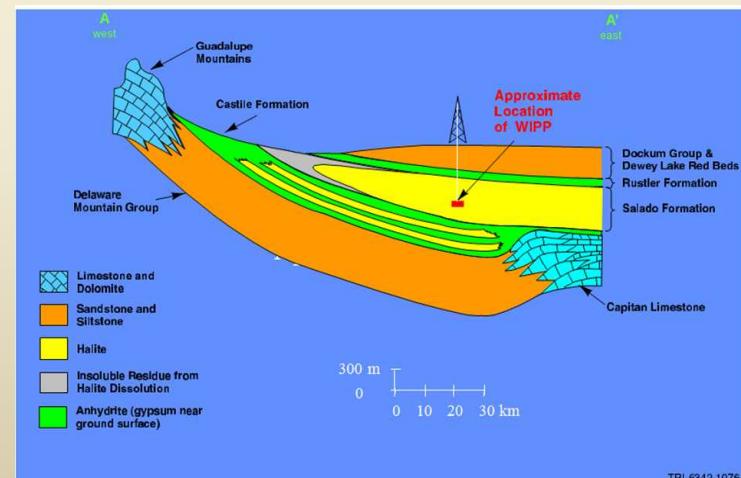


Exceptional service in the national interest

Experimental Determination of Solubilities of Brucite [Mg(OH)₂(cr)] In Na₂SO₄ Solutions with Borate to High Ionic Strength: Formation Constant for MgSO₄(aq) and Pitzer Interaction Parameters for MgB(OH)₄⁺—SO₄²⁻

17th International Symposium on Solubility Phenomena and Related Equilibrium
Processes (ISSP), July 24-29, 2016, Geneva, Switzerland

Yongliang Xiong, Leslie Kirkes, Cassie Marrs, Justin Dean, Jandi Knox


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This research is funded by the WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

INTRODUCTION

- Industrial grade magnesium oxide (MgO) is the only engineered barrier certified by EPA for emplacement in the Waste Isolation Pilot Plant (WIPP). MgO hydrates as brucite $[\text{Mg}(\text{OH})_2(\text{cr})]$ [1].
- $\text{Mg}(\text{OH})_2$ -based engineered barrier for the Asse repository, Germany [2].
- Sulfate is a major species in natural brines:
 - The sulfate concentrations in the WIPP brines
 - Generic Weep Brine (GWB): $0.203 \text{ mol}\cdot\text{kg}^{-1}$ and
 - U.S. Energy Research and Development Administration Well 6 (ERDA-6): $0.187 \text{ mol}\cdot\text{kg}^{-1}$ [1]
 - The sulfate concentrations in the Q-brine at the Asse: $0.2 \text{ mol}\cdot\text{kg}^{-1}$ [2]
 - In the low level and intermediate level radioactive sulfate liquid waste (LLW and ILW), they are very rich in SO_4^{2-} , up to $2.2 \text{ mol}\cdot\text{kg}^{-1}$ [3].

[1] Y.-L. Xiong, A.C. Lord, Experimental investigations of the reaction path in the $\text{MgO}-\text{CO}_2-\text{H}_2\text{O}$ system in solutions with various ionic strengths, and their applications to nuclear waste isolation, *Applied Geochemistry*, Vol.23, p. 1634, 2008.

[2] Schuessler et al., 2002. Materials Research Society Meeting at Boston, MA

[3] A. Guerrero, S. Goni, M.-S. Hernandez, 2000. Thermodynamic solubility constant of $\text{Ca}(\text{OH})_2$ in simulated radioactive sulfate liquid waste. *Journal of American Ceramics Society*, Vol. 83, p. 882, 2000.

INTRODUCTION (Continued)

- When magnesium alloys such as AZ91D and AZ30 are corroded in sulfate solutions, brucite forms [4-6].
 - Accurate knowledge of brucite solubility in sulfate solutions will provide a better understanding of corrosion behavior.
- Portland cement pastes are subject to $MgSO_4$ solution attack by formation of brucite [7].
 - Accurate knowledge of brucite solubility in sulfate solutions will provide a better understanding of sulfate attack to cement.
- Borate forms an aqueous complex with Mg^{2+} , $MgB(OH)_4^+$, which could increase solubility of brucite
- Solubilities of brucite in NaCl solutions have been well established, and they can serve as baseline solubilities.
- Accurate knowledge of brucite solubility in sulfate-bearing solutions will impact a wide range of fields.
- In this work, we investigate solubilities of brucite in Na_2SO_4 solutions in the presence of borate, with a wide range of ionic strengths up to $5.4 \text{ mol}\cdot\text{kg}^{-1}$ under well-constrained conditions.

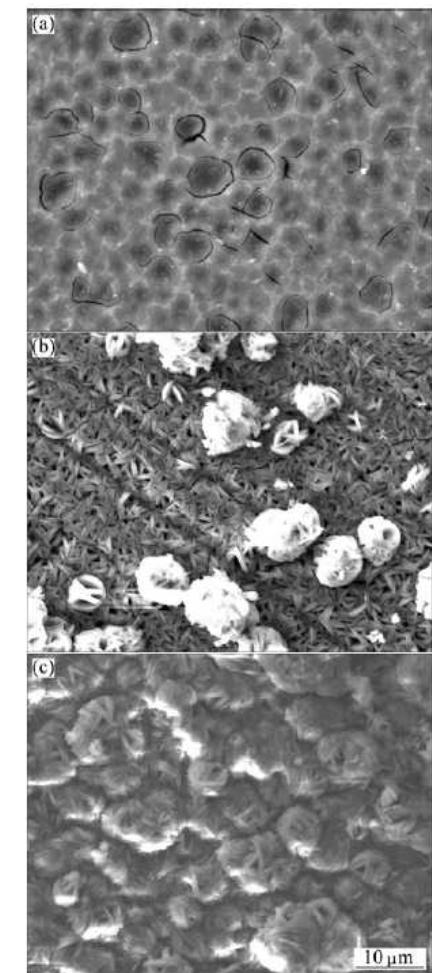


Fig 8 SEM images of specimens immersed in Na_2SO_4 solution with pH 9 for various time: (a) 96 h; (b) 330 h; (c) 480 h

