKdEd(z) +W (z) +BaM(z)

R(z)

]
+

V (z)

R(z)
(41)

From the defender’s perspective, this system is stable if the
roots of zI − A + BdKd are within the unit circle. The
defender’s observability and controllability matrices are

Od =
[
Cd Cd (A−BdKd) . . . Cd (A−BdKd)

n−1
]T
(42)

Cd =
[
Bd (A−BdKd)Bd . . . (A−BdKd)

n−1 Bd

]
(43)

By substituting eqn. 40 into eqn 36 and solving for BaM(z)
we can obtain the defender’s estimate of the attacker’s in-
fluence on the system as

BaM(z) = C−1
d (zI −A+BdKd)×

[Y (z)− V (z)]−BdKdEd(z)−BdR(z)−W (z) (44)

Similarly, we can obtain the transfer function from the
attacker’s perspective as

P (z)

S(z)
= Ca (zI −A+BaKa)

−1 ×[
Ba +

BaKaEa(z) +W (z) +BdU(z)

S(z)

]
+

Q(z)

S(z)
(45)

From the attacker’s perspective the system is stable if the
roots of zI − A + BaKa are within the unit circle, and the
attacker’s observability and controllability matrices are

Oa =
[
Ca Cd (A−BaKa) . . . Ca (A−BaKa)

n−1
]T
(46)

Ca =
[
Ba (A−BaKa)Ba . . . (A−BaKa)

n−1 Ba

]
(47)

The attacker can use measurements of P (z) to estimate the
defender’s influence by

BdU(z) = C−1
a (zI −A+BaKa)×

[P (z)−Q(z)]−BaKaEa(z)−BaS(z)−W (z) (48)

Now, let’s consider the situation in which the defender has
knowledge of the attacker’s use of state-observer feedback.
If we consider the error terms

ed,k = xk − x̂d,k

ea,k = xk − x̂a,k

then we can write the state estimates as

x̂d,k = xk − ed,k (49)

x̂a,k = xk − ea,k (50)

Substituting eqns. 49 and 50 into eqn. 33 produces

xk+1 = (A−BdKd)xk +BdKded,k −BaKaxk+

BaKaea,k +Bdrk +Bask +wk (51)

Now, by taking the z-transform of eqn. 51 and substituting
into the z-transform of eqn. 36 we obtain the defender’s
transfer function

Y (z)

R(z)
= Cd (zI −A+BdKd +BaKa)

−1 ×[
Bd +

BaS(z) +BdKdEd(z) +BaKaEa(z) +W (z)

R(z)

]
+
V (z)

R(z)
(52)

The defender can obtain an estimate of the attacker’s in-
fluence by substituting z-transforms of eqns. 39 and 50
into eqn. 44, solving for the Ba terms, and substituting
X(z) = C−1

d (Y (z)− V (z)) which yields

Ba

[
S(z) +KaEa(z)−KaC

−1
d (Y (z)− V (z))

]
= C−1

d (zI −A+BdKd)×
[Y (z)− V (z)]−BdKdEd(z)−BdR(z)−W (z) (53)

4. OUTPUT FEEDBACK EXAMPLE: APPLI-
CATION TO NETWORK RANDOMIZA-
TION APPROACHES

Now, we apply the output feedback modeling approach to
studying network randomization techniques. In particular,
we consider IP and port hopping and route randomization.
We use the output feedback model to study the dynamics
of a system, as viewed by defenders and attackers of that
system, in response to defender and attacker actions on the
system. This study allows us to explore the effects that
attackers and defenders can have on the system and the



Figure 4: Network randomization dependency graph showing costs to fulfill dependencies prior to applying
network randomization. The user’s costs are all 0 because our user costs metrics consider percent increase
in costs.



dynamics of various defender strategies for deploying the
mitigations.
First, we must combine the dependency graphs of the

three defenses into a single dependency graph. Then, we
take the adjacency matrix representation of this graph as
the system matrix, A. As in section 3.1, the Bd and Ba

matrices map the defender’s and attacker’s inputs, which
represent the impact of the inputs on each of the metrics
affiliated with each of the edges in the dependency graph,
to their effect on the system state, xk, which represents the
cost of fulfilling the dependency represented by an edge in
the graph. These input matrices define how the attacker
and defender actions can influence the system state. Con-
sequently, it is through the Bd matrix that we define the
impact of a moving target defense on the system, In the
output feedback system, we additionally have attacker and
defender feedback gain matrices Kd and Ka. These matrices
determine how much influence the defender’s and attacker’s
measurement of the system state have on the selection of
the next defender or attacker action.
The defender’s input set point, rk and attacker’s input set

