SAND2016- 7153C

Sandia

Exceptional service in the national interest @ National
Laboratories

Block Preconditioners for Mixed Discretization MHD
and Continuum Plasma Simulations Enabled by Teko

@
o % Edward Phillips, Eric Cyr,

Center for Computing Research John Shadid, and Ray Tuminaro

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
‘‘‘‘‘ Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5003 C

Computational Challenges in Multiphysics) e

Multiphysics systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms can:

» be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

» consist of a set of widely separated time-scales that produce a stiff system response,

* nearly balance to evolve a solution on a dynamical time-scale that is long relative to the
component time scales,

* or balance to produce steady-state behavior.

Mathematical Approach - develop:

= Stable formulations involving implicitness in time (e.g. fully-implicit or IMEX time integration) to allow resolution of
dynamical time-scale of interest

= Stable or stabilized spatial discretizations, options for physically conforming discretizations (e.g. edge elements, face
elements)

= Robust and efficient fully-coupled nonlinear/linear iterative solution methods based on Newton-Krylov (NK) methods

= Scalable and efficient preconditioners utilizing multi-level (AMG) methods (Fully-coupled AMG, physics-based,
approx. block factorization)

Three Variants of
Preconditioning

1. Domain Decomposition (Trilinos/Aztec & Ifpack)

* 1 —level Additive Schwarz DD
* ILU(k) Factorization on each processor (with overlap)
* High parallel eff., non-optimal algorithmic scalability

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee)

Fully-coupled Algebraic Multilevel methods
* Consistent set of DOF-ordered blocks at each node (e.g. Stabilized FE)
* Uses block non-zero structure of Jacobian
« Jacobi, GS, ILU(k) as smoothers
» Can provide optimal algorithmic scalability

3. Approximate Block Factorization / Physics-based (Teko package)

* Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking
» Applies to systems where coupled AMG is difficult or might fail
» Enables specialized AMG, e.g. H(grad), H(curl) to be applied to distinct discretizations.
» Can provide optimal algorithmic scalability for coupled systems

Comparison of Preconditioning Methods for MHD rh)

3D HMKH [Re =104, Rem=104, M, = 3; CFL ~0.125], SFE

FC-AMG — ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel

Ilterations vs Unknown Solve Time vs Unknown Count
200 ‘ ‘ 2048 cores 20 ‘ ‘ ‘
— ML —k ML
— |LU s |LU
0 — Split-3x3 =+ Split-3x3
O 150 ™ Split-4x4 150 == Split-4x4
)
©
)
= —_
= u
8 100} D 10
g £ (256 cores)
— [
5 Block
S ol Methods | \
E:
“é /
0 L oua— ‘ ‘ 0 : ‘ ‘
10° 10° 10° 107 108 10* 10° 10° 107 108
Number of Unknowns Number of Unknowns
Fully coupled AMG limited to Block Preconditioners

Split-3x3: 3x3 (SIMPLEC everywhere)
Preliminary Split-4x4: 4x4

co-located nodal discretizations

Block Preconditioning and Time-Scales e

Laboratories

A finite difference discretization of a 1D coupled convection-diffusion problem
~I+dD +aC cC u \ [Ry
cC +1+4dD + aC v R,

CFL,; = dh—Azt,CFLa: CLTN’C’FLC: cAt

h
LT1+dD+aC cC LT+dD +aC cC
_ At — At
PGS_(0 §I+dl)+ac> PSC_(0 S

S=xI+dD+aC —c*C(x51+dD +aC)~'C

CFL.|1072 10-! 10° 10t 107 CFL.|1072 10~t 10Y 10% 102
GS 2 3 GS 2 3 5
J 3 5 J 3 4 9
SC 2 2 2 2 2 SC 2 2 2 2 2

CFL,=1,CFLy =1

Application to Continuum Plasma Simulations)l

« Electron plasma with a background
magnetic field and density gradient

« Driven by an external current pulse

« Time-scales:
TEM = Ax/c=8 x 1078

1
T = =5x 107"
e neg?

EQMe
E_edge Magnitude
1 —1.000e+01

= —=1x10"6
Twee = 4B

Me

Teouree = 100 x 1077

 Integrated implicitly to resolve
current source

X

ITTTTTT

 Light waves are stiff and get stiffer e 000sR00 10000-1
with increased spatial resolution

Simulation run with Richard Kramer, John Niederhaus, and Gregg Radtke
I ———————

Multifluid 5-Moment Plasma Mode| @

Sandia
National _
Laboratories

OpPa _ .
Density ot + V - (paa) = ;(napbl/;_b — NpPallyy,)
a
Ilp,.ua,
Momentum % + V - (Pala @ g + Pod + I1,) = gang (E + u, x B)
— E [pa(u.:L — up)e M + ppupnail, — pauansivy,
b#a
86,1 sre
Energr Y, + V. ((Ea -+ pa.)ua -+ Ha s, + ha.) = oMU, - E + Qa
- E I:(Ta — Tp) kDL — paug - (Ma —)N T — nabhes + an;,,sa]
b#a
Charge
and q = E qrTlk — E MUy
Current k k
Density
Ma.xw?ll’s lza—E_VXB“‘IJ'OJ:O VE=1
Equations c? ot €o
% +V<XE=0 V-B=20

Nodal discretization for fluids,
Compatible discretization for
electromagnetics

Fully Discrete Two-Fluid System).