Tian et al. (2011)

[4] Yang, L.J., Wei, Y.H., Hou, L.F. and Zhang, D., 2010. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. *Corrosion Science*, 52(2), pp.345-351.

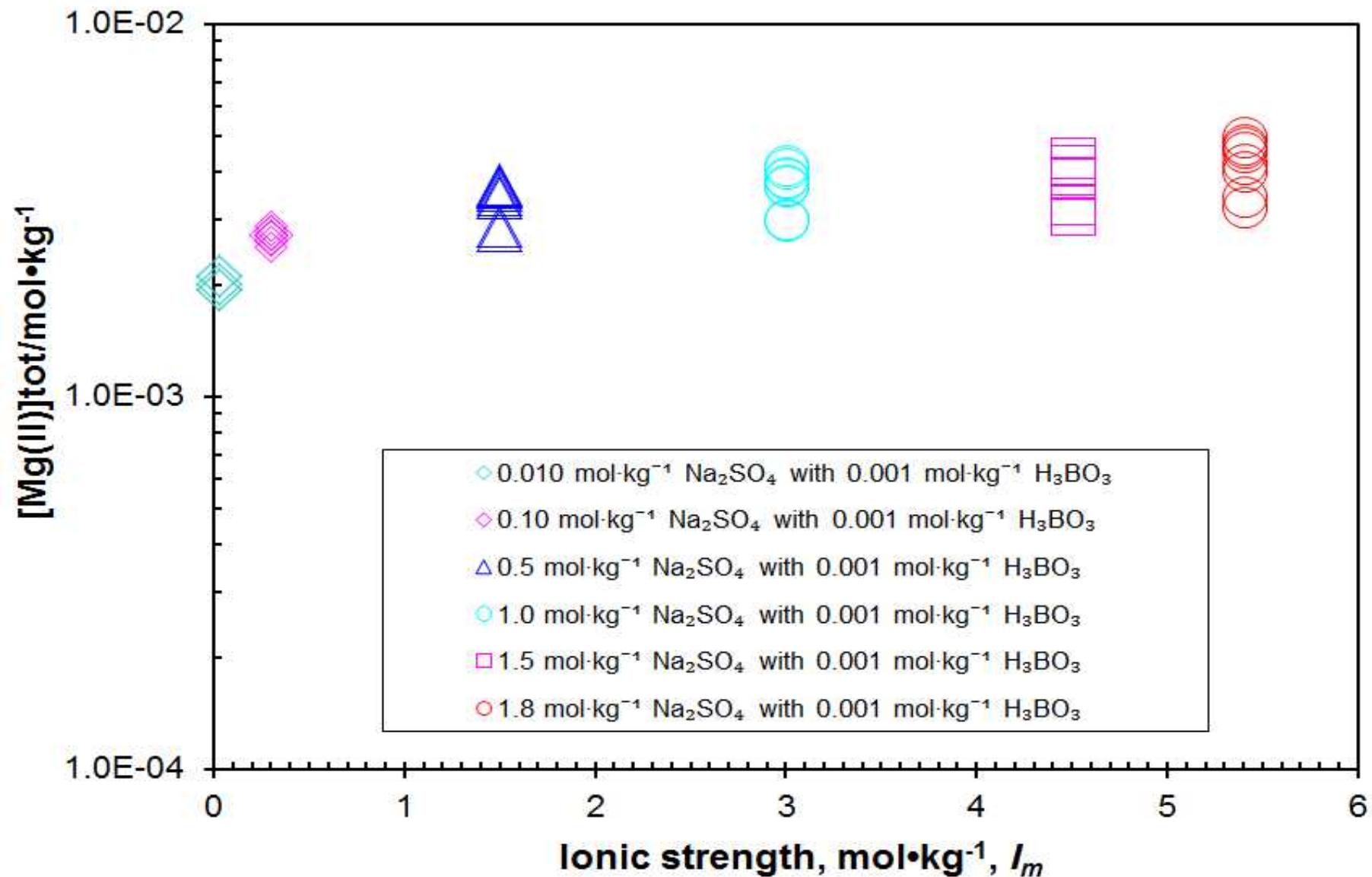
[5] Zeng, R.C., Hu, Y., Guan, S.K., Cui, H.Z. and Han, E.H., 2014. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. *Corrosion Science*, 86, pp.171-182.

[6] Tian, Y., Yang, L.J., Li, Y.F., Wei, Y.H., Hou, L.F., Li, Y.G. and Murakami, R.I., 2011. Corrosion behaviour of die-cast AZ91D magnesium alloys in sodium sulphate solutions with different pH values. *Transactions of Nonferrous Metals Society of China*, 21(4), pp.912-920.

[7] Santhanam, M., Cohen, M.D. and Olek, J., 2001. Sulfate attack research—whither now?. *Cement and concrete research*, 31(6), pp.845-851.

