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• DOE/Fuel Cell Technologies Office
• DOE/SunShot Initiative
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Outline

 Challenges for material characterization and evaluation.
 Standard protocols for measuring data need development

 Temperature and O2 partial pressure ranges too narrow

 Sample purity and experimental methods always in question

 Benchmarked protocols for extracting properties need development

 Thermodynamic and kinetic properties

 Extracting thermodynamic properties from (T, ���, ) data.

 van’t Hoff approximation with or without invoking defect models

 Apply arbitrary or “informed” -dependence

 CALPHAD (very rigorous!)

 Model-free approach to analyzing (T, ���, ) data.

 H(, T) and S(, T) derived from equilibrium response surface

 US Government investments in solar H2 production.
 HydroGen Consortium and H2@Scale
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Solar powered two-step thermochemical water-
splitting cycle to produce H2 (STCH)
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Cycle conditions and system metrics:

MW scale concentrating 
solar power facilities 

provide heat before making 
electricity

MW scale concentrating 
solar power facilities 

provide heat before making 
electricity

Reduction Temperature (Thigh) <2000ºC

“O” activity in reduction (plow) gas < solid

Oxidation Temperature (Tlow) debated

“O” activity in oxidation (phigh) gas > solid

H2 production rate 50-100mt/day

Solar-to-H2 conversion efficiency >25%

H2 production cost (US DOE) $3/gge at plant gate

• The challenge is to develop efficient and scalable solar-
powered reduction receivers and water-splitting reactors.

• The challenge is to develop efficient and scalable solar-
powered reduction receivers and water-splitting reactors.
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Technological challenges for materials

 Redox thermodynamics and kinetics.
 Critical to reactor design and efficient operation

 Large, reversible oxygen deficiency (reduction 
extent)

 Fast redox rates and matched to solar flux

 Stability and long-term durability of redox 
active ceramic structures.
 Cycle life  300,000 cycles (10 year life)

 heating rates (1000C/min)

 Compatibility with materials of construction

 Earth abundant and easy to manufacture.
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Miller et. al, Advanced Energy Materials 2013, DOI:10.1002/aenm.201300469
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H(;T) to model reactor efficiency
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requires high-quality 
experimental data over 
sufficient PO2-T- range.

“O” activity in reduction (plow) gas < solid

“O” activity in oxidation (phigh) gas > solid

• No a priori assumptions about 
material defect behavior required to 
model reactor efficiency.

• No a priori assumptions about 
material defect behavior required to 
model reactor efficiency.

challenged to measure PO2-T-
@ low T, low PO2
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Mapping the PO2-T- space

 Measure oxygen defect concentration () in non-stoichiometric 
oxides as a function of PO2 and Temperature.
 Thermogravimetry (TGA), coulometric titration, other methods?
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M. Zinkevich et al., Solid State Ionics. 177, 989–1001 (2006).

CeO2 La0.6Sr0.4MnO3 (LSM40)

A. N. Grundy et al., Calphad. 28, 191–201 (2004).
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H(): from van’t Hoff to CALPHAD

 Invoke assumptions about 
defect behavior.
 Species [], reactions, Keq’s, etc.

 Linearize system then use 
slopes and/or intercepts. 

 Combine all reported phase 
behavior.
 Various approximations for 

phase-dependent G’s

 G’s are additive
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M. Zinkevich et al., Solid State Ionics. 177, 989–1001 (2006).R. J. Panlener et al., Journal of Physics and 
Chemistry of Solids. 36, 1213–1222 (1975).

van’t Hoff CALPHAD

CERIA
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CALPHAD rigor is a lost art
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M. Zinkevich et al., Solid State Ionics. 177, 989–1001 (2006).

~ 50 independent observations!~ 50 independent observations!

CERIA

species, phases, and 
governing equations
species, phases, and 
governing equations
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Comparing analysis methods using CALPHAD 
as ground truth

 Good agreement for the 
“best-known” system.

 Poor agreement for a 
well-known system.
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C.-K. Yang et al., Journal of Materials Chemistry A (2014).
M. Takacs et al., Acta Materialia. 103, 700–710 (2016).

CeO2
LSM40
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Reactions measured at fixed T and ���

 What we refer to as H(;T) and S(;T) is really:

∆H ; � = lim
��

���� ��;� ����� ;�
�

+
�

�
���,� �

����� ; �

�
=
���� ��

��
���
�

�	�
��

��
	−
�

�
���,� �

∆S ; � = lim
��

���� + �; � − ���� ; �

�
+
1

2
���,� �; ��� ; �

����� ;�
�

=
��	� �� ��

���
�

�	� �� �
��
�

−
�

�
���,� �;��� ; �

11

• Enthalpy and entropy of reaction (incremental change in ) are local 
partial derivatives of the same function.

