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 CMOS imagers can achieve ns time scale via electronic shutters

 Multiple image frames deliver temporal history of experiments

 Can yield improved SNR by gating out background radiation

 CMOS scalability provides large detector area and high spatial resolution 

A fast, multi-frame imager offers significant potential in HEDP physics research
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hCMOS fast framing cameras can offer significant 
improvements in experimental data to HEDP diagnostics
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DetectorsRead-Out Integrated Circuit (ROIC)

The UXI program has developed or has experience in the 3 
key technologies required for an hCMOS imager

Under the UXI program, SNL has developed a portfolio of 
ROICs demonstrating incremental improvements and 
features

 25 µm spatial resolution

 448-512 x 1024 format

 ~ 2 ns integration time

 2-4 frames native, 8 frames interlaced

 500 k - 1.5 M e- full well

Under the UXI program, SNL has developed a number of 
silicon detector variants:

 25 µm thick –Vehicle for 4.7-6.1 keV X-ray, energetic 
electron, and visible light detectors

 100 µm thick – Possibly useful for up to 13 keV X-ray 
detection (Absorption 30% @ 13 keV)

DBI Interconnect

Hippogriff in SOP package w/ 
25 µm Si photodiodes

Hybridization

Oxide-to-oxide “Direct 
Bond Interface”

Indium Bump

Indium and DBI are both options:

 DBI is licensed by SNL and in development in-house

 DBI off-site at Novati

 Indium available in house

A hybrid sensor enables independent optimization of the diode array & the readout electronics (ROIC).



Fast, silicon detectors were developed at SNL for 6 keV X-ray 
response and have show good response to visible light and 
energetic electrons

Material Electron μ

(cm2/V-s)

Electron υsat

(cm/s) 

Hole μ

(cm2/V-s)

Hole υsat

(cm/s)

Carrier 

25 um Transit (ps)

Silicon 1400 1.0e7 450 0.7e7 357

4Si photodiodes are cost effective and function well for a variety of spectra ranging from visible to low E X-rays.
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 Silicon detectors  need to be thick (100’s – 1000’s of 
µm) for reasonable X-ray absorption > 10 – 15 keV, 
carrier transit times >> 1 ns at these thicknesses.

 III-V detectors offer an order of magnitude 
improvement in attenuation length

 However, significant challenges exist (discussed at CEA 
in 10/2015):
 Thick Growths - Growing thick (> 5 µm) epi layers is unusual, 

process needs development for high-quality growths.

 Depleting Semiconductor - Background carrier concentrations 
generally higher than Si, more difficult to fully deplete.

 Fluorescence – Incident X-ray photons can eject fluorescence X-
ray photons with relatively high energy (and thus, relatively long 
range)

 Thermal Noise – Many III-V (and Ge) materials have bandgaps 
much lower than Si and need to be cooled to mitigate thermal 
noise.

There are ongoing efforts to build III-V detectors for higher 
energy detection

 Current Efforts

 GaAs is the III-V detector material of choice as it offers the 
best combination of performance and maturity

 Late 2015 and 2016, 2 µm epi material was grown in our 
MBE chamber to assess material quality:

 20 µm material has been grown and is currently 
undergoing similar material quality assessments.

 2 µm and 20 µm epi material will be patterned into 
discrete devices for testing in late 2016.

 GaAs diode arrays available for hybridization to UXI ROICs 
mid-2017.

low epitaxial defect density seen
using optical characterization

portion of maskset showing small and large area
detectors for optical/x-ray testing



 Photodiode acts as the photon-to-
electron transducer

 Pixel circuitry converts charge (Q) 
to a voltage or current

 Support circuitry facilitates decode 
and readout of the pixel array
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Traditional CMOS camera architecture serves as the starting 
point for fast framing cameras
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 Effectively multiplexes multiple 
pixels into one

 Transistor switch acts as an 
electronic “shutter”

 In pixel storage holds image 
data during fast sampling

 High speed shutters require on-
chip timing generation

 Custom circuitry distributes 
these electronic shutters to the 
pixels

A framing camera adds in-pixel storage to deliver multiple 
“frames” of data



Furi was the first large scale 2-D ROIC fabricated in SNL’s 
CMOS7 process
 ROIC features

 1024 x 448 pixels on 25 μm pitch

 2 frames

 < 2 ns integration time

 < 2ns inter-frame time

 60 dB dynamic range

 1.5 M e- full well

 1500 e- noise floor

 Common anode detector

 Asynchronous trigger, low jitter, fast startup oscillator

 Programmable timing pattern

 Timing driven to L/R hemispheres to reduce row RC

Active array size: 11.2 mm x 25.6 mm

Furi Pixel
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Furi Block Diagram
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Furi’s primary goal was to investigate high speed timing 
generation and propagation across a large die