PURPOSE OF THIS STUDY

- To measure solubility of $\text{Mg}(\text{OH})_2(\text{cr})$ in Na_2SO_4 solutions with borate to high ionic strengths at 22.5°C.
- To investigate the interactions of $\text{MgB}(\text{OH})_4^+$ with sulfate, in addition to the interactions of magnesium with sulfate.
- To develop a Pitzer model to describe solubilities of brucite in Na_2SO_4 solutions in the presence of borate, with high ionic strengths
 - Fundamental understanding of brucite solubility behavior in Na_2SO_4 solutions


EXPERIMENTAL METHOD

- DI water for making supporting solutions: CO_2 are removed by following the procedure of Wood et al. [8].
- Experimental conditions: $T = 22.5^\circ\text{C}$
- Starting material: Synthetic $\text{Mg}(\text{OH})_2(\text{cr})$ from Fisher Scientific
- pH_m are determined by applying correction factors to pH readings obtained using a pH meter.
 - $\text{pH}_m = \text{pH}_{\text{ob}} + A_m = \text{pH}_{\text{ob}} + A_M - \log \Theta$
- $\text{Mg}(\text{II})$ concentrations are analyzed using ICP-AES.
- Na concentrations are analyzed using ICP-AES.
- Sulfate concentrations are analyzed using IC.
- Approaching equilibrium from undersaturation.
- Supporting solutions: 0.01 to 1.8 $\text{mol} \cdot \text{kg}^{-1}$ Na_2SO_4 with 0.001 $\text{mol} \cdot \text{kg}^{-1}$ H_3BO_3

[8] S.A. Wood, D.A. Palmer, D.J. Wesolowski, and P. Bénézeth, In Hellmann, R. and Wood, S.A., ed., Special Publication 7, The Geochemical Society, pp. 229–256, 2002.