point, sk, represent the desired values of each of the metrics
for each of the edges from the defender and attacker per-
spectives. While more nuanced set points are possible, we
generally assume that the defender will want to minimize
all of the costs for fulfilling all of the defender’s dependen-
cies while also maximizing all of the costs for fulfilling each
of the attacker’s dependencies. The attacker will desire to
minimize each of the attacker’s costs. While it is unlikely
that either the defender or the attacker will be able to reach
these ideal set points, the defender can use the distance from
this set point, as measured by uk, to help in selection of an
appropriate moving target defense. That is, we envision
a playbook, consisting of a set of j matrices {Bd0 . . . Bdj}
where j is the number of defensive moves available to the
defender. Each of these defenses will impact the system by
changing some of the cost metrics for some of the edges in
the dependency graph. At each time step k the defender
can choose which defense, if any, to apply to the system. If
no defensive move is made then the defender simply selects
the initial input matrix Bd0, which represents the cost of
fulfilling dependencies with no defenses in place, and has no
impact on the system at that time step. Considering this,
we have time-varying input matrices Bd(k) and Ba(k), and
our problem is to identify which of the available defender
moves {Bd0 . . . Bdj} to select at each time step. We call
a sequence of moves (Bd(0) . . . Bd(k)) a defender strategy.
There are many ways to undertake the analysis. We can
define a strategy and then study how it performs by solving
the state equations to find the resulting system dynamics.
We can also use the defender’s knowledge of the system at
a given time k, as provided by the output vector yk, to
choose the next defense Bd,k+1 according to some rulebook
and study the resulting evolution of the system dynamics.
The resulting sequence of input matrices is a defender strat-
egy guided by the rulebook, and so its performance can be
used to help us define acceptable rulebooks and strategies
for various attacker scenarios. Similar comments and defi-
nitions hold for the attacker.
Figure 4 shows an example dependency graph for standard

TCP/IP and HTTP network communications on which we
will study network randomization approaches [3]. The costs
for fulfilling dependencies in this graph are the initial costs

without any network randomizations in place. We begin
by briefly describing the dependencies. First, the attacker
performs a traffic scan to identify endpoints and valid IP ad-
dresses, a network scan to identify IP addresses with open
HTTP ports, and finally an HTTP scan. The attacker also
creates and tests attacks, and then launches an exploit by
submitting a malicious script, HTML, or command to the
server and injecting it to the targeted user when the user
visits the site. This compromises the user’s system. The
user has dependencies related to communicating with HTTP
over TCP/IP. The network randomization approaches im-
pact the user and attacker dependencies in various ways. IP
randomization impacts the attacker’s ability to identify the
network topology and correlate traffic scan data to identify
valid endpoints. This makes it more difficult to select a valid
IP address, which in turn increases the difficulty of finding
an open HTTP port over which to submit a malicious pay-
load to a targeted user. It also increases the user’s cost
for select valid IP addresses, communicating over TCP/IP,
and sending HTTP requests. The impact on the user is
primarily from increased network latency, and from small
increases in CPU and memory requirements. Port random-
ization also complicates identification of the network topol-
ogy, increases the difficulty of selecting valid HTTP ports,
and consequently of submitting malicious payloads to the
user. It increases the user’s costs for selecting valid ports,
communicating over TCP/IP, and sending HTTP requests
by increasing network latency and slightly impacting CPU
and memory requirements. Path randomization primarily
impacts the attacker’s ability to correlate traffic scan data
for network mapping. It increases the user’s costs for com-
municating over TCP/IP and sending HTTP requests by
increasing network latency. When we combine these mitiga-
tions we impact the union of the dependencies impacted by
the individual dependencies, although the change in costs
for fulfilling the dependencies is usually less than the sum of
the change for the individual mitigations.

We study this system with our output feedback state space
model. For brevity, we consider only the influence of de-
fensive actions through the Bd matrices and the defender’s
set point rk, although similar assignments hold for the at-
tacker’s input matrices Ba and set point sk.

We begin by transforming our dependency graph model
of the system depicted in 5 into our output feedback state
space representation. In this representation the system ma-
trix A ∈ Rn×n where n = 44 represents the 44 nodes in
our system and the edges connecting these nodes. We also
have input matrices Bd, Ba ∈ R44×44. The system’s initial
conditions represent the cost for fulfilling each of the de-
pendencies without any defenses in use. For this example,
we consider IP randomization. This defense impacts the
defender by slightly increasing the memory and processing
requirements for selecting valid IP addresses at u0 and u13,
while also slightly degrading the system and network sta-
bility for doing so. It also increases latency for standard
TCP/IP communications at u2− u4, u6, u8, and u10− 12.
From the attacker’s perspective the time and cost for acquir-
ing access and knowledge to identify the network topology
(a7), correlate traffic scan data (a10), and select valid IP
addresses (a14) is increased, as is the the unpredictability
and frequency of defense movement at these edges. The un-
predictability, frequency of movement, and time and cost
for acquiring the necessary knowledge to select an IP ad-



