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Abstract—For decades, neural networks have shown promise
for next-generation computing, and recent breakthroughs in
machine learning techniques, such as deep neural networks,
have provided state-of-the-art solutions for inference problems.
However, these networks require thousands of training processes
and are poorly suited for the precise computations required in
scientific or similar arenas. The emergence of dedicated spik-
ing neuromorphic hardware creates a powerful computational
paradigm which can be leveraged towards these exact scientific
or otherwise objective computing tasks. We forego any learning
process and instead construct the network graph by hand. In
turn, the networks produce guaranteed success often with easily
computable complexity. We demonstrate a number of algorithms
exemplifying concepts central to spiking networks including spike
timing and synaptic delay. We also discuss the application of
cross-correlation particle image velocimetry and provide two
spiking algorithms; one uses time-division multiplexing, and the
other runs in constant time.

I. INTRODUCTION

Neural computing technologies have been one of several
proposed novel architectures to either replace or complement
the ubiquitous von Neumann architecture platform that has
dominated conventional computing for the last 70 years [1],
[2], [3], [4]. Despite its biological substrate, the brain’s ability
to perform sophisticated, non-trivial computation at very low
energy costs has intrigued computer scientists back to Alan
Turing and John von Neumann [5], [6]. Unlike quantum
computing, which is also mentioned as a post-Moore’s Law
alternative architecture, neural computation does not rely on
novel physics with which to perform the computation, but
rather relies on a combination of factors that make it dis-
tinct from more conventional processing approaches. While
there is continual discussion as to what aspects of biological
neural systems should be used to inspire computing, the most
common sources of inspiration are spike-based computation,
colocalization of processing and memory at synapses, the
brain’s large scale and extensive connectivity, and the brain’s
robust ability to learn.

Not surprisingly, it is this learning ability of biological
neural systems that has most often captured the imagination
of advocates of neural computation. Indeed, the increased
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emphasis on data-centric computations such as image pro-
cessing and audio recognition has led to renewed interest
in machine learning methods such as deep artificial neural
networks (ANNs) which are loosely related to information
processing in the sensory cortex of the brain [7], [8], [9],
[10]. A further source of excitement is that these methods
have achieved dramatic success despite only beginning to
incorporate aspects of the brain’s considerable complexity.
For instance the brain’s ability to learn relies on numerous
mechanisms, ranging from synaptic plasticity to synapto- and
neurogenesis [11], [12], which despite becoming increasingly
well understood biologically have been minimally explored in
the computational domain.

Despite this dominant focus on learning algorithms, there
are several reasons that more conventional numerical algo-
rithms may be worth considering as an application for neural
computing. First, hardware-level learning continues to be a
technical challenge, whereas other aspects of neural comput-
ing, such as spiking, are more readily implementable in current
CMOS technology [13]. Second, while learning algorithms are
approximate in nature, and thus often considered inappropriate
for scientific computation; there are exact models of neural
computation that are more suitable, such as threshold gate
circuits, which are very similar to spiking neural circuits [14],
[15]. Finally, scientific computation remains an important
driver for computing technologies, and impactful advances on
neurally accelerating key numerical kernels could presumably
have significant impact in more data-centric applications such
as graph analytics and dimensionality reduction.

Here, we describe three simple spike-based neural algo-
rithms that utilize connectivity in an explicitly “hand-crafted”
manner to perform reasonably complex computational kernels.
The intent of these vignettes is to illustrate how relatively
straightforward configurations of spiking neurons can allow
the very rapid, parallel computation of common functions that
are not necessarily well fit to the serial von Neumann systems.
Furthermore, these algorithms are structured so as to be readily
implementable in neural hardware being discussed today.

II. PRELIMINARIES

A. Spiking Networks

Spiking neural networks have a long history of being used
in neuroscience to simulate biological systems [21], [22],
[23]. A spiking neural network differentiates itself from other
neural networks largely by its method of neuron-to-neuron
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Fig. 1. Layout of machine learning and neural computing. Spiking networks
algorithms sit distinct from the trained networks of machine learning and
biologically-inspired simulations. However, spiking network algorithms can
leverage neuromorphic hardware originally designed for these other applica-
tions.