Experimental Results: As a function of I_m

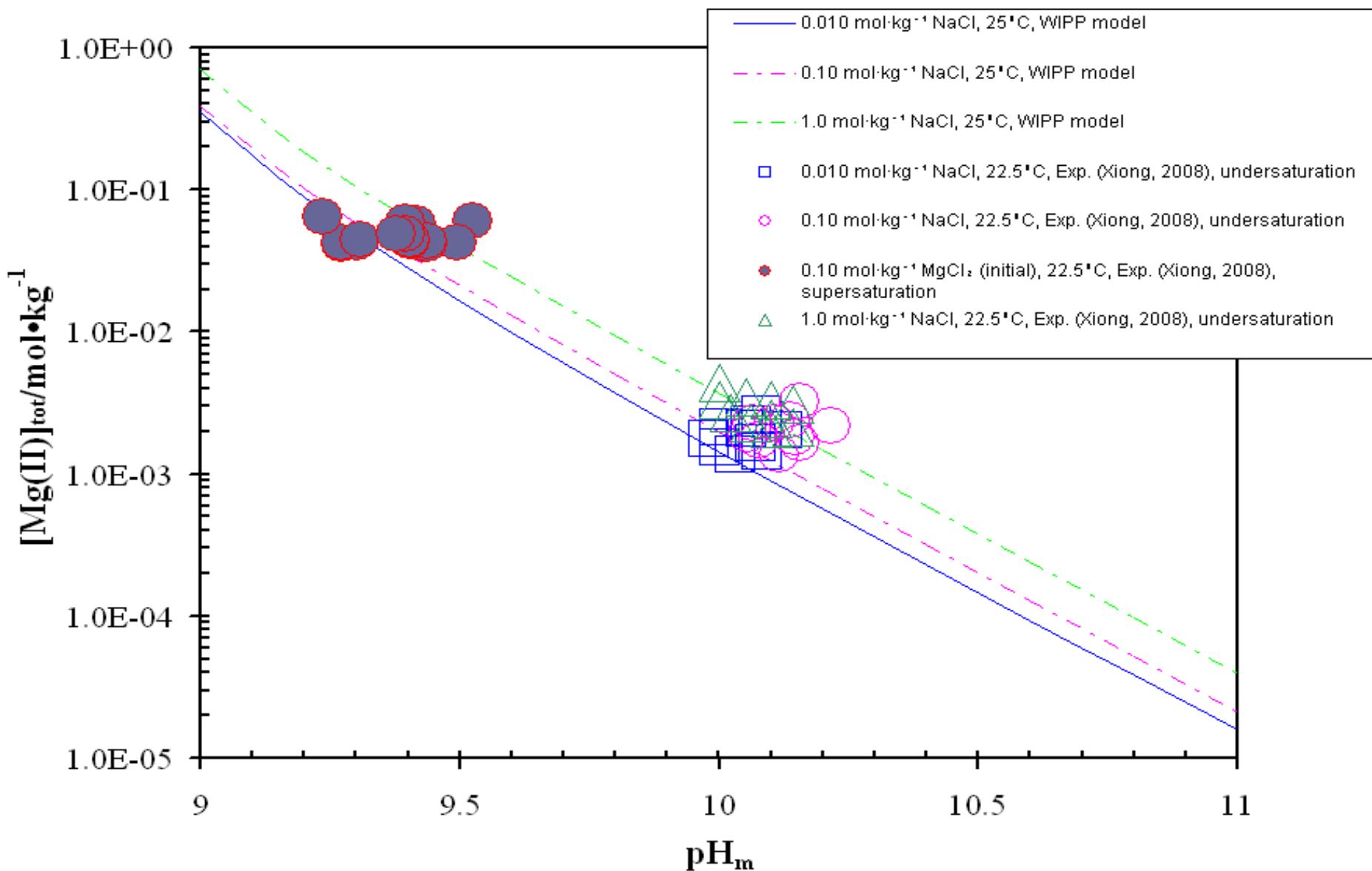
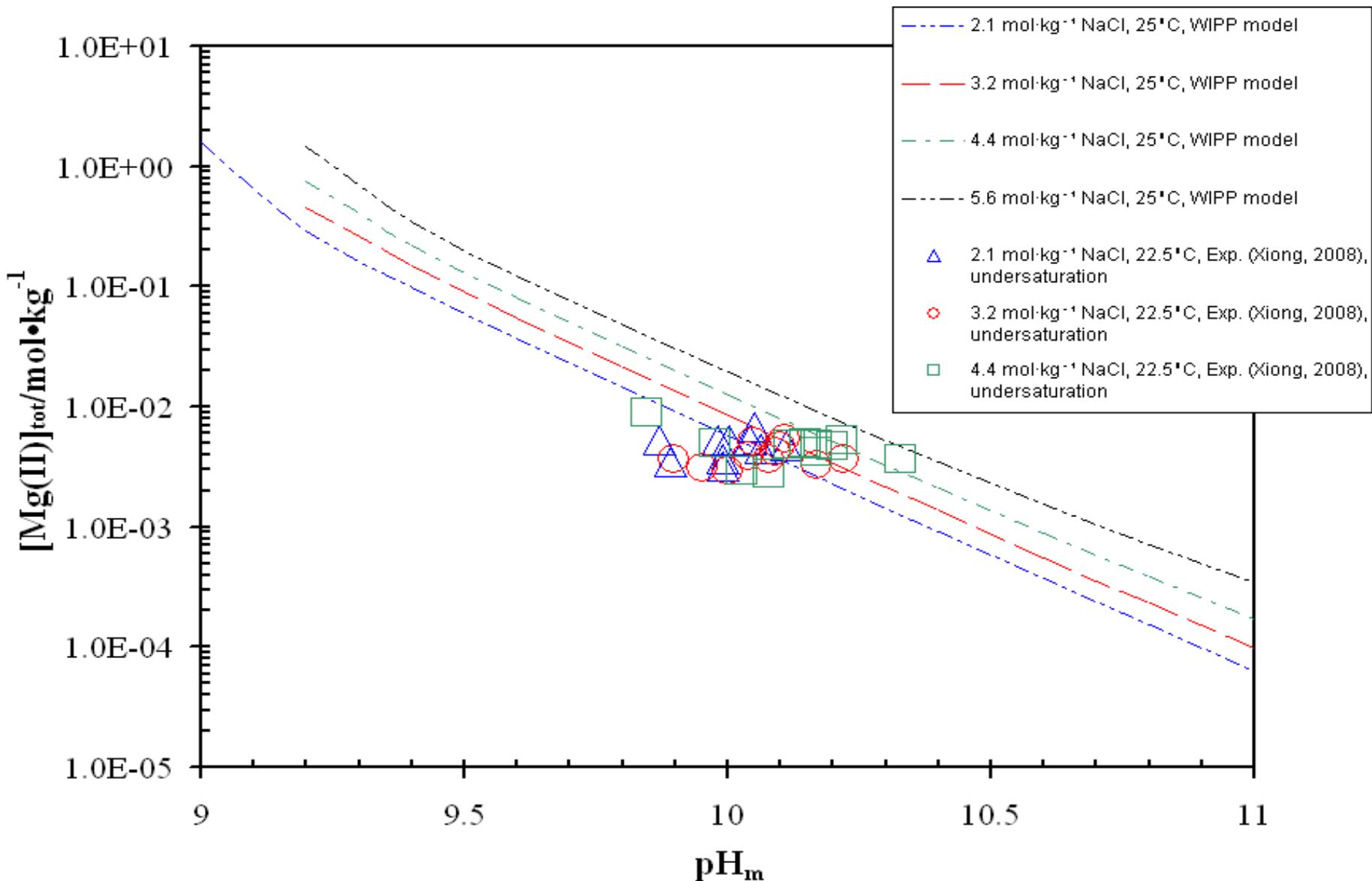

Baseline Solubility of Brucite in NaCl Solutions

Table 1. Key parameters describing solubility of brucite in NaCl solutions at 25°C (from the WIPP thermodynamic database, data0.fm1)


Pitzer Binary Parameters				
Species, <i>i</i>	Species, <i>j</i>	$\beta^{(0)}$	$\beta^{(1)}$	C^ϕ
Na ⁺	Cl ⁻	0.0765	0.2664	0.00127
Mg ²⁺	Cl ⁻	0.35235	1.6815	0.00519
MgOH ⁺	Cl ⁻	-0.30	1.658	0
Na ⁺	OH ⁻	0.0864	0.253	0.0044
Pitzer Mixing Parameters				
Species, <i>i</i>	Species, <i>j</i>	Species, <i>k</i>	θ_{ij}	Ψ_{ijk}
Mg ²⁺	MgOH ⁺	Cl ⁻	0	0.028
Mg ²⁺	Na ⁺	Cl ⁻	0.07	-0.012
Equilibrium constants at infinite dilution for dissolution reaction of brucite and dissociation reaction of MgOH ⁺				
Reactions		$\log K^0$		
$\text{Mg(OH)}_2(\text{cr}) + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O}(\text{l})$		17.1090		
$\text{Mg(OH)}_2(\text{cr}) + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O}(\text{l})$		17.05 ^A		
$\text{MgOH}^+ + \text{H}^+ = \text{Mg}^{2+} + \text{H}_2\text{O}(\text{l})$		11.8091		