• Enthalpy and entropy of reaction (incremental change in ) are local 
partial derivatives of the same function.
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Knowing O2 gas properties and equilibrium 

 Fit a two dimensional response surface given measured 
triplets {T, ���, } so that: 

 z() ≡ � ln
�

��
,
�

�
ln	

��

���
and


�

�
ln

��

���
≡ � ln

�

��
, �() - convenient if easily invertible

 Take temperature derivatives of “g” from response surface to 
yield incremental changes with  in the reaction enthalpy and 
entropy.

 Need reliable and reproducible (T, ���, ) data over a relevant 
range of expected conditions.
 Low T, low PO2 for gas splitting

 Avoid extrapolating outside data envelope
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Initial response surface for Ceria
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Slope determines 
�� ;�

�

Negative of the slope 

determines 
�� ;�

�

Contours are for 
constant z()

CERIA using Data 
from CALPHAD
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Derivatives determine enthalpy and entropy 
of incremental reaction for Ceria
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Slope and scaling parameter 

RT0 determined 
�� ;�

�

Negative of the slope and 

scaling R determined 
�� ;�

�

Small temperature 
dependence as 

expected
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Comparing analysis methods for H()

 Established a sound framework to analyze and explore 
material thermodynamic properties.

 Continue to refine fitting of the equilibrium response surface.
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CeO2 LSM40
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Summary and future direction

 Defect models are not needed to extract H or S.

 Apply advanced surface fitting strategies to further develop 
method (i.e., Basis Splines).
 Caveat: extrapolate at your own peril

 Formulate new insights from manipulating thermodynamic 
equations.
 Made possible by vetted response surface representative of 

equilibrium phase space

 Rigorously evaluate the impact of uncertainties.
 Statistically-based UA/UQ enabled by this approach

 Leverage ideas to build consensus around standard practices.
 Experimental protocols and benchmarked tools
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Challenged by moving beyond these popular 
non-stoichiometric oxide material systems
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Fe2+/Fe3+ systems:

 Deep reduction at 1400 C.

 High redox capacity (>0.1).

 Slow H2O oxidation kinetics.

 YSZ, ZrO2, Al2O3 matrix 
required.

PROPERTY
FERRITE

(MFeOx/ZrO2)
(MFeOx/Al2O3)

CERIA
(CeO2)

Current State 
of the Art

PEROVSKITE
(ABO3)

IDEAL

Redox Kinetics SLOW FAST ? FAST

Capacity (δ) HIGH LOW HIGH HIGH

TTR @ Reduction MED/HIGH HIGH LOW LOW

H2O/H2 @ Oxidation MED LOW ? LOW

Durability MED/HIGH HIGH ? HIGH

Earth Abundance HIGH LOW/MED HIGH HIGH

Ce3+/Ce4+ systems:

 Shallow reduction at 1500 C.

 Low redox capacity (<0.08).

 Fast H2O oxidation kinetics.

 Durable.

TM2+/TM3+/TM4+ perovskite systems:

 Deep reduction at 1400 C.

 High redox capacity (>0.1).

 Promising H2O oxidation kinetics.

 Vast material space!
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US DOE vision for H2 production and utilization
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• Multi-laboratory consortium and Energy 
Materials Network announced in 2016.

• Multi-laboratory consortium and Energy 
Materials Network announced in 2016.

http://energy.gov/eere/energy-materials-
network/energy-materials-network
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Opportunities to work with Sandia
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determine PO2-T- relation using 
TGA or other methods

derive thermodynamic properties 
for material from PO2-T- relation

 Requires high-quality experimental 
data over large PO2-T- range.

derive kinetic information at 
technology-specific conditions 

using idealized flow reactor

derive structural and mechanistic 
information using advanced 

diagnostics (i.e., HTXRD, ToF-SIMS)

 Cycled under high radiative flux.
 Technology-specific operation.

 Great potential for operando X-ray 
scattering.

CeO2
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Opportunities to work with Sandia
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National Solar Thermal Test Facility Cascading Pressure 
Receiver/Reactor (CPR2)

 ~5kWth system capable of producing 0.5slpm H2.
 Derive engineering test data necessary for model 

validation and scale-up.

25 ft. tall

 16kWth solar furnace.
 6MWth power tower.
 Technology-specific operation at scale.

PATHWAY FOR ADVANCING TRL...
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Thank you for your attention.

Questions?


