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What systems can be studied using this technique?

Nanoparticle Nuc & Growth Assembly Galvanic Replacement

Evans et al. Nano Lett. 11, pp 2809 (2011) Sutter et al. Nat. Comm. 5, pp 4946 (2014)

Corrosion Electrodeposition  Structure/Dynamics of Biomaterials

d

Evans et al. Micron 43, pp 1085 (2012)
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]
STEM Probe

Capability of Experimental System:

* Real-time dynamic nanoscale imaging of materials in solution

» Site-specific information (grain boundaries, defects, interfaces...)

e Able to image almost any solution, except for very basic solutions will etch window
* Microfluidic control and possibly mixing

* Picoampere current control over ultramicroelectrodes, multiple electrodes

* Temperature control up to 175°C (hexane)

* Chemical analysis and probing electronic states of materials/liquids

Complexity of Experimental System:

* Electron transparent samples require thicknesses below 1 um, generally 300 nm best
e Electron beam causes radiolysis damage to solution molecules

e Thin film membrane windows and solution create background noise in images
 Membrane window/solution interfaces, charge effects

* Radiolysis products create side reactions, change local chemistry in cell
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Scanning Transmission Electron Microscopy

Incident
electron

High angle
scattered
electrons

Inelastic &
unscattered
electrons

Annular Detector

Spectrometer

300 kV electron beam

Beam current 5 —-10 pA
Dark-field and Bright-field STEM
Generally: 5 sec 1k x 1k images

Column vacuum pressure: 10”7 Torr

Atomic-resolution imaging and chemical analysis
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Liquid Cell Transmission Electron Microscopy

Commercial Microfluidic Liquid Cell TEM Holder

2.6 mm <

A0 nm Sil.

2.6 mm 4 um

Custom MEMS-based Liquid Cell

Sapphire top
Beference electrode

electrode
= fay

Glass spacer

. \ II i .
Working electrode: External  Internal “?Eg”ﬁm""'s'?ﬁjﬁw

(20 nm polycrystalline Au)  contact contact

Williamson, M.J. et al. 2003. Nat. Mater. 2, 532.

TiO, np/100 nm H,O

(iitase (100)

Electron Dose:

ACSTEM: >10% e’/A?
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Radiolysis of Water by the Electron Beam

Radiolysis of water and Ag reduction from AgNO,

Radiolysis
H,0-se., H', OH'

aq?

k’ Reduction
Ag'+e H — Ag’

aq?
k’ Nucleation

-OH + Ag* - AgOH?* \\’

Woehl et al., ACS Nano (2012)
Abellan et al., ChemComm. (2014)

Amount of products formed depends on the electron dose

H,0 ~AAA> 0.052 H'(0.28 "OH)0.047 H,, 0.073 H,0,, 0.28 pmol J™'

Buxton, VCH Weinheim (1987)
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STEM Imaging for Controlled Electron Doses

TEM STEM
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Li lon Batteries

Tarascon J.-M. and Armand, M. (2001) Nature 414, 359.

400
Why are we using Li-ion batteries?

* High volumetric (Wh/L) and gravimetric (Wh/kg)

energy storage

300

SMaller SIZE m—

__ Eng
200 / \. MH .'
Nl-Cd' ;'

100

* Good high rate capability \acid_/

* Highest discharge capacity

Energy density (W h I'1)

* Rechargeable: High energy efficiency

Lighter weight ——3»

I | | | |
50 100 150 200 250
Energy density (W h kg-)

o -

What can we do to improve Li-ion batteries?

* Increase charge density: new materials

* Increase reversibility for charging/discharging: solve interfacial degradation
* Decrease cost: battery design/materials
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Li Metal Anodes for Lithium lon Batteries

Discharge
—>e- B, e—>
LixC6 Lt
S
L gre
- “- ‘\
Anode —— Li-xMOz2 -
% 1
} \ M=Mn,Co.Ni

Electrolyte Separator

+—Cathode

Why don’t we use Li metal anodes?
Short circuit failure in Li-ion batteries from Li dendrite formation

&

Liquid
electrolyte

f | Carbon

Cell can

Separator

Li;, ,Mn;0,

Tarascon J.-M. and Armand, M.

(2001) Nature 414, 359.