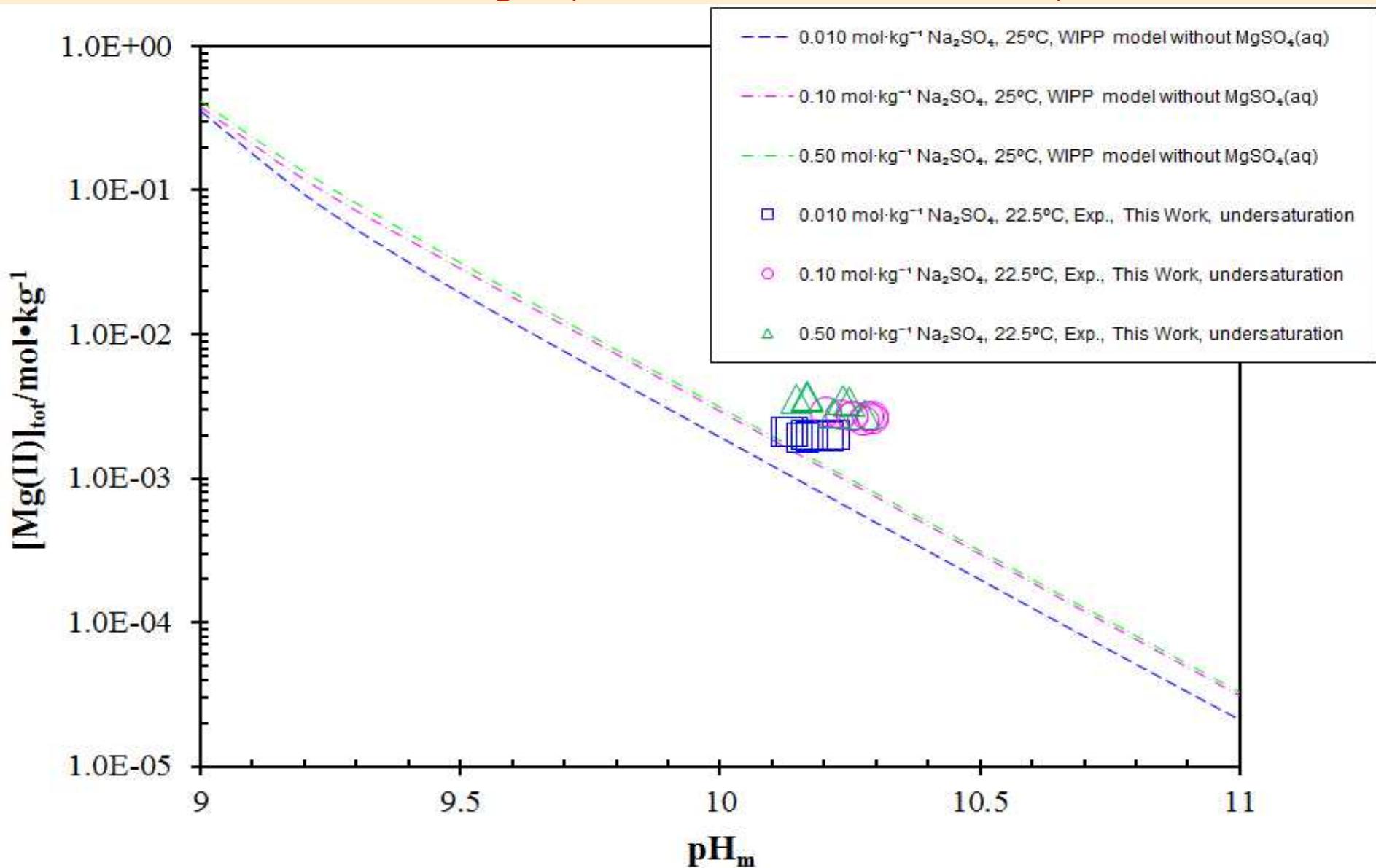
^A Xiong, Y.-L., 2008. Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation. *Aquatic Geochemistry*, 14: 223–238.