Furi Timing Distribution

Furi Row Shutter Signal Degradation

Column 1

Column 224

Furi Adjustable timing generator
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Furi Fast Startup Oscillator



Furi was fully functional and delivered significant learning 
to the design team
 ROIC accomplishments

 Fabrication started in September 2012

 48.75% yield

 Largest die fabricated in CMOS7 at SNL

 All design blocks were fully functional

 Good image performance to 2 ns Tint

 Currently used by Z-Machine and NIF

 Room for improvement
 Improve minimum shutter quality at 2 ns

 Improve minimum shutter speed < 2 ns Tint

 L/R hemisphere timing errors 

 Close to 900 ps

 33% L/R hemisphere gain error

 Frame-to-frame coupling ~10%

 50 % F-F gain at larger input signals

 IR drop (replacement current)

30 ps rms

15 ps rms

Trigger-To-Shutter Jitter

10

Shutter-To-Shutter Jitter

Lineout and MTF

2 ns Gate Profiles



Hippogriff was a fast iteration leveraging as much Furi IP as 
possible while adding interlacing functionality
 ROIC features 

 1024 x 448 pixels on 25 μm pitch

 2 frames

 < 2 ns integration time

 < 2ns inter-frame time

 60 dB dynamic range

 1.5 M e- full well

 1500 e- noise floor

 Common anode detector

 Improvements/modifications on previous ROICs
 Added interlacing capability to trade spatial resolution 

for number of frames

 Up to 4 rows/8 frames

 Improved predicted hemisphere timing offsets

 Integrated anti-bloom transistor in pixel
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Active array size: 11.2 mm x 25.6 mm

Hippogriff Block Diagram
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 Hippogriff Implements 2 Special Timing Modes:
1. Row Interlacing: Allows a user to trade spatial resolution for additional 

frames

Hippogriff was designed to explore adding more frames at 
relatively low design cost and time

# 
Frames

Frame 
Resolution

2 1024 x 448

4 512 x 448

8 256 x 448



 Hippogriff Implements 2 Special Timing Modes:
1. Row Interlacing: Allows a user to trade spatial resolution for additional 

frames.

2. Zero Dead Time (“Movie”) Mode:  

 Suitable for use only fastest Tint configuration

 Provides approximately zero 
dead time between frames  

 Note that this is 
accomplished with relatively 
crude circuits.

Hippogriff was designed to explore adding more frames at 
relatively low design cost and time

# 
Frames

Frame 
Resolution

2 1024 x 448

4 512 x 448

8 256 x 448
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Hippogriff demonstrated that our interlacing concept 
worked
 ROIC accomplishments

 Fabrication started in April 2013

 30.2% yield

 Improved L/R timing errors by ~50% (200-500 ps)

 Interlacing feature works 

 Good image performance to 2 ns Tint

 Currently in use in SNL Z facility  laser test 
chambers

 Room for improvement
 Similar performance to Furi at 2 ns Tint

 Movie mode never functioned properly

 Still have L/R hemisphere timing errors (up to 500 ps) 

 Same L/R hemisphere gain errors Furi

 Same frame-to-frame coupling as Furi
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Shutter profile of 4 frame mode

Sequence of 4 images, 4 ns timing

Frame 1

Frame 2

Frame 3

Frame 4



Icarus represented somewhat of a departure from the 
previous ROICs
 ROIC features 

 1024 x 512 pixels on 25 um pitch

 4 frames

 < 2 ns integration time

 < 2ns inter-frame time

 60 dB dynamic range

 500 ke- full well

 500 e- noise floor

 Common Cathode detector

 Improvements/modifications on previous ROICs
 Tunable anti-bloom transistor 

 Fully independent hemisphere timing 

 No row-wise interlacing

 Increased HST generator pattern register depth to 40 bits

 L/R hemisphere shutter timing tuning cabability

 Shorted intermediate reptree output stages to improve R-R 
timing error

 Top/Bottom readout channels in quadrants

 CC pixel allows a more robust power distribution architecture

 Incorporated on chip bypass capacitors (n fF)

15Active array size: 12.8 mm x 25.6 mm

Icarus Block Diagram
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Icarus was a refinement on timing and improvement to the 
pixel design power rails for replacement current
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A Hemisphere B Hemisphere

L/R Hemisphere Fine Tuning 

Icarus Timing Distribution

Icarus Pixel block diagram

Anti-bloom transistor performance sim

5 x max input signal 
simulation
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Icarus has undergone initial electrical testing and is close to 
first photons-on-camera characterization
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 ROIC accomplishments
 Fabrication started in April 2013