TABLE I
A COLLECTION OF NEUROMORPHIC HARDWARE SPECIFICATIONS

Process
(nm)

Die Size
(mm2) Neurons Energy

(J/SynEvent)
SpiNNaker [16], [17] 130 102 18k 8n
TrueNorth [4] 28 430 1M 26p
HICANN [18] 180 50 512 -
NeuroGrid [19] 180 168 65k 941p
IFAT [20] 90 16 65k 22p

communication. Incorporating a time dimension for signaling
allows for more accurate representation of the spiking behavior
of biological neurons. Each biological neuron has an internal
voltage which varies over time. A connection between neurons
is called a synapse. Synapses are assumed to be unidirectional
with a pre-synaptic and post-synaptic neuron. In the event
that the voltage in the pre-synaptic neuron exceeds some
predetermined threshold, the neuron sends a single-state all-or-
nothing signal called a spike. This spike travels down a conduit
called the axon via a biochemical pump, and is received by the
post-synaptic neuron. This transmission is not instantaneous,
and the time taken is represented by a synaptic delay. Post-
synaptic neurons integrate incoming spikes, and this influences
the voltage of the post-synaptic neuron. Depending on the
synaptic weight, the influence can vary in magnitude and sign.
After a spike, the voltage in the pre-synaptic neuron returns
to a resting value, and the pre-synaptic neuron experiences a
refractory period momentarily after a spike during which it
cannot spike again. These are the basic characteristics that are
simulated in a SNN, but for our purposes we abstract away
from many of the details and use a basic, functional spiking
neuron model as detailed below.

There are a variety of reasons biological systems utilize
spike-based computation. Neural systems are structured into
highly organized computational modules composed of millions
of low-precision processing elements (neurons) that require
massive intercommunication to perform intrinsically parallel
algorithms. Due to their massive parallelism, neural systems
have a balance between computation and communication that
is weighted more towards communication when compared to

traditional von Neumann architecture platforms. The usage
of spikes dramatically reduces communication costs, thus
enabling biological nervous systems to be extremely energy
efficient (8-9 orders of magnitude better than digital com-
putation [24]). Many of these factors and benefits are cap-
tured by state-of-the-art neuromorphic hardware, see Table I.
Additionally, spike-based computations are a type of event-
based communication protocol and can be designed to send
information only when events occur. This is efficient from both
an energy and information theoretic standpoint; only changes
in the external world need to be communicated to the neural
system for processing. A number of neuromorphic devices
have already implemented event-based communications by
using address-event representation (AER), a communication
protocol that represents each spike with the address of the
neuron that fired the spike and the time at which the spike
occurred [25], [26].

In this context we adopt the structure and capabilities of a
spiking neural network, but we are not held to any biologically
realistic connections or parameters. Thereby we aim to extend
the benefits of the tailored hardware to larger and more general
applications. To reinforce the differences from both traditional
artificial neural networks and biological simulation networks,
we use the term Spiking Networks.

Fig. 2. An example illustration of three synapses. Pre-synaptic neurons form
the upper layer and, in this case, feed into a single post-synaptic neuron. The
graphs show example voltages for each neuron over time with the red lines
being the spike threshold. Despite the analog behavior of the voltage within
the pre-synaptic neurons, the post-synaptic neuron only receives all-or-nothing
signals (the spikes) as shown in the heading ’Input spikes’.

There exist many models of individual neuron behavior.
We adopt a very generic integrate-and-fire neuron model with
multiplicative leakage similar to those in [27]. In biological
neurons, without outside influence, the internal voltage de-
creases (leaks) towards a resting state. This leakage is reflected
in more general neuron models. The exact nature of the decay
is dependent on the specific implementation. In the majority
of this paper, the type of leakage is unimportant. As such,
the algorithms presented here can be implemented in software
spiking neural networks or neuromorphic spiking hardware
provided the basic requirements of the algorithms are satisfied.



We will note any situation where specific leakage is required,
otherwise we assume no leakage.