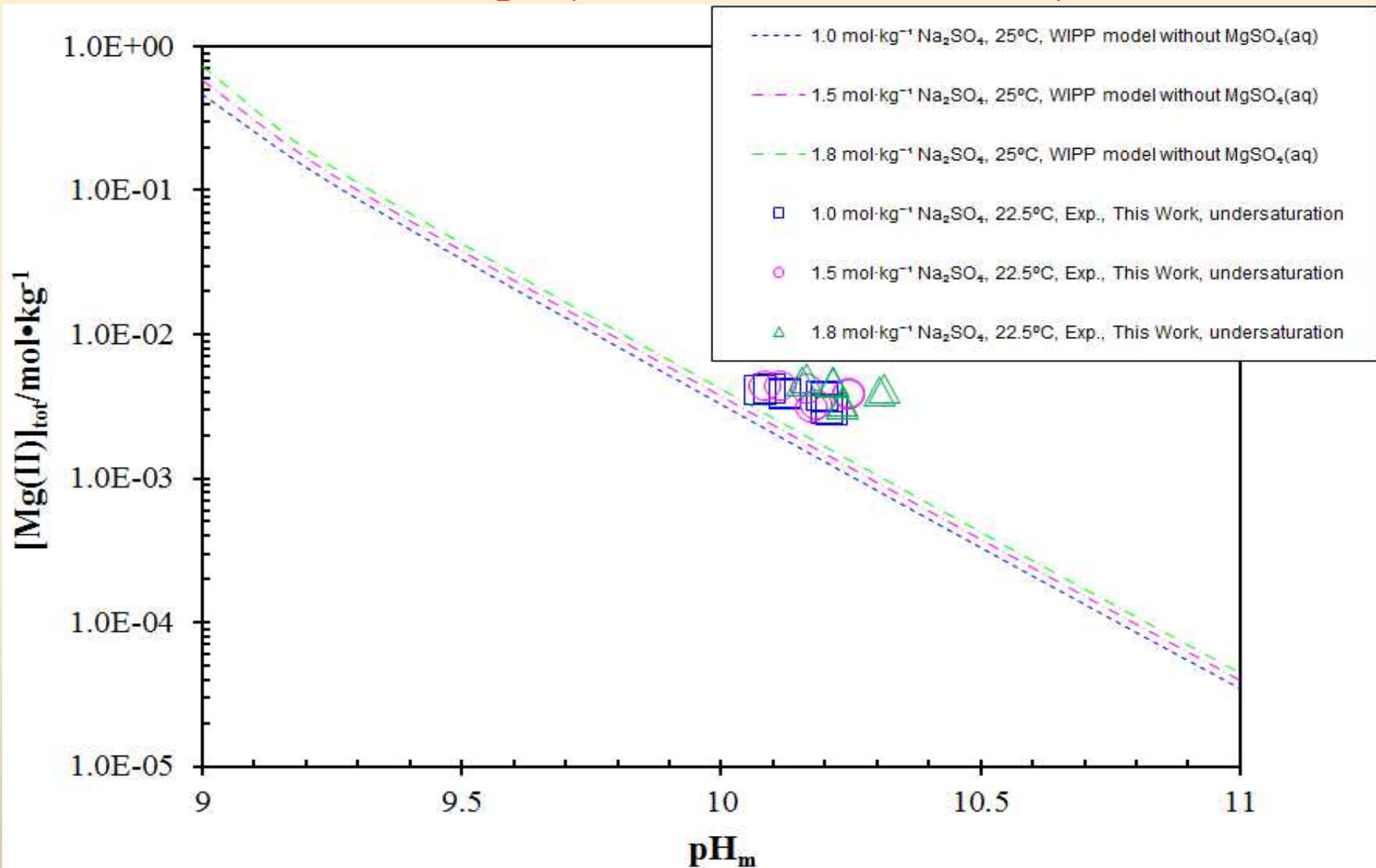
Baseline Solubility of Brucite in NaCl Solutions (continued)

Baseline Solubility of Brucite in NaCl Solutions (continued)

Solubility of Brucite in Na_2SO_4 Solutions without $\text{MgSO}_4\text{(aq)}$

Table 2. Key parameters describing solubility of brucite in Na_2SO_4 solutions with borate at 25°C (from the WIPP thermodynamic database, data0.fm1)


Pitzer Binary Parameters				
Species, i	Species, j	$\beta^{(0)}$	$\beta^{(1)}/\beta^{(2)}$	C^ϕ
Mg^{2+}	SO_4^{2-}	0.221	3.343/-37.23	0.025
Na^+	SO_4^{2-}	0.01958	1.113	0.00497
Na^+	OH^-	0.0864	0.253	0.0044
Pitzer Mixing Parameters				
Species, i	Species, j	Species, k	θ_{ij}	Ψ_{ijk}
Mg^{2+}	Na^+	SO_4^{2-}	0.07	-0.015


Equilibrium constants at infinite dilution for dissolution reaction of brucite and dissociation reactions of MgOH^+ and $\text{MgB}(\text{OH})_4^+$	
Reactions	$\log K^0$
$\text{Mg}(\text{OH})_2(\text{cr}) + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O}(\text{l})$	17.1090
$\text{Mg}(\text{OH})_2(\text{cr}) + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O}(\text{l})$	17.05 ^A
$\text{MgOH}^+ + \text{H}^+ = \text{Mg}^{2+} + \text{H}_2\text{O}(\text{l})$	11.8091
$\text{MgB}(\text{OH})_4^+ = \text{Mg}^{2+} + \text{B}(\text{OH})_4^-$	-1.3993

^A Xiong, Y.-L., 2008. Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation. *Aquatic Geochemistry*, 14: 223–238.

