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Challenges for material characterization and evaluation.

= Standard protocols for measuring data need development
= Temperature and O, partial pressure ranges too narrow
= Sample purity and experimental methods always in question

= Benchmarked protocols for extracting properties need development
* Thermodynamic and kinetic properties

Extracting thermodynamic properties from (T, po,, o) data.
= van’t Hoff approximation with or without invoking defect models
= Apply arbitrary or “informed” 6-dependence
= CALPHAD (very rigorous!)
Model-free approach to analyzing (T, po,, 0) data.
= AH(9, T) and AS(9, T) derived from equilibrium response surface
US Government investments in solar H, production.

= HydroGen Consortium and H2@Scale
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o produe H, (STCH)

)

>25%
H, production cost (US DOE) $3/gge at plant gate

Solar-to-H, conversion efficiency

MO, ->MO_;+-0, (1) Reduction _
: ) MW scale concentrating
MO _;+0-H,O0—>MO,.+6-H, (2)Oxidation solar power facilities
5 provide heat before making
0-H,0 _)502 +0-H, (3) Thermolysis electricity
Cycle conditions and system metrics:
Concentrated
lar heat
Reduction Temperature (T,,.) <2000°C r___fo_ie_a____j
“O” activity in reduction (p,,,) i therrrlrhaill;:’e;::tion:f)z
Oxidation Temperature (T, debated |
O aCtiVity in oxidation (phigh) iMo"'s re:::(t!rv MO,
H, production rate 50-100mt/day Ll
|
|

Two-step
metal oxide cycle

» The challenge is to develop efficient and scalable solar-
powered reduction receivers and water-splitting reactors.




Technological challenges for materials QHOE="

Miller et. al, Advanced Energy Materials 2013, DOI:10.1002/aenm.201300469

. . . Concentrated
= Redox thermodynamics and kinetics. solar heat
= Critical to reactor design and efficient operation |~ N }
. . . . | thermal reduction: |02
= Large, reversible oxygen deficiency (reduction | T I
[ high? Piow |
extent) | |
| !
= Fast redox rates and matched to solar flux | " I
| M eat MO |
: x5 recovery ":
| |
| !
I . |

active ic structures.

= Cycle life ~ 300,000 cycles (10 year life)

= heating rates (1000°C/min) met:‘luoc:is:jt:iycle

8w

= Compatibility with materials of construction

ynufacti




AH(0;T) to model reactor efficiency Q=3

requires high-quality
experimental data over
sufficient P,,-T-0 range.

All inclusive efficiency metric J

. steam oxide
- P, Y LHV,, _ ny LHV, fhag = Pﬂ heating " heating
Py Q Py 0 ' A :
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AH(5;T) embedded here £ 2% £e=97% (<1000°C)
£ 20 e i i
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challenged to measure P,,-T-0
@ low T, low P,

model reactor efficiency.

“O” activity in oxidation (py;y,)
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Mapping the P,,-T-0 space )
M. Zinkevich et al., Solid State lonics. 177, 989—-1001 (2006). A. N. Grundy et al., Calphad. 28, 191-201 (2004).

CeO, La, ¢Sry 4MnO; (LSM40)
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= Measure oxygen defect concentration (0) in non-stoichiometric

oxides as a function of P5, and Temperature.

= Thermogravimetry (TGA), coulometric titration, other methods?
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AH(0): from van’t Hoff to CALPHAD QGj=™

R. J. Panlener et al., Journal of Physics and M. Zinkevich et al., Solid State lonics. 177, 989—-1001 (2006).
Chemistry of Solids. 36, 1213-1222 (1975).