B. Conventions

Standardized methods used to describe serialized algorithms
(flow charts, pseudocode, etc.) fall short when describing
spiking neural network algorithms. Traditional algorithms are
serial with parallel modules, whereas a spiking algorithm is
inherently parallel. Moreover, memory storage and computa-
tion occurs at the same location, not as separate operations,
and these operations are performed continuously and locally at
each neuron. As such, the flowcharts and pseudocode to which
we have become accustomed are unfortunately misguided
in this context. Instead, the connections between neurons
are paramount, and so we must provide new notation for
describing such connections. We will also provide an overall
figure showing the connection graph and, at times, detail
sample propagation of signal throughout the network.

Formally, we take a neuron to be a triple defined by
(threshold, reset voltage, leakage constant) and a synapse to be
a 4-tuple (pre-synaptic neuron, post-synaptic neuron, weight,
delay). In describing a synapse we use the notation

Sa,b = (d,w)

to represent a synapse where a is the pre-synaptic neuron, b
is the post-synaptic neuron, the synaptic weight is w and the
delay is d. As shorthand, let wi,j and di,j be the weight and
delay respectively for the synapse Si,j , and let Ti, Ri, mi be
the threshold, reset voltage, leakage constant respectively of
neuron i. If not specified, we assume the leakage constant to be
1. A spiking network is special case of a labeled graph (N,S),
where N is a set of neurons and S is a set of synapses-labels.
We use neurons as indices of S.

A subset of N is called a neuron group. The term group is
used only to maintain comparison with other contexts; there is
no inherent algebraic structure or induced group action. For a
neuron group, we adopt vector (or matrix if more convenient)
notation, starting indexing at 0. Following this notation,

∀i, SGi,Hi = (d,w)

signifies connecting neuron Gi to neuron Hi for all i.
There are two types of neurons whose behavior is pro-

grammatically determined. First, we have input neurons that
spike at times representative of the input data. We assume
input data will be provided at run-time, and that the spike
times of the input neurons are directly determined by the
input data. Second, we have scheduled neurons that spike at
predetermined times. These can be thought of as input neurons
with static input.

For all other neurons, we use a discrete-time, difference
equation approach in executing the algorithm. Each neuron
y ∈ N is assigned a voltage V0,y , and for all our algorithms
we have V0,y = 0. At time step t, neuron y computes

V̂y = myVt−1,y +
∑

Sx,y exists

wx,yxt−dx,y

where xt−dx,y = 1 if x spiked at time t−dx,y and 0 otherwise.
If V̂y ≥ Ty neuron y spikes at time t and sets Vt,y to the reset
voltage. If V̂y < Ty , then Vt,y = V̂y .

C. Performance Analysis

Prior to discussing the algorithms, we quickly address
performance analysis. As we develop these novel algorithms
it is of course important that they be benchmarked. In other
contexts, spike-based approaches running on neuromorphic
hardware have shown drastic energy benefits [28]. How-
ever, appropriately benchmarking algorithms on neuromorphic
hardware in general is still an open, future area of research.
Honest comparisons either between neuromorphic and von
Neumann architectures or between two neuromorphic plat-
forms are fraught with hardware-dependent incompatibilities.
Though to our benefit, the energy consumption of current neu-
romorphic hardware platforms is generally well-documented
(see Table I) and we can compute the number of spikes
required by our algorithms (see Table IV), thereby estimating
the energy consumption. Regardless we hope to expand and
provide experimental performance results in the future.

III. SPIKING NETWORK CONCEPTS

Neuromorphic hardware is inherently different than a tra-
ditional von Neumann architecture. It is possible to construct
traditional logic gates using spiking networks [29], [30], and
there has been some success in adapting traditional machine
learning algorithms to spiking networks [28]. However, we
posit that to make the most of this new hardware, algorithms
must be designed from a spiking, neural perspective at the
outset. Here we explore some small, example algorithms which
exemplify qualities uniquely tied to the spiking regime.

We provide two examples of increasing complexity to
demonstrate a crucial difference between spiking and non-
spiking systems—the ability and necessity to manage spike
timing. The time dimension provides greater flexibility in al-
gorithm design, but also requires careful synchronization. The
first example is a filter which uses a neuron’s leakage to gate
incoming spikes. Hand-in-hand with spike timing is synaptic
delay, the concept that spikes do not transmit instantaneously.
Attenuating delay provides fine-grained control over spikes as
they propagate throughout a network. Our second example, an
adding machine, relies heavily on delays to maintain consistent
network dynamics.