L R FON FORWAT
I;f% Dgzuz D pgi g;ue Qgi (5&; g Pglz'
e 0 ogi D Ke o | o 0 Z
Pi Pe Pele Pe
i Quic 00 DR Dy 00 1QE™|QE™ || pe.
£ ‘]‘; = D& DI De | QF 0 Ee
0 e 0 0 b0 Qx KE E
0 0 0 0 0 0 | KZ | Qs 7 B

< A
Focus on block methods that segregate oul |l plle Eld g bs

by discretization and approximate Y 7
coupling through Schur complements

« Fast waves arise from off-diagonal coupling (electromagnetic waves, plasma
waves for each species, circularly polarized waves) and can range over many
orders of magnitude

» Disparate discretizations make it difficult to apply monolithic multigrid solvers

Reblocked System) 2,

Laboratories

Qs KB 0 B Ry
KE Qp Q% E | =1| Rg
E QL Dp F Rr

= Block fluid DoFs together F = (p;, piw;, &, pe, pelle, Ee)

= Use upper triangular factor of block LU decomposition as
preconditioner

Qe Kg 0
P=| 0 Seg QF |S»=Qr-KEQ5'KE,
0 0 Sr /JSr=Dr—(Qf - QEQ5'KE)S;'QE

Fully coupled system captured in two
Schur complement approximations
and three subsolves (face, edge, node)

Sandia

Schur Complement Approximations &=,

(B Kg 0
P = 0 Sg QL |Se = Qp - K5Qp Kz,
0 0 Srp JSp=Dr—(QF-QLQ5'KE)S;'Q%

« Grad-div augmented approximation developed for Maxwell equations applied to S¢
« Shown to be robust when integrating at time-scales several orders of
magnitude slower than the speed of light

ENnN—171-B —1
- Sp~TeZ5'Qx Tp = Qp — KyQp K5 +GQ,"C'

Zp =Qp+GQ, G
« Tg and Qg solves more amenable to traditional multigrid than S¢

« SIMPLEC approximation for S¢
* Replace embedded inverses with absolute row sum inverses
» Regard as a perturbation of D¢
» Co-located degrees of freedom allow for fully coupled AMG to be applied to
this operator

Initial Weak Scaling for Electron / lon @)
Plasma Oscillation

TENM ~ 3.3 X 10713
Tu,. ~ 1.1 x 10717

Tw,; ~ 4.8 X 1077

on coarsest mesh

Error at 14.875 periods

oaop,

> > E,

2
=
o

v

Relative L2 error nori

10° b

= u Drekar RCP-U 107 L
‘o o Drekar LCP 101 102 103
10!

At = 0.1 % Twpe o Elements per wavelength
Dispersion and convergence results by
John Niederhaus and Gregg Radtke
Linearits/ |Solve time / linear Atzmp
N P Newton solve Atewp
100 1 4.18 0.2 300
200 2 4.21 0.22 600
400 4 4.27 0.23 1.2E+3
800 8 4.4 0.26 2.4E+3
1600 16 4.51 0.35 4.8E+3
3200 32 4.89 0.42 9.6E+3
6400 64 6.21 0.61 1.9e+4

Weak Scaling for 2D Problem

Number of Average Average Time

Processors Linear Per Newton
Iterations Step

16 1.02 8.2075

64 1.04 8.5362

256 1.04 8.9625

1024 1.09 9.1713

Time: 8.000e-06

120x120, 240x240, 480x480, 960x960 meshes
Approximately 22,000 DoFs per processor

Simulation made feasible
through block
preconditioning

Sandia
National _
Laboratories

Teko: A Package for)
Block Preconditioning

Part of Trilinos framework

(released in Fall 2010 in Trilinos 10.6)

Allows easy manipulation of blocks

Tool for rapid prototyping and efficient implementation

Use Trilinos solvers & preconditioners for subsolves

Easy to pull in auxiliary operators and perform algebraic

operations
Epetra || Tpetra | PETSc |IFPACKI I Belos l

Teko Example: Plasma Preconditioner

» Create a factory for your preconditioner, inheriting from the abstract
BlockPreconditionerFactory class

