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Sandia’s In situ Ion Irradiation Sandia

National

TEM (I3TEM) Laboratories

Collaborator; D.L. Buller 10000
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Olmstead, et al, Acta Mater, 2009.

* Heating to 800 °C

Hattar, et al, Nucl Instr Meth Phys Res B, 2014.

Real-time observation during heating and irradiation at
® ReX&GG 2016 length scales accessible by models. 7/29/2016 @2




Annealing () .

-3 s

- Befiore 7 f B *+ Freestanding Au foll
; e ; b - ¥ o 40 nm thickness
o Annealed to 300 °C

« PED orientation mapping
to digitize the
microsfructure

o <10 nm resolution

« Captures changes in

sfructure

o Orientation
o Grain size

« Direct input for use in
computational models
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10 keV Au in Au, via Wikimedia Commons.

Sandia

Radiation-Solid Interactions @ oy

Energetic ion displaces one or
more target atoms

o Frenkel (vacancy-interstitial) pair

o Collision cascade e S——
o Nuclear and elecftronic interactions _—
time 0.0001 ps P _®
He —S—_
N\
Ne — N’/
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Schematic recoil spectra for 1 MeV
particles in Cu. Sizes represent recoil

energies. After Averback, ] Nucl
Mater, 1994.

Kai Nordlund (2008)

Highly temporally and spatially localized energy

transfer drives microstructural change.
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Kaoumi, et al, ] ASTM Intl, 2006.



In Situ Irradiation (M) i

« Au foil during

bombardment with . _ .
10 MeV Si3* In situ ion irradiation

« ~22 s of 4000s total TEM: 10 MeV Si into
experiment time

nanocrystalline Au.

Playback at 2 x real time.

Locations of single ion strikes and resulting microstructural change captured.

2x real time



Quantification: Overall

Orientation & Index Before

Bufford, et al, ] Appl Phys, 2015.
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o Local grain size, orientation, boundary character

o Hundreds of grains counted in minutes
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5 largest grains
11% of total area
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After Irradiation
368 Grains
davg =47.8 +32.6 nm

5 largest grains
16% of total area

. mﬂﬂﬂmﬁmﬁh._

50 100 150 200 250 300

Grain Diameter (nm)

Sandia
National
Laboratories

G

111

-_—-
Increasing Intensity

deo'chcraderized bere and after irradiation.

Rapid quantification of statistically relevant numbers of grains and boundaries.
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Sandia
Quant1f1cat10n Local @ ot

 The same grains
Identified before and
after irradiation

 Individual grain ,
boundary misorientation |
angles and axes
quantified

« Correlation of GB

| 15° < ¢ <30° |

properties and radiation- 2
induced changes 2
<

[(<d<15 £

Individual grain boundary misorientation angle and axes quantified
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. . : Sandia
Simulated Irradiation () i

2x real time
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National
Laboratories

F —¢— Anneal
—+— Avg. Thermal Events

Bufford, et al, ] Appl Phys, 2015.

Time [X 7]

« Subtle deviations from homogenous grain growth

Immobile boundaries suggest importance of non-thermally activated mobility
7/29/2016 ®9
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Sandia
Model Improvements ()&=,
« Grain boundary
mobility
dependent on ¢

o Step function
3°<p <15°-M=0.01
15°<p<30°-M=0.1

30°<dp-M=1

Implementation of heterogeneous boundary mobility
® ReX&GG 2016 7/29/2016 ® 10




Future Directions () i,

« Nature of lon Inferactions

o Nuclear and electronic stopping
o Point defects and defect clusters

« Better informed GB mobility in

model

« Relationships to other driving
forces for grain growth

Ln( Mobility (m/(s GPA)))

Non-thermally activated

& mechanisms:

7} ® Thermally damped
6l Antithermal motion
5! * * B * ¥ # Athermal motion

| ! L]
ol L . Thermally activated

| = = mechanisms:
3 ® Thermally activated
2 600 800 1000 1200 1400

Temperature (K]

® ReX&GG 2016

Homer, et al, JOM, 2014.

Nanocrystalline Cu

In situ TEM:

dynamic mechanical loading

at 200 Hz

Playback at 3 x real time.

Bufford, et al, Nano Lett, 2016.
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Heating and irradiationin situ combined with
PED orientation mapping

o Analyzed and used as direct input for a phase field model
Stable grains are characteristic of known low
mobility grains

Discrepancies between experimentally
observed and modeled grain growth
attributable to GB character
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Sandia

Approach: Experimental (@)=,

\\ ‘
Experimental Theoretical Template  Point Mapped
Pattern Template Matched To IPF

« Automated diffraction

orientation mapping

o Point by point grid of
orientations mapped

o 5 nm resolution

 Analogous to EBSD
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Point diffraction data
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Approach: Modeling [ =

0X0(= D

 What is phase field modeling?

o Mathematical model for solving interfacial
problems, like solidification, growth, etc.

« Example grain growth model
o Thermodynamic free energy function
 dF=d(yA)=vydA (y: GB energy, A: GB area)
o Model for kinetics
« V=Mpyh (M: GB mobility, h: GB curvature)
o Solve at each pixel for a predetermined timestep

« See Abdeljawad and Foiles, Acta
Mater, 2015 for more information
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Can directly use experimental maps as input structures, and then compare evolutions!
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Simulated Anneal P,

® ReX&GG 2016 7/29/2016 @15



. Sandia
Model Data Analysis )&=,

20 | —<©— Anneal

« During simulated annealing — .~ Avg. Thermal Spikes
grain growth scales

approximately with T1/2
o Expected for homogenous grain growth

« During simulated irradiation,
grain growth scales with T/n,
where n = 3 o s & s 1

o Initially faster, but stagnates sooner

STSISTS TS
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Time scaling () .

dyi
. ) 2 “spike
Fraction of ion strikes that intersect grain D D 3]

. L. : Sl gpike
boundaries (thus contributing to grain growth):  fgg = e = ‘Iﬁl’ :

6
3
dD  ®x83dey | 4WVulNuv VT ()K" 07"
* Incorporation of dr N, Dky lO*n‘Cm Ko E§/3
this D term leads
to scaling
3 5/3
roportional to > nV\sr( ) kg™ O
o DD = | 12ydin xS = 5 = |
» Consistent with v “
experimental ey s
observations. 3 Var\s (5)/"}3‘ Q"
D’ =Dil=| 36vd o) ~ T3
- [ Haike X 0n Bk B

= KPr.

Kaoumi, et al, ] Appl Phys, 2008.
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