#Electron and Li-ion move reversely at charging

Alloy Anode Material

Theoretical Capacity

(mAh/g)
Li 3,860
Si 4,200
Graphite ~ 360
Sn 990

Yoshio, M. et al., 2009 Lithium-lon Batteries. Springer, New York, 11.

Parameters determining Li morphology

Current density

Temperature

Initial Li metal structure
Electrolyte (solute and solvent)
Electrolyte additives

Electrode stack pressure
Environmental considerations
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Models that Explain Li Deposition Morphology

CATHODE )/%)
- Edge effect
Lithigmonflux — & & & & 5 =8
! [ Li anode | l Li anode |
SEPARATOR ] i
y l Depesition /? l Dissolution
ANODETAB ‘ i
L1 ANODE Li anode l — i
Fig 4 Lithium anode cotat the end of the cathode during cyeling l Deposition
Tobishima, S. et al. 1997. J. Power Sources 68, 455. f l Dissolution
Li anode l
Diead lithium ;;
5 = 5 | l Deposition Dissolution from base
0 mm——15 x 10°Vm | 2x10°Vm ),1%) — |
| Li anode ]

Yamaki, J.-i. et al. 1998. J. Power Sources 74, 219.

Observed dead Li dendrites: accumulates on anode
decreasing capacity, and reduces thermal stability.
Amount of dead Li is larger after low rate of discharge

deposition deposition :
JL

Li Li Li

—6() o 60 mol m 25~}
Jana A. et al. 2015. J. Power Sources 275, 912.
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Li Metal — Electrolyte Interface

Electrolyte: High ionic conductivity & large voltage window

&

Typically 30-50 nm

A
Y

Initial Li deposit

\

Li*

SEl Interface:
Lithium Intercalation into Graphite
Peled et al. (1997) J. Electrochem. Soc. 144, L208.

Known that a surface film forms at solid-electrolyte interface (SEl), what impact does this
SEl film have on Li morphology for electrodeposition?
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CINT’s Electrochemical TEM Discovery Platform

* Electrically isolated electrodes allow for defined current control down to femptoampere levels

e 10 ultramicroelectrodes can be controlled at technologically relevant current densities

* Active electrode areas are confined to viewable region in the 30 nm thick SiN window

(e) e beam Fluid seal
Wire —_ <
bond Epoxy

Leenheer et al., (2015) JMEMS. DOI:10.1109/JMEMS.2014.2380771.
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Li Morphology during Cycling

WE: 0.26 um? Ti electrode _k— Cycle 1 ———— le——— Cycle 2 —j_“q
CE: 750 um? Ti electrode [ | T | .

Coated with ALD Al,O,

Liquid thickness: >1 um
Galvanostatic control: +/- 10 mA/cm?
Electron dose per image: 25-50 e /A2

t 4 e
‘ f j\ 063

=

P ——— 0.4
Open circuit —104¢

* The electron beam
impacted initial Li plating

* Correlate spikes in
electrochemical data with
nucleation of new Li grains

Cycle 1

* Unable to distinguish
electrochemically the
nucleation of a rounded
grain vs. a dendrite

Cycle 2

Leenheer et al. (2015) ACS Nano 9(4), 4379-4389.
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Li Morphology: High Electron Beam Dose

Galvanostatic control at +/- 10 mA/cm?, Electron dose per image: 25 - 50 e’ /A2, Imaging every 15 seconds

=
= -20 = -
Bk ERRTE Lk
32 R
i:-2.4-— . E <
o [ An<
g-28p WA 1’2
> -32 1 1 1 1 1 1 1 = =
0 5 10 15 20 25

t (min)
Leenheer et al. (2015) ACS Nano 9(4), 4379-4389.

Electron beam increases nucleation and creates rounded Li deposits @ ﬁgtl}do':al
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How Does SEI Evolve with Cycling?

Cumulative dose (nC)
0 2 4 6 8

T T
150F o i present
— A Listripped

50 —IaJ‘:.‘:-Ab

0
0 200 400 600
Beam exposure time (s)

SEI thickness (nm)
o
o
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Leenheer et al. (2015) ACS Nano 9(4), 4379-4389. = = = - -
Energy loss (eV)

Increased contrast is observed about Li deposits from electron beam induced electrolyte degradation

Native SEl characterization is very difficult using an electron beam for imaging/spectroscopy
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Different Electrolyte Suppresses Li Dendrites?