 45% yield

 Independent L/R timing works

 Native L/R timing errors improved

 L/R tuning operates as expected so L/R timing error is 
eliminated

 All timing modes work to 1:1 timing but can’t build shutter 
profiles without photon testing

 Room for improvement
 Need image testing to verify:

 L/R gain errors

 Row skew

 Shutter profiles

 F-F coupling

 Photodiode design issue encountered

 Shorted middle two columns of photodiodes to VSS

 Short term fix
– Etched shorted columns from existing camera wafers

 Redesigned photodiodes are in fab now

 Short-term fix packaged Icarus should be delivered 07/01/16

 Complete fix Icarus should be delivered Q1, FY17

Icarus Timing Error Electrical Test Results 

DC Dynamic Range Sweep

39.7263 ns
Pixel 
Array

39.3556 ns

Worst case error ~350 ps



Daedalus is leveraging all the test data and learning we have 
obtained to date to improve on previous ROIC performance
 ROIC features 

 1024 x 512 pixels on 25 um pitch

 3 frames

 < 1.5 ns integration time

 < 1.5 ns inter-frame time

 70 dB dynamic range

 1.5 M e- full well

 500 e- noise floor

 Common Cathode detector

 Improvements/modifications on previous 
ROICs
 Serial encoded shutter clock distribution concept

 Row-wise shutter generation

 Infinite interlacing capability

 Improve row timing skew to <150 ps

 1 side abutable for a 512 x 2048 possible tiled 
imager

 Test vehicle for through silicon via development
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Active array size: 12.8 mm x 25.6 mm

Daedalus Block Diagram
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Daedalus design is well underway and we anticipate a 
July/August tape-out date 
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Daedalus Shutter Timing Concept Daedalus row shutter timing parasitic sim

~27 mm
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0
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0
0
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m

2048 x 512 tiled 
pixel array

Tiled imager concept

Active array size: 12.8 mm x 51.2 mm

32 x CMOS Input

Ideal Input



Horus will attempt to integrate as much capability as 
possible while working towards a monolithic SoC
 ROIC features 

 1024 x 512 pixels on 25 μm pitch

 TBD # of frames

 1 ns integration time

 1 ns inter-frame time

 60 dB dynamic range

 TBD e- full well

 500 e- noise floor

 Common Cathode detector

 ROIC features and iterative goals
 Resolve any learning or suspected issues with Daedalus

 Quadrant level independent timing

 On chip ADCs will be investigated

 Digital SPI interface to simply system design

 1 side abutable design like Daedalus

20

Horus Block Diagram

Quadrant timing Diagram

Q1
512x256

Q2
512x256

Q3
512x256

Q4
512x256

TBD



Acca is a major departure in architecture/technology and 
will carry the program during the CMOS7 6”-8” conversion
 Design goals

 512 x 512 pixels on 25 µm pitch

 8 frames

 < 1 ns integration time

 < 1 ns inter-frame time

 500 k e- full well

 500 e- noise floor

 60 dB dynamic range

 Improvements/modifications on previous ROICs
 GF 130 nm bulk Si technology

 Complete architectural change

 CML H-tree timing distribution

 In-pixel timing generator

 2-side abutable architecture

 Concerns and issues
 Bulk vs. SOI radiation performance

 MOSCAPs have a non-linear response and poor leakage

 Status
 Test chip containing individual blocks of circuitry has 

been fabricated and is in packaging and awaiting testing

21

Hippogriff Icarus Acca (IBM)

Transistors / Pixel 12 14 148

Analog Storage 2 X 250 fF MIM 4 X 75 fF MIM 8 X 40-140 fF MOS

Acca Test Chip

GF 130 nm Density Compared to CMOS7
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 Z Facility (SNL): Pecos test chamber and Magnetized Liner Internal Fusion

 NIF (LLNL): Gated Laser Entry Hole (G-LEH)

Frame 1

Frame 2

Frame 3

Frame 4

Hippogriff Gas Cell Shadowgraphs
in “Pecos” Test Chamber (4ns-4ns Timing)

Recent Results

Exposure
(mV)

300

150

0

0 1 2 3
(mm)

0 1 2 3
(mm)

Frame 1 Frame 2

Furi  Gas Cell Shadowgraphs
in Z-Machine (9ns -1ns Timing)

T: 2  - 4 nsT: 2  - 4 ns

T: 6 – 8 nsT: 6 – 8 ns

LEH diameter – 2.4 mmLEH diameter – 2.4 mm

LEH diameter – 2.34 mmLEH diameter – 2.34 mm

LEH closing at 50 um/nsLEH closing at 50 um/ns

Frame 1Frame 1

T: 2  - 4 ns

T: 6 – 8 ns

LEH diameter – 2.4 mm

LEH diameter – 2.34 mm

LEH closing at 50 um/ns

Frame 1

Frame 2

Furi  Pin-Hole LEH Images
(2ns -2ns Timing)

