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Additive Manufacturing

Pros
• Quick build times (minutes – hours – days)

Why does traditional material assessment take months?

Casting/forging/machining:  1 month (1 -12 months if using multiple vendors)

Metrology:  1 month

• Tailored Properties (graded density, graded alloys)

Cons
• Build quality is often poor (porosity, surface roughness, un-melted powder, warping).

• In-situ monitoring still uncommon.

• No in-situ monitoring means no feedback control (poor run-to-run repeatability, waste 
light/heat, overheating).

• Extensive ex-situ characterization is often still needed (electron microscopy, x-ray diffraction).
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In-Situ Monitoring 

Control of melt pool temperature and deposition height during direct metal deposition process, Int. J. Adv. Manuf. Technol., 2012.

Pros
• In-situ monitoring allows for feedback control.

• Feedback control provides greater control over process conditions and builds.
• Control of melt pool dimensions has been demonstrated.
• Dual melt pool dimensions and temperature control.

Cons
• In-situ monitoring is still not widely used or available.
• Challenging to develop.



thermal history during bi-directional metal deposition
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Temperature Measurements for AM
• Why temperature?

• The absolute temperature and rate both control the final stoichiometry of the part.
• If you don’t know the temperature you don’t know much about your build!!!

• Intensity can be easily measured during a build.



Intensity and Temperature

• Planck’s Distribution for a Black Body: 

• Stefan-Boltzmann Law:
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The Temperature Measurement Problem

• Accurate determination of powder bed, melt pool, and 
part temperatures during build is critical for:

1) Predicting performance and parameters such as residual stresses.

2) Validating and verifying physics-based models.

3) Feedback control for real-time AM process optimization. 

• Layer-wise temperature measurement requires non-
contact methods, but achieving accuracy a key 
challenge.
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Observed temperature errors in powder bed 
process using IR Camera  with factory calibration.  
Rodriguez et al., Add. Mfg., 2015.



The Temperature Measurement Problem 

• Emissivity variation is underlying issue:

– Depends on material, temperature, wavelength, roughness, surface 
condition (oxidation, etc.), viewing angle…
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Emissivity Changes with Temperature



Existing Approaches

• Infrared Thermography (NIR, MWIR, LWIR)

– Large field of view, good spatial resolution, high acquisition rate.

– Must correct for emissivity.

– Single-point black body correction not adequate.

• Two-color Pyrometry (NIR or visible)

– Ratio of intensities provides some correction for ε, 
assuming ε independent of wavelength.  

– For materials of interest visible pyrometers lead to ~ 10 °C accuracy

– In IR, ε strongly dependent on λ (errors of >50 °C).

– 20 Hz frame rate
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• Multiple wavelengths
• NIST is pursuing a custom, 11-wavelength IR camera.                                              

• Powder bed applications
• Back-fit Planck’s curve for gray body. 
• 80 x 80 pixel sensor array
• 50 Hz acquisition rate 

Hyperspectral Cameras

Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes, 40th Annual Review of 
Progress in Quantitative Nondestructive Evaluation, 2014. 



Printed Blackbody

• Blackbody emitter printed with powder bed fusion.
• Ti-6Al-4V build material
• Advantage is the blackbody printed from the material of interest.
• Emissivity is measured over a limited temperature range.
• Calibrated to 700 °C
• 3.7% temperature uncertainty

Approximation of absolute surface 
temperature measurements of powder bed 
fusion additive manufacturing technology 
using in situ infrared thermography, 
Additive Manufacturing, 2015.



Ongoing Work

• Use mm-wave radiation to calibrate emissivity and temperature
• Intensity varies linearly (as opposed to T4)
• 137 GHz (2.188 mm)
• 1 cm focused beam diameter
• Only one calibration point required
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IR Camera Calibration
MM-wave radiation provides accurate T measurements over a large dynamic range with ~ 10 °C uncertainty 
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Conclusions

• Additive manufacturing offers new opportunities for rapid prototyping.
• A major disadvantage is in-situ temperature monitoring and feedback control 

are typically not utilized during builds.
• In-situ temperature monitoring promises to improve additive processes.
• Non-contact temperature measurements are limited due to unknown 

material emissivity.
• Hyperspectral cameras offer the promise of full Planck’s curve calibration.
• Blackbodies printed from the build material greatly lower the in-situ 

temperature uncertainty.
• Ongoing work with mm-wave radiation promises ~ 10 °C temperature 

uncertainty over a large dynamic range.



Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials, RC t RD&D Reactor, 2012. 