Technical challenge

* Tailoring the electrolyte to suppress Li dendrite formation may solve this issue, allowing for Li
metal anodes to be used for increased capacity

e 4 M Lithium bis(fluorosulfonyl)imide (LiFSI) in 1,2- dlmethoxyethane (DME) (< 1 ppm H,0),
increased solvent coordination A

Li*

/;‘\” /O\/\O/
F—" ~F
(.
100 T RO R T TR,
80 F 1.0
g\a 4.0
E 60 b 8.0
g :
2
O
ﬁ 40 F
20 F
0 1 1 L 1
0 200 400 600 800 1,000

Cycle number

Qian et al., Nature Comm. 6, 6362 (2015).
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JCESR 7/19/2016 16 @ LNaimg?tllries




Effects of Multiple Cycles on Li Nucleation

WE #2 Cu: 2.25 mA/cm? for 5 min deposition
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Self-Discharge During Li Plating on Working Electrode
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Li Deposition on Surface of Metal-Infused SEI

(Degradation and dissolution of the Ni metal counter electrode produced mobile metal ions that deposited along
with the SEl to form a e- conducting SEl on the metal electrode surface)
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Li Transport Pathways
(Deposition and stripping typically occur from the triple-point where the Li grain/electrode/electrolyte or SEI meet)

* NiWE Area: ~1 um?

* NiRE &CE Areas : 100 um?

« Electron Beam Dose: < 2.53 e /A2
«  Dose per frame: 0.03 e /A2

* Current Density: 6 mA/cm?

* Electrolyte Thickness: 500 nm

Although SEI cracks and Li grain grows, it is quickly
impeded by rapid SEI formation over the grain and
closure of the Li ion transport.
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Li Transport Pathways
(Deposition and stripping typically occur from the triple-point where the Li grain/electrode/electrolyte or SEI meet)

Li Deposition

7‘ ripping

*  NiWE Area: ~1 um?

* NiRE & CE Areas : 100 pm?

*  Electron Beam Dose: < 2.53 e/A2
«  Dose per frame: 0.03 e /A2

*  Current Density: 6 mA/cm?

* Electrolyte Thickness: 500 nm
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Li Alloying of Au: 1M LiPF in EC/DMC

Potential (V vs. Au gref) ®

Delithiation

Lithiation

Before cycling

- Cycle 1
— Cycle 2
- Cycle 3

— Cycle 5
Cycle 6

- Cycle 4 (- - overcharge)

b

C

Lithiated

Q

Delithiated

L 4
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Li Alloying of Au: Discrete Initiation Sites for Alloying

Li,Au nucleation LizAu growth complete

|
| *

Li,Au growth

Delithiated: Li, ,Aus

\LizAu growth complete

® -2.2 LA :

c- a3

3

{-24‘—'4\\\

¢ o 4 A
=26 € d

E =

€ 28— I

S 0 100 200 300 400

Charge (mAh/g)

=

Leenheer et al., ACS Nano 10(6), 5670 (2016) Sandia
@ National
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Temperature Control up to 175°C

100F
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Liquid thickness plays a larger role in heating calibration than the liquid
thermal conductivity, therefore measurement of the temperature

changes on column is preferable @ ﬁg{‘iﬂiﬁd
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Measuring Water Thickness using Electron Energy Loss Spectroscop

STEM Probe

t/A; values : measured using EELS

t : thickness of material (nm)
A; : inelastic mean free path
of e” through the material

Atomic Number Formula

Incident
electron
beam

QOO
.:0:0:0:0:0:0:0‘.
..O.QQO‘OOQ.O..:O Specimen
OOOOOOOC

\ ~ High angle

// Inelastic &
/" unscattered scattered

electrons \ \ electrons

Annular Detector

Spectrometer

L, Sk
SR

EM — 7.620'36
- 106FE,
EM n((2BEo)/Em)

[

Z 4 Effective atomic number

f.: Atomic fraction of element n
Z,: Atomic number of element n
E,;: Average energy loss (eV)

Z: Average atomic number

A; : Inelastic mean free path length
E_: Accelerating voltage

B:  Collection angle (mrad)

F:  Relativistic correction factor

Low Energy Loss
===Empty Cell
—Water Filled Cel\l

Intensity (counts)

.
-

10 20 30 40 50

0 10 20 30 40 50

Energy loss (eV)

Energy loss (eV)

H,0: O k-edge
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c ™
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Malis et al. J. of Elec. Micro. Tech. 8, 193-200 (1988).