Example 1 (A Simple Filter). Tuning decay is useful in
accounting for variation or error in temporally encoded in-
formation. The following example highlights this benefit.
Suppose we have some input stream of binary data {xt}, and
we are interested in finding 1s either adjacent or separated by
a single timestep. That is to say, we are looking for patterns
11 or 101. We suggest a two-neuron system to compute the
following boolean function:

f(t) =

{
1 xt = 1 and (xt−1 = 1 or xt−2 = 1),
0 otherwise.

1) Input neuron I1 spikes at time t if and only if xt = 1.
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Fig. 3. The filter algorithm is illustrated. The key provided will be used for all
such connection diagrams. Note that not all symbols are used in this diagram.

2) Readout neuron group A has one neuron defined by
(8.5, 8, .25), and there exists a single synapse SI0,a =
(1, 8).

The readout neuron A1 spikes at time t if and only if f(t−1) =
1. The shift of one time unit is due to the synaptic delay.
Table II lists an example run of the algorithm, and a connection
diagram is provided in Fig. 3.

TABLE II
SAMPLE INPUT DATA AND THE RESULTING BEHAVIOR OF NEURON A1

Value t0 t1 t2 t3 t4 t5 t6 t7 t8
I1 spiked? 3 7 3 7 7 3 3 7 7
VA1 0 8 2 8 2 .5 8.125 8 2

A1 spiked? 7 7 7 3 7 7 7 3 7

Example 2 (Approximating an α-adic Adding Machine).
This example uses spike-timing to efficiently represent an α-
adic adding machine. The α-adic adding machine, sometimes
referred to as an odometer or solenoid, is object of dynamical
interest as it is equivalent, both from topological and ergodic
viewpoints, to a wide variety of dynamical systems [31], [32].
From a more practical viewpoint, this allows for a fully spiking
integer counter, which can prevent unnecessary transitioning
between spiking and non-spiking regimes.

Since a true adding machine is infinite, we provide a k-
register approximation. In addition, we assume each of the
registers is of the same size, but generalizations from this
assumption are clear.

Central to this algorithm is a spiking clock mechanism.
Values are stored in the relative difference between spike
time of a readout neuron and that of the ‘0-tick’ on the
clock. The clock can be provided by the regular spiking of
a neuron determined by some external clock, or we can use
a delay-spaced ring of neurons to obviate the need for an
external clock. Differences in the times of spikes are used in
biological neural nets, as well. For example, the well-studied
spike timing dependent plasticity is a learning mechanism
whereby influence is weighted relative to difference in spike
times [33], [34].

Formally, for some positive integer α, we represent the
space {0, . . . α− 1}k as tuples x = (x0, x1, . . . , xα−1). Addi-
tion is modular, component-wise with carry-over. The standard
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c

Fig. 4. A 3-register adding machine where all registers are size 8.

adding machine map is f(x) = x + (1, 0, . . . 0). To maintain
brevity, we do not discuss the topology placed on this space,
but we do caution that f does not iterate through elements
according the ordering on the space. These differences must be
taken into account depending on if implementing a dynamical
adding machine or an integer counter.

The network is designed as follows:
1) A group C of α neurons forms our clock mechanism.

Each neuron is assigned a value, in order. Each of these
neurons have threshold 1, and the group is connected by

SCi,Ci+1 mod α = (1, 1).

We, in addition, require another neuron connected to
the 0-neuron in C which starts the clock and a neuron
c which transmits the clock’s timing.

2) A group of registers A stores the value of our adding
machine. Each neuron represents one component of the
tuple. The value is determined by the time the neuron
spikes relative to the clock. We define, for i = 1, 2, 3,
Ai = (α, 0, 1) and

Sc,Ai = (1, 1).

Since incoming spikes are integrated before a spike/no-
spike decision is made, we need neurons that act as a
buffer in the event that a register is increased at the same
time step it spikes. For i = 4, 5, 6, we set Ai = (1, 0, 0)
with synapses

SI1,A4
= (2, 1/2),

SAi−3,Ai = (1, 1/2),

SAi,Ai−3
= (1, 1).