SXI
(Time Integrated)

NIF Hohlraum 
and LEH Viewing Angle
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UXI has developed a suite of camera designs that are at 
various stages of development

Furi Hippogriff Daedalus Icarus Acca (test chip)

Year FY14 FY15 FY17 FY16 FY18

Min. Gate ~1.5 ns ~2 ns ~1.0 ns ~1.5 ns ~1 ns

Frames 2
2 (full resolution)

4 or 8 (Row interlaced)

3 (full resolution)

6+ (Row interlaced)

4 (full resolution)

8 (L/R interlaced)
8

Tiling Option No No One Side No Linear Tiling

CMOS Process 350 nm (SNL) 350 nm (SNL) 350 nm (SNL) 130 nm (G.F.)

Pixels 448 x 1024 512 x 1024 512 x 1024 512 x 512

Pixel Size 25 m x 25 m 25 m x 25 m 25 m x 25 m

Capacitor Full Well 1.5 million e- 1.5 million e- 0.5 million e-

‘High’ Full Well Sensors ‘Low’ Full Well Sensors
In Use New Design In Testing
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FY14 FY15 FY16 FY17 FY18 FY19 FY20

The UXI program has created a roadmap for FPA, detector, 
and camera system development that meets the needs of 
the National Diagnostics Initiative  

 Program Focus Areas
 Existing Camera Support (Furi/Hippogriff)

 Z-machine and NIF

 FPA production and delivery

 SLOS Pulse Dilation 10ps Imager

 Collaboration with General Atomics

 Icarus FPA system development

 ROIC Design

 Next generation ROICs

 Detector Development

 High energy X-ray detection

 Low energy X-ray/electron (NASA collaboration)

FURI
2 Frame

1.5ns

Horus
8 Frame

1.5ns

Acca2
16 Frame

1ns

ICARUS
4 Frame

1.5ns
Interlacing

Camera Systems

Radiation Sensors

Applications

HIPPOGRIFF
2 Frame

1.5ns
Interlacing

Acca
8 Frame

1-ns

4keV
Electron

1-6keV X-ray
& Visible

13keV
X-ray

Gated Pinhole
Z and NIF

Backlighting
Z

Visible
Imaging

Focusing Xtal
SLOS Z

Pinhole SLOS
Omega

2keV
Electron

20keV
X-ray

40keV
X-ray

KB SLOS2
NIF

Wolter
Z

Arc Backlight
NIF

Daedalus
3 Frame

1.5ns
Interlacing
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BACKUP



There are at least two obvious solutions to dealing with
the large photocurrents a ROIC will experience under high 
energy fluence

26

Increase the size of the analog 
storage capacitor.  

(+) This solution is a good 
candidate, however, speed and 
area impacts need further study

Introduce/utilize anti-bloom 
transistor to compress signal at 
large signal levels.

(-) Might be a reasonable first 
candidate, however, readout 
circuitry begins to limit the DR 
with existing cameras 

Introduce a charge dividing 
capacitor on the front-end of the 
ROIC.

(+) This solution is a good 
candidate, however, will need to 
look at impacts to reset and 
analog signal levels.  

Capacitive Charge DivisionIncrease Full-WellAnti-Bloom
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Multiple efforts at SNL and at other organizations are 
active in the realization of these FPAs and imaging systems

 Sandia Efforts and Team Members
 (MESA) Microsystems S&T & Components

 ROIC Design/ Program Management

 Photo-diode Design, Modeling and Testing

 Fabrication, Packaging, Integration, and ATE Testing

 Radiation Performance

 Pulsed Power Sciences Center 

 Camera System Development

 Camera System Integration

 Camera System Testing

 National Diagnostics Initiative Partners
 Lawrence Livermore National Labs

 Laboratory for Laser Energetics

 General Atomics

 Industry Partners
 Ziptronix – 3D ROIC to detector hybridization

 Daisho  - FPA package fabrication

 Delta/Corwil – FPA package assembly and population
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The UXI program will continue to leverage the unique 
capabilities at MESA for the development of next generation 
imaging systems for an expanding ICF/HED user base

 Areas of Investment/Development

 Integration

 In-house DBI and Indium hybridization for CMOS7 ROICs/detectors

 Through silicon vias for power distribution and sensor abutment

 Boutique Detectors

 III/V materials

 Integrated charge gain modification / charge shunting  devices

 ROIC Design

 High speed radiation hardened pixels (8-10 bits in ~100ns)

 180nm  CMOS8 designs 

SNL – Z-Machine

LLNL - NIF

NSTEC- Down Hole

LLE - OMEGA

LANCE/MaRIE

New Interests !!
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