Jungjohann et al., Micro. Microanal. 2012, 18, 621.
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Conclusions

Imaging at atomic to nanoscale in solution
e Temporal resolution is limited to seconds
* Notimaging ions, though seeing structural changes in solids

e Radiation damage limits our electron dose, and high-magnification imaging of
native processes

e Able to relate the structural changes in electrodes to electrochemical data

e Future work:
» larger and more sensitive detectors (same electron dose more information)
* Imaging Li metal working electrodes instead of metal (Cu, Ni, Ti)
* Mapping electrode initial structure to identify ‘deposition initiation regions’
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Center for Integrated Nanotechnologies

CINT Core Facility: Albuquerque, NM CINT Gateway Facility: Los Alamos, NM

Department of Energy, Basic Energy Sciences national user facility to
provide expertise and instrumentation free of charge to support accepted
peer-reviewed nanoscience research
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Scanning TEM to Control Radiolysis Product Production

Low magnification

R
~

High magnification
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Woehl et al. ACS Nano 6, 8599 (2012).
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Jungjohann et al. Nano Lett 13, 2964 (2013).
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Aqueous Electrons Concentration can Control Nanoparticle Growth Mode

34 e’ /nm?f 39 e /nm?f 1263 ¢ lnm2f _

Rxn Limited: Faceted , F ’ lequ|or|af
+ Rounded partlcles W+ Rounded particles: lelted

Diffusion — “F e lefusmn
Limited = e lelted

' Abellan et al. CISCEM 2014 & AIEP 2015 Sandla
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I ——————————————————————————————.
Liquid TEM Resolution and Limitation of HRTEM Imaging

o AR

E-beam radiolysis damage produces

hydrogen gas bubbles

& . TiO,nanoparticles in water
' * 30 nm SiN membrane windows

 Water thickness increased

96 nm

366 nm
525 nm
660 nm

* Contrast from fringes decreases with
increased background scattering from
water

Abellan 2t al. ChETTCEm S SHY



Pristine Li Working Electrodes within EChem Platform
(previous attempts have been hindered by epoxy poisoning during curing and increased liquid layers due to scraping

thick smudge of Li metal on electrodes)

Epoxies Tested:
e Loctite LV Hysol 1C — outgassing
* blocking layer with tape, metal
e Torr seal — outgassing during curing
* Crystal Bond w/DP100 for liquid sealing —
not mechanically strong enough
e M Bond 610 — THF reacts with Li
* Chlorinated polyolefin thermoplast —
toluene evaporation effected the Li
metal, also tested with pentane
e UV Cured Masterbond
e Low (UV15TK) and high viscosity
wicked into the seal ring (too much

Li scraped?)| B0 F L

e Silicone

JCESR o

gyt

Other Methods Tested: V

* Inserting W metal probes with Li scraped
on tips in through the fill ports, not at Li
potential due to contact with Si?

* Formation of a Auln alloy on seal ring

Current (pA)

LI

Potential (V)

seal ring
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E-beam Evaporation of Li Metal Electrodes Using a Shadow Mask
(This will provide pristine working electrodes on the membrane windows and larger electrodes off of the window)

WD |mag| det [mode| HFW | tilt | —1 11111 S— WD mag | det |mode| HFW | tilt WD mag det |mode| HFW | tilt
5.0mm 100 x| ETD| SE [2.56 mm|0 5.0mm |2400x|ETD| SE |107 ym |0 5.0mm [12000x|ETD| SE [21.3um|0
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4 M LiFSI in DME system with an ALD deposited 50 nm LiAIS layer on Ni Electrode

0.5

i

4 M LiFSl in DME Li deposition below film

S
8
S 15 4
0
°
a 27

e Deposition 1
—=Stripping 1
e Deposition 2
—=Stripping 2
e Deposition 3
—=Stripping 3
e Deposition 4
—=Stripping 4
Deposition 5
Stripping 5
e Deposition 6
——Stripping 6
e Deposition 7
—=Stripping 7
e Deposition 8
—=Stripping 8

3.5 # . . . . .
0 50 100 150 200 250
Time (s)

50 nm LiAlS on Ni Cracking of inorganic film Li deposition through cracked film

1000 nm

Stripping more consistent with ALD film
Li depositing below ALD film

Li stable in cell

Failure of CE at cycle 8
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