In addition, for i = 1, 2 we have synapses SBi,Ai+4
=

(2, 1/2).
3) A single input neuron I0 fires when iterating f . The

neuron I1 is connected to A1 with weight 1 and B1

with weight 1/3.
4) For carryovers, we require α − 1 neurons in a group

which is denoted B each defined by (1, 0, 0) with
synapses

∀j, SBj−1,Bj = (2(j − 1), 1/3),

∀i, j, SAi,Bj = (1, 1/3),

∀j, SCα−1,Bj = (2i, 1/3).



Fig. 5. A sample result of PIV computation. The blue and red dots represent
particles in the first and second exposures respectively. Computed local flow
vectors are shown superimposed.

The previous vignettes provide basic examples of spiking
algorithms where spike timing, synaptic delay and decay
complement the neurons’ integration process to achieve com-
putation. By combining these fundamental techniques with
a highly parallel network structure, we can compute more
sophisticated functions. In the following section, we discuss,
in depth, spiking algorithms designed for a specific scientific
application.

IV. PARTICLE IMAGE VELOCIMETRY

Studying fluid flow is central to many fields in science and
engineering. Particle image velocimetry (PIV) is a popular and
well-studied method for using particles to determine the local
velocity of a flow [35], [36], [37]. It finds use particularly
in its ability to observe turbulent flow [35]. While there are
many variations and adaptations, we look at the computations
required for a standard one-viewpoint, two-exposure cross-
correlation PIV method. Before observation, particles are
injected into the flow. Two images of the same viewpoint
are taken separated by a known time delay. The images are
subdivided into smaller windows, each containing a handful
of particles. The two frames are compared to determine an
estimate for the local flow velocity. The method with which
we are interested is cross-correlation. In general, the cross-
correlation of two one-dimensional functions f and g is
provided by

(f ? g)(x) =

∫ ∞
−∞

f(z)g(z + x) dz.

In the discrete case this reduces to

(f ? g)(n) =

∞∑
m=−∞

f(m)g(m+ n),

and the cross-correlation can be thought of as a sliding
dot product. If we perform a cross-correlation on two (one-
dimensional) images, the value (f ? g)(n) gives the amount
of overlap after a shift of n units. Following, the n for which

(f ?g)(n) is maximum gives the best estimate for the local ve-
locity. We discuss the one-dimensional case for greater clarity.
The algorithm is easily generalized to higher dimensions, and
in practice we apply a two-dimensional version to the images
of flow such as that shown in Fig. 5.

It should be noted that in traditional computing platforms
the cross-correlation computation is accelerated by leveraging
the Fourier transform. Specifically, by transforming into the
frequency domain, the problem is greatly simplified.

A. An Initial Algorithm

Suppose f and g map {1, . . . , k} into {0, 1}. We design our
spiking network as follows:

1) There are two input layers: F and G with k neurons
each. At time-step 0, Fi fires if and only if f(i) = 1.
Spikes in G are determined similarly with g.

2) We have a group of inner neurons: A with k2 neurons
arranged in a k2 grid for convenience of notation. For
all neurons in A, TAi = 1. We connect Fj to Ai,j with
a weight of .5. Furthermore, Gi+j−1 mod k is connected
to Ai,j with a weight of .5:

∀i, j, SFi,Ai,j = (1, .5),

∀i, j, SGi+j−1 mod k,Ai,j = (1, .5).

3) An integrator group B of size 2k−1 collects the spikes
that occur within group A. The synapses are

∀j ≤ k, ∀i ≤ k − (j − 1), SAi,j ,Bi = (1, 1),

∀j ≤ k, ∀i > k − (j − 1), SAi,j ,Bi+k = (1, 1).

The threshold of neurons in B must be set sufficiently
high so that the neurons will not fire unless every pre-
synaptic neuron fires, so we have Bi = (2k, 0, 1).

4) Lastly, a single schedule neuron D that fires periodically
connected to B and will, after some time steps, drive
a neuron in B to fire. The neuron which has had it’s
voltage most greatly inflated by activity in A will be the
first to fire. This neuron will correspond with maximum
cross-correlation.

∀i, SBi,D = (1, 1)

In examining the presented algorithm, a few points become
clear. First, we use O(k2) neurons. Second, while the com-
putation of the cross-correlation is constant time (twice the
minimum synapse delay), the time required to compute the
maximum is O(k). We can reduce this to O(k) neurons, O(k)
time by using time coding multiplexing.