CERIA |
2= T T T T T T T ] O [37] =
g - :
Jf T —— - £ o j
-870 o
8 , - -900 % |
van’t Hoff «0] CALPHAD I
] | l l | | l ] L -960 I I [ I
30 28 26 24 22 20 18 |6 14 1.5 1.6 1.7 1.8 19 2.0
-L0G X Q/Ce atomic ratio
= |nvoke assumptions about = Combine all reported phase
defect behavior. behavior.
= Species [], reactions, K,,'s, etc. = Various approximations for
= Linearize system then use phase-dependent AG'’s
slopes and/or intercepts. " AG'sare additive g



CALPHAD rigor is a lost art

M. Zinkevich et al., Solid State lonics. 177, 989—-1001 (2006).

The experimental database for Ce—0) system

CERIA

Trata description Temperature range (K) Compasition mnge {0C) Phases involved Ref
Equilibrium oxygen presaure 813-1323 LETO-1.996 EA [19]
Equilibrium oxygen presaure 9681282 1.581-1.960 EA [20]
Equilibrium oxygen presaure S05-1442 1.500-1.997 E G A Ceyy [21]
Equilibrium exygen presaire 1073-1273 1.930-1.984. F [22;
Equilibrium oxygen presaire 1731573 1.727-2.000 F 23]
Equilibrium oxygen presaire 1173-1323 1.710-2.000 F [24]
Equilibrium oxygen presaire 1173-1823 1.723-1.992 F [25]
Equilibrium oxygen presaure D00 1400 1.650-2.000 EC A Ce0y [26]
Equilibrium oxygen presaure 1033-1773 L. 721-2.000 F 27
Equilibrium oxygen pressure 173-1673 1.749-1.997 F 28]
Equilibrium exygen presaire 17502243 1.600-1.958 F, liquid [29]
Equilibrium oxygen presaire 12441353 1.731-1.999 EC A Co0pn [30]
Equilibrium oxygen presaire 12731573 F B31]
Equilibrium oxygen presaure 1073 F 321
Equilibrium oxygen presaure 12731603 ECA [33]
Equilibrium oxygen presaure 10T3-1218 F [34]
Equilibrium oxygen pressure 1073 F [35]
Equilibrium exygen presaire 1073-1273 1.750-2.000 F [36]
Partial enthalpy of oxygen dissohtion 1383 1.520-1.994 EC A 37
Enthalpy of fomaiion 208 1.500 A [38-42]
Heat capacity 50-298 1500 A [43]
Heat capacity 5300 1.500 A [44]
Heat capacity 3420 1.500 A [43]
‘Heat capacity STE-1116 1.500 A [45]
Heat capacity A00-1100 1.500 A [46]
Enthalpy increment A00-1000 1.500 A 47
Enthalpy increment 470-883 1.500 A [42]
Enthalpy of fomation 208 2,000 F [48.49]
Heat capacity 5300 2000 F [50]
Heat capacity B08-1172 2000 F [51]
Heat capacity 418-758 2000 F [57]
Enthalpy increment 2981800 2,000 F (53]
Enthalpy increment 4921141 2,000 F [54]
Enthalpy increment 3911624 2,000 F [55]
Enthalpy of reaction T2 1846 E CeyOun [56]
Enthalpy of reaction 36 1818 F, CenOos, CestDysa [56]
Enthalpy of reaction 766 1808 F, CeaOyyn CeqOp [56]
Heat capacity 3481200 1.823-2.000 F, CenOs, Cesuz Cesln 57
Phas diagram 203-1273 1.790-2.000 F [58]
Phase diagram £73-901 1.800-2.000 F [59]
Phase diagram 5731073 1.750-1.960 F, Ce1s0ns, CesDis, Cer0ra 0]
Phawe diagram 600-1200 1.714-2.000 E CeyyOhp, Coalyya Cogdla, [56,57,61]
Cewlay, Coallig, Cellin
Phase diagram S9T-1064 1.698-1.800 F, CegOy s Ceglys, Ceygly, [s]
Cealie, CerDia
Phas diagram 2123-2243 1.600-1.660 F, liquid [29]
Phase diagram 1606-2302 1.330-1.540 A, liquid [62]
Phase diagram 9231386 0.002-0.008 foo-Ce, boo-Ce, liquid, A [63]