» Given a blocked operator, the factory builds the preconditioner as a
linear operator

// Declaration of the preconditioner factory
class PlasmaPreconditionerFactory
: public Teko::BlockPreconditionerFactory {
public:
// Function inherited from BlockPreconditionerFactory
Teko::LinearOp
buildPreconditionerOperator(Teko::BlockedLinearOp & blo,

Teko::BlockPreconditionerState & state) const;

« This factory builds the upper triangular block preconditioner

Qs Kp 0
P = 0 Sk Q% Sp=Qp — K5Q3' K5,
0 0 Sg

Sandia
National _
Laboratories

Sk = Dr — (Q% — QEQZ'KE)S,' Q%

Extracting subblocks) iz,

Laboratories

Blocking determined by physics application

<ParameterList name="Assembly">

<Parameter name="Workset Size" type="int" value="100"/>

<Parameter name="Use Tpetra" type="bool" value="true"/>

<Parameter name="Field Order" type="string" value="blocked: B_face E_edge ELECTRON_RHO_UX - ELECTRON_RHO_UY - ELECTRON_RHO_UZ - ELECTRON_DENSITY"/>
</ParameterList>

Teko::LinearOp PlasmaPreconditionerFactory
::buildPreconditionerOperator(Teko::BlockedLinearOp & blo,

Teko::BlockPreconditionerState & state) const
{

// Check that blocked operator is correct size
int rows = Teko::blockRowCount(blo);

int cols = Teko::blockColCount(blo);
TEUCHOS_ASSERT (rows==3) ;
TEUCHOS_ASSERT(cols==3);

// Extract subblocks
const Teko::LinearOp Q Teko::getBlock(®,0,blo);
K

const Teko::LinearOp K_EB Teko::getBlock(@,1,blo); jﬁijlg ()
QB E

const Teko::LinearOp K_BE = Teko::getBlock(1,0,blo);

const Teko::LinearOp Q_E = Teko::getBlock(1,1,blo); KE Q E
const Teko::LinearOp Q_FE = Teko::getBlock(1,2,blo); .E3 _ZE _Z?
const Teko::LinearOp Q_BF = Teko::getBlock(2,0,blo); E F j[)
const Teko::LinearOp Q_EF = Teko::getBlock(2,1,blo); _Z3 E F
const Teko::LinearOp D_F = Teko::getBlock(2,2,blo);

Accessing Auxiliary Operators and) s
Performing Matrix Algebra

<ParameterList name="Auxiliary Physics Blocks">

» Auxiliary operators (mass matrix and <ParaneterList nane="Plasna">
gradient) assembled by physics application| ™ e vpesiri i s e
» Accessed through request handler object Purinetsr N-"ELE JHIE" TS VT

<Parameter name="Integration Order" type="int" value="2"/>
</ParameterList>

<ParameterList>
<Parameter name="Type" type="string" value="Auxiliary Weak Gradient"/>
<Parameter name="Scalar Name" type="string" value="AUXILIARY_NODE"/>

 Easy functions for transpose, extracting e
inverse diagonal operators, adding and py Faraneter nane="Integration Order* type="int" value="2"/>
mUItipIying Operators </ParameterList>

</ParameterList>

// Grab auxiliary operators
const Teko::LinearOp Q_rho
const Teko::LinearOp G
const Teko::LinearOp Gt

getRequestHandler()->request<Teko::LinearOp>(Teko: :RequestMesg("Mass Matrix"));
getRequestHandler()->request<Teko::LinearOp>(Teko: :RequestMesg("Weak Gradient"));
Teko::explicitTranspose(G);

nmnn

// Construct electric field Schur complement
const Teko::LinearOp idQ_B Teko::getInvDiagonalOp(Q_B,Teko: :AbsRowSum);
const Teko::LinearOp S_E Teko::explicitAdd(Q_E,Thyra::scale(-1.0,Teko::explicitMultiply(K_BE, idQ_B,K_EB)));

// Grad-div augmentation
const Teko::LinearOp idQ_rho
const Teko::LinearOp GGt
const Teko::LinearOp T_E
const Teko::LinearOp Z_E

Teko::getInvDiagonalOp(Q_rho,Teko: :AbsRowSum);
Teko::explicitMultiply(G, idQ_rho,Gt);

Teko::explicitAdd(S_E,GGt);
Teko::explicitAdd(Q_E,GGt);