dress with open HTTP port(a26), submit a malicious script,
HTTP, or command (a37− 39), and identify when the tar-
geted user visits the compromised web site (a43) are also
increased. We represent these changed costs for fulfilling
dependencies by creating a new input matrix Bd1 with diag-
onal entries reflecting the new overall costs for fulfilling each
dependency. Note that since several edges can originate at
the same node, as with node n3, the influence of a defense
on a particular node is represented by adding the influence
on all of the edges originating at that node. This is a conse-
quence of our adjacency matrix representation of the graph,
which causes the state space models to view the system from
the perspective of costs for reaching a node, rather than the
costs for traversing edges. This aliases the influence of edges
originating from a single node into a single entry of the Bd
or Ba matrices, and also into a single entry of the set point,
state, and output vectors. The defender wants the cost of
fulfilling every attacker edge to reach its maximum value of
1 and for the cost of fulfilling each defender edge to reach
its minimum value of 0. These desires are codified in the
set point vector rk by setting the ith element of rk to γ
where γ is the number of attacker edges originating at node
i. We also have output matrices Cd, Ca ∈ Rn×n, n = 44. We
generally assume that the attacker has full knowledge of the
dependency graph, and so Ca = In. In this case, we also
assume that the defender is aware of all of the nodes in the
dependency graph, and so we also have Cd = In. However,
this will not always be the case. In particular, if we want
to model an attack that the defender is not familiar with
then we would include nodes and edges in the dependency
graph that are unknown to the defender, and the diagonal
elements of Cd that correspond to these nodes would be set
to 0.
With these assignments in place we can begin to study

the system. First, we consider properties of the open-loop
system with Bd0 in place, indicating that none of the net-
work randomization options is applied. First, we find that
the system is defender observable, but that it has 14 states
that are uncontrollable by the defender. A pole-zero plot
reveals that the open loop system is unstable, but we also
find that all of the uncontrollable modes are located at the
origin, and so we know that the system can be stabilized by
the feedback controller. We use the Linear Quadratic Regu-
lator (LQR) design technique to find a feedback gain matrix
Kd ∈ Rn×n, n = 44 that stabilizes the closed-loop system
[1]. The feedback has no impact on the observability or con-
trollability of the system. We next find the time-domain
response of the open and closed loop system and compare
them. Results for the attacker edge (n25, n26) are presented
in figure 5. In figure 5a we see the impact of IP random-
ization on attacker dependency A28 = (n28, n26), which is
not directly influenced by the IP randomization. Here, we
see that the IP randomization moves the the attacker’s costs
closer to the set point than the system with no network ran-
domization. Similar behavior is observed in figure 5b, which
shows the dynamics of attacker dependencies A25 and A26.
Here, edge A26 is directly influenced by the IP randomiza-
tion but A25 is not. As before, the system that includes IP
randomization is closer to obtaining the set point. Notice
that, since two attacker edges originate at node n22 the set
point in figure 5b is 2. While we do not show them here,
many of the attacker and user dependencies do not exhibit
any dynamic behavior under the baseline or IP randomiza-

Figure 5: (a) Response for adversary dependencies
A28 = (n28, n26) and (b) A25 = (n22, n13) and A26 =
(n22, n23) before and after IP randomization. Edges
A25 and A28 are not directly impacted by the IP
randomization.

tion conditions. Some of these dependencies are uncontrol-
lable and some are not influenced by these particular inputs.
This will usually be the case. If the defender wishes to im-
pact all of the attacker’s dependencies, then the defender
must identify a set of defenses that collectively cover all of
the attacker’s edges. Oftentimes, this will not be possible,
and so we can instead use graph analysis techniques such as
graph centrality and community detection to identify those
attacker edges that are most beneficial to target. Further
discussion on this topic appears in [5].

5. CONCLUSION AND FUTURE WORK
We have introduced several state space representations for

modeling the dynamic interactions between attackers and
defenders in cyber systems. These modeling approaches may
be particularly well suited to analyzing moving target de-
fense systems since in these systems the defensive posture
changes over time. We focused our attention on describing
several potential models and developing the mathematical
fundamentals for analyzing them, including various transfer
functions, observability, and controllability. Future work can
use this foundation to explore mode advanced concepts by
adopting concepts from the wealth of existing control theory
work to these new models.

Future work should also study the resiliency of systems to
perturbations and modeling inaccuracies. In particular, it
will be important to understand how sensitive the defender is
to inaccuracies in modeling the attacker. For example, sensi-
tivity to an attacker that uses a different feedback structure
than that modeled by the defender, or an attacker that uses
an open-loop strategy in which attacks are not influenced by



observation of the system behavior are both of interest. It
will also be important to study sensitivity to inaccuracies in
the dependency graph. These may be due to unknown and
un-modeled dependencies or inaccurately modeled depen-
dencies. Additionally, our network randomization example
only considers the defender’s influence on the system. Fu-
ture analysis should study the system dynamics that result
from a combination of defender and attacker inputs to the
system.
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