Solubility of Brucite in Na_2SO_4 Solutions without $\text{MgSO}_4(\text{aq})$

Solubility of Brucite in Na_2SO_4 Solutions without $\text{MgSO}_4(\text{aq})$

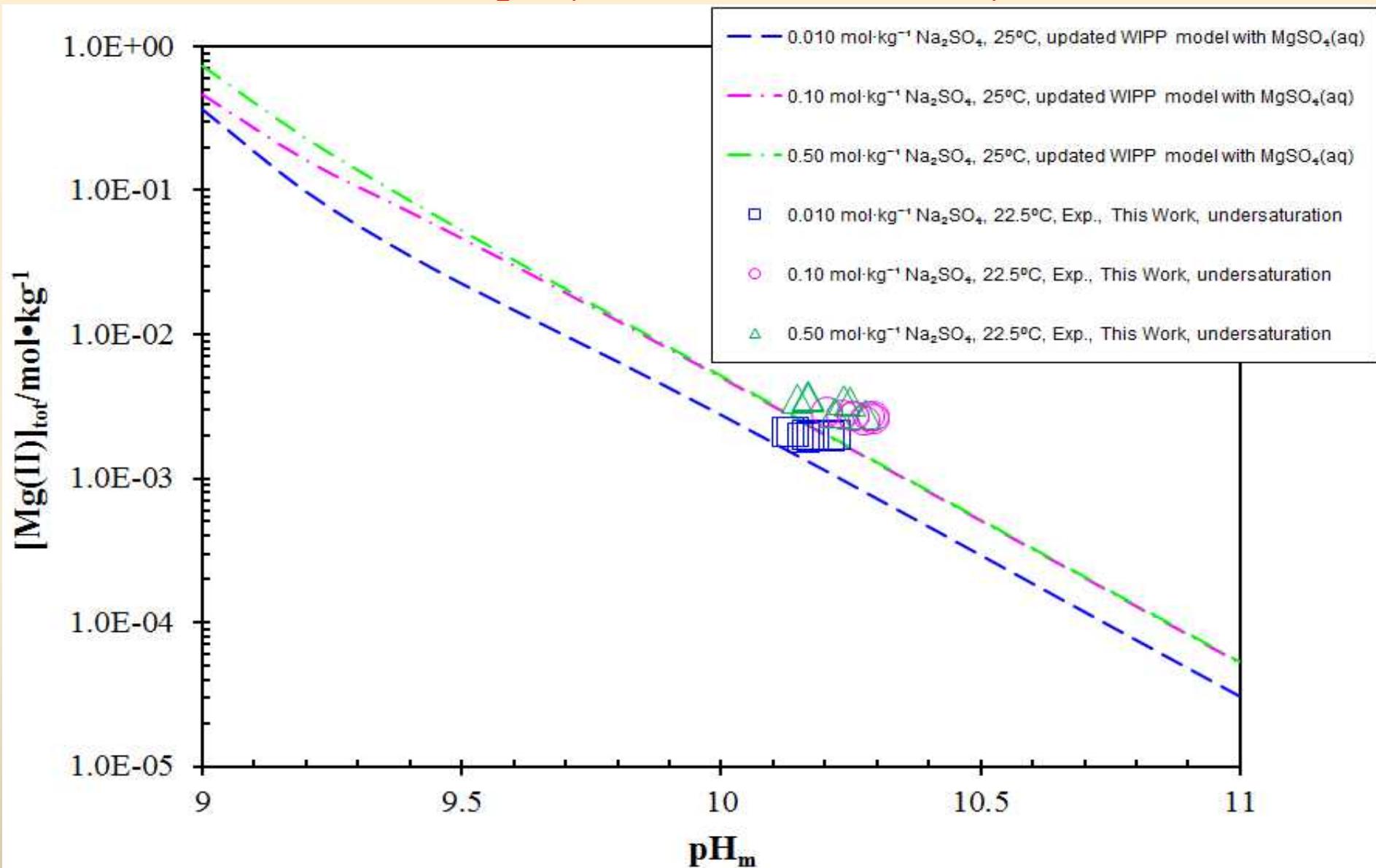
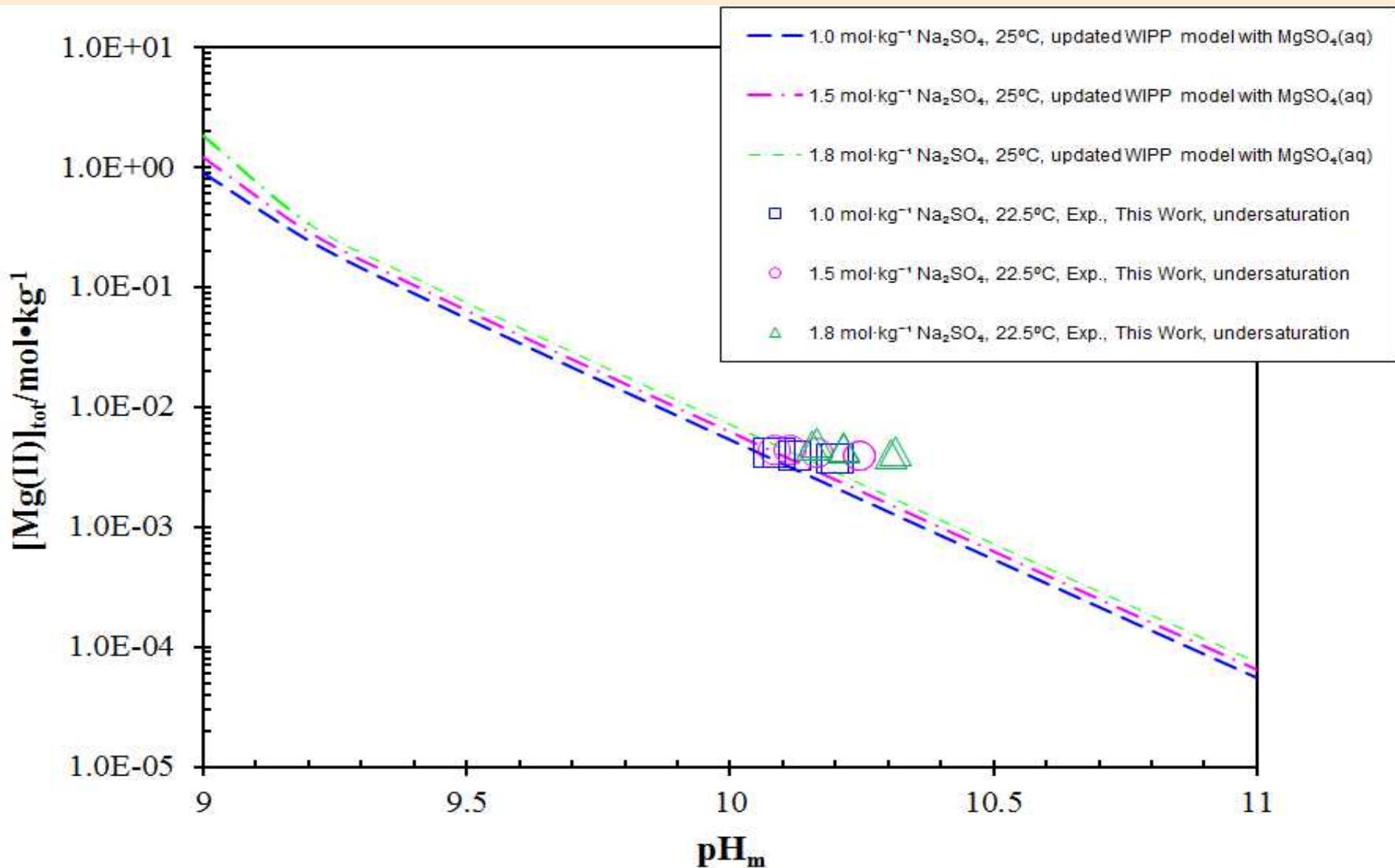