1 Ty =Qp — KpQp Ki +GQ, G’
f;E;Fd 1};2357 C?f; 1t
// Construct fluids Schur complement Zg :QE—I-GQp G

Laboratories

Building Approximate Inverses) B

// Build inverses

Teuchos: :RCP<const Teko::InverseLibrary> invLib
Teuchos: :RCP<Teko::InverseFactory> invQB_Factory invLib->getInverseFactory("MuelLu Q_B");
Teuchos: :RCP<Teko::InverseFactory> invTE_Factory invLib->getInverseFactory("MuelLu T_E");
Teuchos: :RCP<Teko::InverseFactory> invSF_Factory invLib->getInverseFactory("MueLu S_F");
const Teko::LinearOp invQB = Teko::buildInverse("invQB",*invTE_Factory,Q_B);

const Teko::LinearOp invTE Teko::buildInverse("invTE",*invTE_Factory,T_E);

const Teko::LinearOp invSF Teko::buildInverse("invSF",*invTE_Factory,S_F);

const Teko::LinearOp invQE Teko::getInvDiagonalOp(Q_E, Teko: :AbsRowSum);

1}

getInverseLibrary();

<ParameterList name="MuelLu Q_B">
° InverSeS Constructed from <Parameter name="Type" type="string" value="MueLu-Tpetra"/>
. . <Parameter name="verbosity" type="string" value="high"/>
user supphed parameter lists <Parameter name="number of equations" type="int" value="1"/>
<Parameter name="max levels" type="int" value="10"/>
<Parameter name="multigrid algorithm" type="string" value="unsmoothed" />
<Parameter name="sa: use filtered matrix" type="bool" value="true"/>
. . <Parameter name="sa: damping factor" type="double" value="0.0"/>
) ACCGSS to multlgrld (ML <Parameter name="coarse: max size" type="int" value="1000" />
) <Parameter name="coarse: type" type="string" value="KLU2" />
H <Parameter name="transpose: use implicit" type="bool" value="false"/>
MUGLU), Incomplete <Parameter name="problem: symmetric" type="bool" value="true"/>
&l mmmsssmsmssssss== AGGREGATION ==s=ssmscscsssseo= o
faCtorlzatlonS (IFPACK), <Parameter name="aggregation: type" type="string" value="uncoupled" />
. <Parameter name="aggregation: drop scheme" type="string" value="classical"/>
dlrect SOIVeS (AmeSOS)’ <Parameter name="aggregation: drop tol" type="double" value="8.0"/>
<lem ================= SMO0THERS ================= —_>
Krylov methOdS (AZteC, <Parameter name="smoother: pre or post" type="string" value="both"/>
. . <Parameter name="smoother: type" type="string" value="RELAXATION" />
BG'OS) through Stratlmlkos <ParameterList name="smoother: params">
<Parameter name="relaxation: type" type="string" value="Gauss-Seidel"/>
H “1: <Parameter name="relaxation: sweeps" type="int" value="5"/>
InterfaCe tO TrllanS paCkageS <Parameter name="relaxation: damping factor" type="double" value="1"/>
</ParameterList>
</ParameterList>
<!=- end "MueLu Q_B -->

National

Constructing the Preconditioner) .

« Convenient functions for constructing block upper, lower, and diagonal inverse
operators

« Just provide the block diagonal inverse operators (approximate inverses of Schur
complement approximations) and the off-diagonal blocks

// Build inverse diagonal
std::vector<Teko::LinearOp> invDiag(3);

invDiag[@] = invQB;
invDiag[1] = Teko::multiply(invQE,Teko::multiply(invTE,Z_E));
invDiag[2] = invSF;
— — 1 E—11-B —T At
// Construct block upper triangular operator Sk %TEZ;;lQE Tp=Qp - KpQp Kp +GQ, G

Teko::BlockedLinearOp U = Teko::createBlockedOp(); ZE::(QE—FCRleGﬁ

Teko: :beginBlockFill(Uu,3,3);

{
Teko::setBlock(9,0,U,Q_B); (;2 B
Teko: :setBlock(®,1,U,K_EB); B KE 0
Teko: :setBlock(1,1,U,S_E); L F
Teko::setBlock(1,2,U,Q_FE); 7) — O SE’ F

Teko::setBlock(2,2,U,S_F);

} B 0 0 SF

Teko::endBlockFill(U);

// Build preconditioner inverse
return(Teko::createBlockUpperTriInverseOp(U, invDiag));

Summary)

= Multiphysics result in difficult linear systems with many
coupled fields and fast time-scales leading to stiff modes

= Preconditioning is particularly challenging when disparate
discretizations are used and fast time-scales are associated
with off-diagonal couplings

= Block preconditioners are attractive in this situation

= Effectiveness of block preconditioning was shown for mixed a
discretization multifluid continuum plasma model

= The Teko package is a powerful tool that allows user friendly
definition of block preconditioners as well as efficient
implementation