~ 50 independent observations!
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Comparing analysis methods using CALPHAD
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as ground truth

300
480}
l. ‘ o
= 460 = iy
£ \ 0 . CALPHAD
2 440 . CALPHAD 3 260l — . o :
5 :.:. _ < I }*{dﬁ; « Yang (arbitrary 0)
g 420 %%, « Yang (arbitrary 6) 3 : - . Takacs (defect model)
400 '.-'.- ’ 240 ’ _ Takacs (defect model)
. 180
350
II CeO, 160
3001y o
! J—
5 250 \ g 140
3 .5120
5200 )
7)) <
< 100
150 . .
80
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' ' ' ) ' o)
5
" Good agreement for the |® Poor agreement for a
“ ”
best-known” system. well-known system.
C.-K. Yang et al., Journal of Materials Chemistry A (2014).

M. Takacs et al., Acta Materialia. 103, 700-710 (2016). 10




Reactions measured at fixed T and p,, HQER

= What we refer to as AH(0;T) and AS(9;T) is really:
Hso1(0+d0;T)—Hso1(O;T)

AH(S; g‘l} = lim < + - HOZ e
pO
dH,p(5;T) RT0I ’"( /poz) Ly o
PR B T ~gHozg
2 9 ( O/T)
_ IRT Ssol(6 + dS; T) Ssol(S T)
AS(3;T) = lim S ESOZ o (T:p0,(5T))

assol(&T)__Ral"(po/POz> s (Tpn (5T
a0 zaln(T/TO) 5 Oz,g( ;Do (5; ))

« Enthalpy and entropy of reaction (incremental change in 9) are local
partial derivatives of the same function.

11
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Knowing O, gas properties and equilibrium 6 J}=N

= Fit a two dimensional response surface given measured
triplets {T, po,, 0} so that:

= z(9) = f(lnTl,%lnp—o) and
0

0
= 2ln2-= g (lnl,z(S)) - convenient if easily invertible
2 Po, To

= Take temperature derivatives of “g” from response surface to
vield incremental changes with 0 in the reaction enthalpy and
entropy.

= Need reliable and reproducible (T, po,, 0) data over a relevant
range of expected conditions.

= Low T, low P, for gas splitting
= Avoid extrapolating outside data envelope

12
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Initial response surface for Ceria ) .

Contours are for
constant z(0)
CERIA using Data
from CALPHAD

CERIA

0.3 ! S I ] 0.75 0.80 0.85 0.90

Ln(T/T,)
Negative of the slope
dAH(0;
. dAs(oT) Slope determines H(O:T)
determines —_s a0

13




Derivatives determine enthalpy and entropy =
of incremental reaction for Ceria ot

Entropy of reaction per O Enthalpy of reaction per O kJ/mol

400F " ;| ]
600}
220 Small temperature
- ' o 550 d
S e, ependence as
= ol < 500} expected
450}
250
| - | ] | l | J A0 L d d /| d |
000 002 004 006 008 010 000 002 004 006 008 010
& &
— 1500°C = 1400°C - 1300°C — 1500°C — 1400°C — 1300°C
Negative of the slope and Slope and scaling parameter

dAS(O;T .
6(5 ) RT, determined aAI;gS'T) .

scaling R determined




Comparing analysis methods for AH(0) RQE=®

500f% 300
Ind CGOz

480}4
%E‘; 460 = « CALPHAD
S wag . « CALPHAD £ « Yang (arbitrary &)
= ) '
X N « Yang (arbitrary ) ‘;:6 » Takacs (defect model)
< 420 '-‘-... « this work (1300 °C) | < — Takacs (defect model)

Py u.. o)
400 < . « this work (1300 °C)
000 005 0.10 0.15 0.20 2300 0.05 0.0 015 0.20
5
o

= Established a sound framework to analyze and explore
material thermodynamic properties.

= Continue to refine fitting of the equilibrium response surface.

15



Summary and future direction h

= Defect models are not needed to extract AH or AS.