B. Modifications for Constant-Time Performance

Note that while the overall algorithm runs in O(k) time, the
inner product is computed in constant-time. By switching to
a constant-time maximum method, we can find the maximum
cross-correlation in constant-time. This is easily accomplished
using pairwise comparison. For example, to find if group X
has greater activity than group Y , connect both groups to a
readout neuron with connections from X being excitatory and
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Fig. 6. A diagram of the first-try spiking neural network algorithm for
cross-correlation. The first output neuron (star) to fire corresponds with the
maximum. Neuron groups A and B are separated into sub-groups for clarity.
The separations are A = A1 ∪A2 and B = B1 ∪B2.

those from Y being of equal weight but inhibitory. In the
case of more than two groups for comparison, the group that
wins all pairwise comparisons is the group with the maximum
activity.

C. Algorithm Refinement Via Temporal Coding

By using graduated delay and time multiplexing, we can
reduce the number of neurons required to O(k) (precisely 4k+
1 neurons) while keeping the execution time at O(k). The
setup is slightly different, but the overall concept is the same.
Essentially, each column (split by the diagonal) of the previous
neuron group B is now represented as a time step.

1) There are two input neurons: F and G with 1 neurons
each. At time-step t, F1 fires if and only if f(t) = 1.
Spikes in G are determined similarly with g.

2) Again, neuron group A computes the inner product with
with 2k−1 neurons defined by Ai = (1, 0, 0). Neuron F1

is connected to Ai with a weight of .5. All connections
from F1 have a delay of k time steps. Furthermore, G1

is connected to Ai with a weight of .5 and delay i.

∀i, SF1,Ai = (k, .5)

∀i, SG1,Ai = (i, .5)

3) An integrator group B of size 2k−1 collects the spikes
that occur within group A. The threshold of neurons in
B must be set sufficiently high so that the neurons will
not fire unless every pre-synaptic neuron fires. Define
B = {(2k, 1, 1)} with synapses

∀i, SAi,Bi = (1, 1).

4) We need a scheduled neuron D that fires periodically
and connects to B. As before, the purpose is that after
some time steps, at least one neuron in B is guaranteed
to fire. The neuron which has had its voltage most
greatly inflated by activity in A will be the first to

The description here computes a strict inequality, but simple weight
adjustments can allow for non-strict inequality as well.
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n = −4 n = −3 n = −2 n = −1 n = 0 n = 1 n = 2 n = 3 n = 4

f : g :

Fig. 7. A diagram of the temporal coding spiking network algorithm for
cross-correlation. Due to multiplexing, only two neurons are needed for two
inputs.

TABLE III
A SAMPLE EVOLUTION OF THE TEMPORAL CODING SPIKING NETWORK

ALGORITHM

Neuron Group Neuron Index t0 t1 t2 t3 t4 t5 t6
F 1 3 7 3 7 - - -
G 1 7 3 7 3 - - -

1 7 7 7 3 7 7 7
2 7 7 7 7 7 7 7
3 7 7 3 7 3 7 7

A 4 7 7 7 7 7 7 7
5 7 7 7 7 7 3 7
6 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7
1 7 7 7 7 7 7 3
2 7 7 7 7 7 7 7
3 7 7 7 7 7 3 7

B 4 7 7 7 7 7 7 7
5 7 7 7 7 7 7 3
6 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7

D 1 3 3 3 3 3 3 3

fire. This neuron will correspond with maximum cross-
correlation.

∀i, SBi,D = (1, 1)

Table III shows the propagation of spikes throughout the
network based on sample input data. Since neuron B3 is
the first neuron in group B to spike, this corresponds to the
maximum cross-correlation (n = −1).

In comparison to our first-try algorithm, this time coded
algorithm is visually simpler, only requires O(k) neurons, and
runs in O(k) time. Notice, however, that the number of spikes
(which is a measure of the amount of energy) remains the
same.

Subtle changes in decay rates allow this algorithm to have
more generalized behavior. Specifically, the decay constant of
the neurons in group A parameterizes the time scale over
which they sample. Such tuning allows the algorithm to be
more or less selective regarding variations in the timing of the
input spikes.

