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Real-time observation during heating and irradiation at 
length scales accessible by models.

Sandia’s In situ Ion Irradiation 
TEM (I3TEM)
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• 10 kV Colutron - 200 kV TEM - 6 MV Tandem

Collaborator: D.L. Buller

Hattar, et al, Nucl Instr Meth Phys Res B, 2014.
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Olmstead, et al, Acta Mater, 2009.

• Heating to 800 °C



Annealing
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• Freestanding Au foil
o 40 nm thickness

o Annealed to 300 °C

• PED orientation mapping 
to digitize the 
microstructure
o <10 nm resolution

• Captures changes in 
structure
o Orientation

o Grain size

• Direct input for use in 
computational models



Radiation-Solid Interactions
• Energetic ion displaces one or 

more target atoms
o Frenkel (vacancy-interstitial) pair 

o Collision cascade

o Nuclear and electronic interactions
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Highly temporally and spatially localized energy 
transfer drives microstructural change.
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Schematic recoil spectra for 1 MeV 
particles in Cu. Sizes represent recoil 

energies. After Averback, J Nucl
Mater, 1994.
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In Situ Irradiation
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• Au foil during 
bombardment with 
10 MeV Si3+

• ~22 s of 4000s total 
experiment time

ReX&GG 2016Locations of single ion strikes and resulting microstructural change captured.



Quantification: Overall

• Same area characterized before and after irradiation.
o Local grain size, orientation, boundary character

o Hundreds of grains counted in minutes

7/29/2016 6

Rapid quantification of statistically relevant numbers of grains and boundaries.
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Quantification: Local

• The same grains 
identified before and 
after irradiation

• Individual grain 
boundary misorientation
angles and axes 
quantified

• Correlation of GB 
properties and radiation-
induced changes
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φ < 3°

3° ≤ φ < 15°

15° ≤ φ < 30°

30° ≤ φ

Individual grain boundary misorientation angle and axes quantified
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Simulated Irradiation

7/29/2016 8ReX&GG 2016

2× real time



Exp. & Model Comparison

• Overall scaling laws appear consistent

• Subtle deviations from homogenous grain growth
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Immobile boundaries suggest importance of non-thermally activated mobility
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Model Improvements
• Grain boundary 

mobility 
dependent on φ
o Step function 
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Implementation of heterogeneous boundary mobility

3° ≤ φ < 15° - M = 0.01

15° ≤ φ < 30° - M = 0. 1

30° ≤ φ - M = 1



Future Directions
• Nature of Ion Interactions

o Nuclear and electronic stopping

o Point defects and defect clusters

• Better informed GB mobility in 
model

• Relationships to other driving 
forces for grain growth
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Homer, et al, JOM, 2014.
Bufford, et al, Nano Lett, 2016.



Summary
• Heating and irradiation in situ combined with 

PED orientation mapping
o Analyzed and used as direct input for a phase field model

• Stable grains are characteristic of known low 
mobility grains

• Discrepancies between experimentally 
observed and modeled grain growth 
attributable to GB character
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Approach: Experimental

• Automated diffraction 
orientation mapping
o Point by point grid of 

orientations mapped

o 5 nm resolution

• Analogous to EBSD
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Experimental
Pattern

Theoretical
Template

Template
Matched

Point Mapped 
To IPF

Point diffraction data 

ReX&GG 2016



Approach: Modeling

• What is phase field modeling?
o Mathematical model for solving interfacial 

problems, like solidification, growth, etc.

• Example grain growth model 
o Thermodynamic free energy function

• dF = d(γA) = γdA (γ: GB energy, A: GB area)

o Model for kinetics

• V = Mγh (M: GB mobility, h: GB curvature) 

o Solve at each pixel for a predetermined timestep

• See Abdeljawad and Foiles, Acta
Mater, 2015 for more information
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Can directly use experimental maps as input structures, and then compare evolutions!
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Simulated Anneal
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Model Data Analysis

• During simulated annealing 
grain growth scales 
approximately with T1/2

o Expected for homogenous grain growth

• During simulated irradiation, 
grain growth scales with T1/n, 
where n ≈ 3
o Initially faster, but stagnates sooner
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Time scaling
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Fraction of ion strikes that intersect grain 
boundaries (thus contributing to grain growth):

Kaoumi, et al, J Appl Phys, 2008.

• Incorporation of 
this D term leads 
to scaling 
proportional to 
t(1/3). 

• Consistent with 
experimental 
observations.