= Apply advanced surface fitting strategies to further develop
method (i.e., Basis Splines).
= Caveat: extrapolate at your own peril
= Formulate new insights from manipulating thermodynamic
equations.
= Made possible by vetted response surface representative of
equilibrium phase space
= Rigorously evaluate the impact of uncertainties.
= Statistically-based UA/UQ enabled by this approach
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= Leverage ideas to build consensus around standard practices.

= Experimental protocols and benchmarked tools

16




Challenged by moving beyond these popular
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non-stoichiometric oxide material systems

Fe?*/Fe3* systems: Ce3*/Ce* systems: TM2/TM3*/TM* perovskite systems:
= Deep reduction at 1400 °C. = Shallow reduction at 1500 °C. = Deep reduction at 1400 °C.
* High redox capacity (A5>0.1). = Low redox capacity (A5<0.08). = High redox capacity (A5>0.1).
= Slow H,O oxidation kinetics. = Fast H,O oxidation kinetics. =  Promising H,O oxidation kinetics.
" YSZ, ZrO,, Al,O; matrix = Durable. = Vast material space!
required.
CERIA
PROPERTY | (MFe0,210) | (0200, | PEROVSKITE | ey
(MFeO,/Al,0O,) of the Art
Redox Kinetics FAST ? FAST
Capacity (Ad) HIGH LOW HIGH HIGH
Tir @ Reduction IHIGH HIGH LOW LOW
H,O/H, @ Oxidation LOW ? LOW
Durability IHIGH HIGH ? HIGH
Earth Abundance HIGH LOWI/ HIGH HIGH

17




US DOE vision for H, production and utilization ) i

Laboratories
B .. ... * Multi-laboratory consortium and Energy
Coal GasificationY _ Electrolysis Materials Network announced in 2016.

|[HydroGen

2015-2020 2020-2030 Advanced Water Splitting Materials

Plant Capacity (kg/day)

.L Solanppathways=longerstersn
500,000/ 100000 http://energy.gov/eere/energy-materials-
network/energy-materials-network

Value Added
Applications
Hydrogen/

Natural Gas
Infrastructure

Hydrogen
Vehicle

Power
Generation

Synthetic
Fuels

Hydrogen
Storage/
Distribution

Solar PV

2

at Scale:

Deeply Decarbonizing
our Energy System

Upgrading
Qil/
Biomass

NOTIVIu0aN "

vddl 919

Hydrogen Other Metals
Generation End Use Refining

Concentrated Solar Power

18




Opportunities to work with Sandia
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determine Py,-T-0 relation using
TGA or other methods

2.00
.I
.. Ca ..-
1.98 : / « 1173.
: . 1273
L S I A B . 1373
I . . & o o
Nyoale oo . 1473.
L] L] L] L] L] L]
192: e e .. « 1573.
i . :' oo « 1673.
qool2 ~° ° *° ° . 1773.
107" 10" 107"° 107® 1072
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derive thermodynamic properties

derive kinetic information at
technology-specific conditions
using idealized flow reactor

derive structural and mechanistic
information using advanced
diagnostics (i.e., HTXRD, ToF-SIMS)

for material from P,-T-0 relation
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Requires high-quality experimental
data over large P,,-T-0 range.
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Cycled under high radiative flux.
Technology-specific operation.

18Q/160 masked

A = (Fe)sYSz
I,E d =Fe0;

f A =Fe;0,

AR

Great potential for operando X-ray

scattering. 19




Opportunities to work with Sandia BQE=S

National Solar Thermal Test Facility Cascading Pressure
Receiver/Reactor (CPR2)

PATHWAY FOR ADVANCING TRL...

A
25 ft. tall
- v
= 16kWth solar furnace. = ~5kW,, system capable of producing 0.5slpm H,.
" 6MW,, power tower. = Derive engineering test data necessary for model
» Technology-specific operation at scale. validation and scale-up.
20
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Thank you for your attention.

Questions?
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