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Introduction: Two-level Additive Schwarz
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Motivation: Expected need for more parallelism

Krylov Solver

DD Preconditioner algorithms

parallelism
opportunities

Sparse Solver modularity

Dense Linear Algebra BLAS
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Computational Kernels:

= Sparse matrix-vector multiplication
= Apply operator/coarse interpolations

= Sparse Linear Solvers

= Now: Threaded factorizations and solves
— MKL Pardiso
— Sandia efforts (Trilinos)
— Literature focus much on factorization

= Future: Inexact subdomain solves
— Algorithmic changes for reduced memory/computation
— Hierarchical solvers or other preconditioners

= Dense linear algebra
= |terative solution acceleration
— Subspace recycling (projections)
= Sparse direct solvers (supernodal variants)
= Vectorization via BLAS
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= MKL Pardiso:

= Threaded factorization and solve phases
= Earlier disappointments with solve phase

= Recent Sandia Efforts:

= Hybrid Triangular Solver (HTS, Bradley)
=  Solve phase only
=  OpenMP

= Task Based Cholesky/LDL (Tacho, Kim and Rajamanickam)
=  Factorization and solve phases
=  Kokkos-based

= Threaded Ng-Peyton* (NPT, D)
=  Factorization and solve phases
=  OpenMP/Tasks

= Others: WSMP, SuperLU_MT, ... modularity key

*Esmond G. Ng and Barry W. Peyton, Block sparse Cholesky algorithms on advanced
uniprocessor computers, SIAM J. Sci. Comput., Vol. 14, No. 5, pp. 1034-1056, 1993. 7
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Solve phase on Knights Corner
Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND
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https://trilinos.org/community/events/trilinos-user-group-meeting-2015/
SIAM CSC ‘16 paper also accepted (final draft to be submitted later this month) 8
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NPT:

= Threaded version of the
Ng-Peyton solver using
OpenMP (D).

81

= Uses elimination tree for
task parallelism in factor
and solve phases

(oeoe0060-606)

= Tasks for dense linear
algebra.

= Left looking supernodal

= BLAS for vectorization
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= Test Matrices:

= 4 subdomain matrices from test suite (models1-4)
= 2 Il-beam models of interest

# of unknowns

modell: 7,458
model2: 30,462
model3: 57,201
model4: 36,195
Ibeam_r0: 39,411
Ibeam rl: 259,431

Notes: Metis nested
dissection and
symbolic factorization
not threaded.
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Figure 4: KNC, 61 cores, 4 hardware threads/core. Results are from two runs. NPT and HTS solvers were run at higher o
thread counts in a separate run. Runs were done with KMP_AFFINITY=BALANCED (1 thread/core until all cores used, S
then add more threads round robin) and KMP_AFFINITY=COMPACT (fill a core with 4 threads hefore moving to the $
next), and with OMP_NUM_THREADS set to a large number of values. The number of cores reported is the number of =
cores used by the KNC; however, thread affinity affects the number of threads/core. In these tests, 1 and 4 threads/core
were tested at a number of core counts, and 2 threads/core was tested at 61 cores. 11
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= Sierra/SD (Structural Dynamics):

= Modal, transient, frequency response, static, inverse, ...
analyses (primarily linear)

= QOperator matrix often constant = many solves/factorization
= GDSW* solver

= Sierra/SM (Solid Mechanics):

= Nonlinear explicit & implicit structural analysis
= Tangent matrix changing = fewer solves/factorization
= FETI-DP** solver

*Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity,
Int. J. Numer. Meth. Engng, Vol. 82, pp. 157-183, 2010.

**FETI-DP: A dual-primal unified FETI method — part I: A faster alternative to the two-level FETI

method, Int. J. Numer. Meth. Engng, Vol. 50, pp. 1523-1544, 2001.
12
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= Sierra/SD (Structural Dynamics):
= Modal Analysis: (K—oM)x =0b
= Each eigen-mode requires multiple linear solves
= Each linear solve requires 10s to 100s of iterations
= Each iteration requires subdomain sparse triangular solves

= Implicit Transient Dynamics: (a;M + a,C+ K)x = b
= Simulations with > 1000 time steps not uncommon
= Each time step requires a linear solve, ...