D. Algorithm Analysis

The PIV algorithms exhibit trade-offs regarding space, time
and energy costs, as shown in Table IV. The energy calculation
is the expected number of spikes given each component of



each function is independent and is 1 with probability p. The
variable κi is dependent on the input data and is defined as
the number of shifts that correspond to the i-largest cross-
correlation. The spikes for the input and schedulued neurons
are omitted.

By using the time multiplexing and temporal coding
in IV-C, we are able to effectively exchange neurons for
timesteps, and the overall complexity is unchanged. Asymp-
totically both IV-A and IV-B require the same number of
neurons, but IV-B computes in constant rather than linear time.
Note however that accomplishing the maximum operation in
constant time uses energy approximately quadratic in k.

TABLE IV
THE VARIOUS PERFORMANCE AND COST TRADE-OFFS OF THE DIFFERENT

PIV ALGORITHMS ARE COMPARED

Algorithm Number of Neurons Runtime
Additional Energy Above

k2p2 + κ1
IV-A O(k2) O(k) 0

IV-B O(k2) O(1)
∑2k−1

i=1 κi(2k − 1− i)
IV-C O(k) O(k) 0

E. Generalizations

The first generalization that is of clear interest is the
corresponding algorithm for a higher dimensional space. A
two-dimensional version is straightforward; an implementation
of the 2D algorithm using the Brian Simulator [38] produced
the image in Fig. 5. Unfortunately, the connection diagrams
and descriptions thereof become complicated and less enlight-
ening. As such, they are omitted here. However, in experience
gained from developing these systems, it has been easier to
split the images along rows, with one input neuron per row.
Though this is merely a convenience, and a system with no
more than two input neurons is possible. Stereoscopic PIV
exists, and this method generalizes nicely to three dimensions
as well.

Robustness of the neurons used in the implementation can
provide increased control. Particularly, different decay models
can be used within neuron group A to control for possible
errors in input timing or to increase flexibility in the flow
detection.

Other generalizations lie in the individual component oper-
ations. The following are some examples:
• By setting g to be a reference pattern, rather than a second

exposure, the algorithm performs a basic search for that
pattern within a larger image.

• Replacing the neurons in group A with neurons that per-
form statistical measures, rather than an AND function,
would allow for more holistic computations.

• After finding the cross-correlations, we find the maxi-
mum, but this operation can easily be replaced with other
comparators such as a preference relation.

V. DISCUSSION

By presenting these “hand-crafted” algorithm designs, we
hope to emphasize the computational benefits of a high-

connectivity spiking network. Innate parallelization and colo-
calization of memory and processing are certainly critical
for our algorithms’ function, but in addition SNN-specific
properties such as

• Spike timing,
• Synaptic Delay and
• Decay

have shown computational benefits of their own. We argue that
these facets are central to the performance and energy benefits
found with neuromorphic systems.

A second order component of the spiking approach is
flexibility in data representation. Biological neural systems
use a variety of methods to encode information; rate-coding,
latency-coding, coding via inter-spike intervals and modular
codes are all suggested theories [39], [40], [41], [42]. Com-
putationally, the optimal representation is context dependent.
In IV-C, we transition from a temporal code in the input data
to what is essentially a rate-code in neuron group A (data
is stored as the number of spikes over a given time) to a
latency code in neuron group B. The flexibility of a spiking
approach allows us to transition swiftly to the most appropriate
representation at each step of the algorithm. The process
works well in this context, but conversion, both in general
and particularly from a SNN to von Neumann machine, is a
costly operation.

We have chosen to develop these algorithms at an abstract,
network level using a relatively generic neuron model. Thus,
we target a wide range of options for eventual hardware
implementation and acceleration, we receive the full benefit of
a spiking model, and we avoid being tied a specific hardware
platform. Some neuromorphic architectures do provide more
sophisticated neuron models. Greater model complexity more
accurately represents the true behavior of biological neurons,
and the computational benefit of these models is an open
question.

The next logical progression is the development of canonical
neural computations—modular standardized operations that
are well-suited for a neural approach. Thereby, one could
implement high-level functions by combining these lower
level components. Specialized high-performance, low-energy
neuromorphic hardware would no longer be restricted to only
machine learning and simulation but rather pose a viable
optimization path for a wide variety of applications.
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