Solubility of Brucite in Na_2SO_4 Solutions with $\text{MgSO}_4\text{(aq)}$

Table 3. Key parameters describing solubility of brucite in Na_2SO_4 solutions with borate and $\text{MgSO}_4\text{(aq)}$ at 25°C (from the updated WIPP thermodynamic database, data0.fm2)


Pitzer Binary Parameters				
Species, i	Species, j	$\beta^{(0)}$	$\beta^{(1)}/\beta^{(2)}$	C^ϕ
Mg^{2+}	SO_4^{2-}	0.221	3.343/-37.23	0.025
Na^+	SO_4^{2-}	0.01958	1.113	0.00497
Na^+	OH^-	0.0864	0.253	0.0044
MgB(OH)_4^+	SO_4^{2-}	0.7806	1.74	0
Pitzer Mixing Parameters				
Species, i	Species, j	Species, k	θ_{ij}	Ψ_{ijk}
Mg^{2+}	Na^+	SO_4^{2-}	0.07	-0.015
Na^+	MgB(OH)_4^+		-0.2975	
Equilibrium constants at infinite dilution for dissolution reaction of brucite and dissociation reactions of MgOH^+ , MgB(OH)_4^+ and $\text{MgSO}_4\text{(aq)}$				
Reactions	$\log K^0$			
$\text{Mg(OH)}_2\text{(cr)} + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O(l)}$	17.1090			
$\text{Mg(OH)}_2\text{(cr)} + 2\text{H}^+ = \text{Mg}^{2+} + 2\text{H}_2\text{O(l)}$	17.05 ^A			
$\text{MgOH}^+ + \text{H}^+ = \text{Mg}^{2+} + \text{H}_2\text{O(l)}$	11.8091			
$\text{MgB(OH)}_4^+ = \text{Mg}^{2+} + \text{B(OH)}_4^-$	-1.3993			
$\text{MgSO}_4\text{(aq)} = \text{Mg}^{2+} + \text{SO}_4^{2-}$	-2.38			

^A Xiong, Y.-L., 2008. Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation. *Aquatic Geochemistry*, 14: 223–238.

Solubility of Brucite in Na_2SO_4 Solutions with $\text{MgSO}_4\text{(aq)}$

Solubility of Brucite in Na_2SO_4 Solutions with $\text{MgSO}_4(\text{aq})$

MgSO₄(aq): Comparison with the literature data

- Kratsis et al. (2001)
 - Potentiometric study of association constants for MgSO₄(aq)
$$\text{Mg}^{2+} + \text{SO}_4^{2-} = \text{MgSO}_4(\text{aq})$$
 - CsCl, up to 6.0 mol•dm⁻³
 - Magnesium ion-selective electrode
 - Extended Debye-Hückel equation for extrapolation
 - $\log \beta^0 = 2.38 \pm 0.03$
- The $\log \beta^0$ obtained in this work via modeling solubility of brucite in Na₂SO₄ with borate
 - Excellent agreement with Kratsis et al. (2001)

Kratsis, S., Hefter, G., May, P., 2001. Potentiometric Study of the Association of Magnesium and Sulfate Ions at 25°C in High Ionic Strength Media. *Journal of Solution Chemistry*, 30:19-29

Summary

- Solubility experiments concerning brucite have been conducted at Sandia National Laboratories Carlsbad Facility
 - in 0.01 to 1.8 mol•kg⁻¹ Na₂SO₄ with 0.001 mol•kg⁻¹ borate (initially as H₃BO₃) at 22.5°C.
- The updated WIPP model developed based on our experimental data
 - can accurately predict solubility of brucite in sulfate solutions to high ionic strengths.
 - It would have a wide range of applications such as:
 - Nuclear waste management (e.g., WIPP, Asse)
 - Portlandite cement degradation by attack from MgSO₄ solutions
 - Corrosion of magnesium-based alloys in sulfate solutions