= Message:
= Triangular solves very important for structural dynamics
= Factorization costs can be amortized over several linear solves

=  Factorization costs more important for solid mechanics
applications where matrices are changing

13
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Solver initialization times (2 MPI procs)

Run using 2 MPI processes (Sandy N Peyn
Bridge, 2 sockets, 8 cores/socket) ——NPT/HTS
* —&— Pardiso

Problem too easy using default GDSW
solver parameters (2 iters/solve average)

Used non-default parameters to be more

representative (40 iters/solve average) K
krylov_method = gmresClassic, T : —
solver_tol = 1e-8, overlap =1, orthog =0 .
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Disclaimer: non-optimal affinity and other settings possible here (lots to keep track of) 14
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= Threaded Sparse Solvers:
= Convenient way to introduce more parallelism
= Small changes to existing DD preconditioners
= Modularity is key
= Early results encouraging
= HTS very promising for larger thread counts
= Clear benefits for structural dynamics application

= Future Work:
= Determine suitable number of threads per subdomain on
newer architectures (e.g. Knights Landing)
= Explore over-decomposition concepts
= Multiple subdomains per MPI rank
= small number of threads per subdomain

= Explore inexact methods for DD preconditioners, ... s
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Multi-level Additive Schwarz Preconditioner:

Ar =10
AM Yy =1
M—1 Nj
Y RE(RyARL) T Rijrj + Oa (P Aday) ' yyr
1=1 1=1

ry = (D?T‘._ (Dl =/ flj — (Il’jfl(f)?

17




Sandia

Sparse Linear Solvers ) et

Tacho:

= Task-based Cholesky.

= Currently uses Kokkos /Pthreads for tasks

= Moving to OpenMP backend

= Not integrated yet in structural mechanics codes

= See link below for report on incomplete factorizations

https://arxiv.orq/pdf/1601.05871.pdf
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Figure 3: Haswell, 32 cores on 2 sockets, 2 hardware threads/core. Runs were done the same as before.
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Factorizations/preprocesses per minute [1/min] Solves per second [1/s]

Ibeam_r0 lbeam_r1 Ibeam_r0 Ibeam_r1

g:g P0.125 294 28.875
180 17.25 252 24.75
150 1L 4.375 210 20.625
120 —8—NPT m 11.5 168 16.5
90 —©0—Ng-Peyton 8.625 126 12.375
60 | —&—HTS 5.75 84 8.25
30 | L—8—Pardiso 2.875 42 4.125
0 0 0 0

24 8 16 32 24 8 16 32 24 8 16 32 24 8 16 32

model1 model2 model1 model2

200 256
1533 175 i 224
1314 150 2514 192
1095 125 2095 160
876 100 1676 128
657 75 1257 96
438 50 838 64
219 25 419 32
0 0 0 0

124 8 16 32 124 8 16 32 124 8 16 32 24 8 16 32

model3 model4 . model3 model4

126 196 168 322
108 168 144 276
90 140 120 230
72 112 9 184
54 84 72 138
36 56 48 92
18 28 24 46
0 0 0 0

24 8 16 32 24 8 16 32 24 8 16 32 24 8 16 32

# Threads # Threads # Threads # Threads
Figure 1: Sandy DBridge, 16 cores on 2 sockets, 2 hardware threads per core. Runs were done with

OMP_PROC_BIND=SPREAD and OMP_PROC_BIND=CLOSE,

OMP_NUM_THREADS set to each number indicated in the 2 axis. The best time for a given thread count is reported.

always

with

OMP_PLACES=CORES,
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Figure 2: Ivy Bridge, 20 cores on 2 sockets, 2 hardware threads/core (not used). Runs were done the same as before. 21
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Solver initialization times (1 MPI proc)
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Note: Intel 14 rather 15 compiler used because of Sierra/SD test errors (under investigation) 22
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