

Model-free Thermodynamic Relationships for Non-stoichiometric Metal Oxides from Experimental Measurements

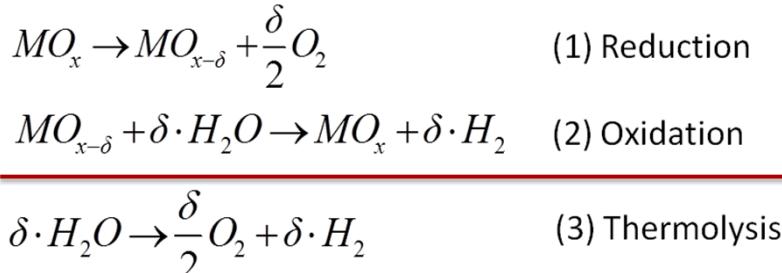
Anthony H. McDaniel, presenting
Sandia National Labs

Sandia
National
Laboratories

Exceptional
service
in the
national
interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Acknowledgments to the team

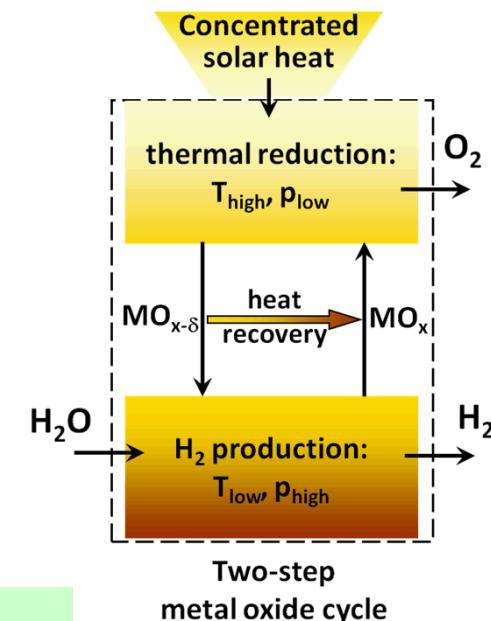

- Sandia Labs
 - Jim Miller
 - Andrea Ambrosini
 - Sean Babiniec
 - Eric Coker
- University Collaborator
 - Ellen B. Stechel (ASU)

- DOE/Fuel Cell Technologies Office
- DOE/SunShot Initiative

Outline

- Challenges for material characterization and evaluation.
 - Standard protocols for measuring data need development
 - Temperature and O_2 partial pressure ranges too narrow
 - Sample purity and experimental methods always in question
 - Benchmarked protocols for extracting properties need development
 - Thermodynamic and kinetic properties
- Extracting thermodynamic properties from (T, p_{O_2}, δ) data.
 - van't Hoff approximation with or without invoking defect models
 - Apply arbitrary or "informed" δ -dependence
 - CALPHAD (very rigorous!)
- Model-free approach to analyzing (T, p_{O_2}, δ) data.
 - $\Delta H(\delta, T)$ and $\Delta S(\delta, T)$ derived from equilibrium response surface
- US Government investments in solar H_2 production.
 - HydroGen Consortium and H2@Scale

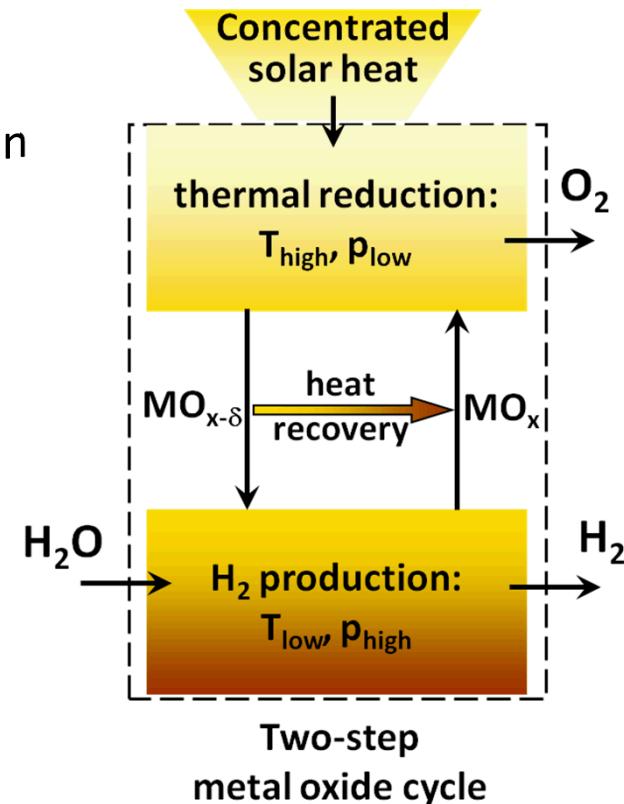
Solar powered two-step thermochemical water-splitting cycle to produce H₂ (STCH)



MW scale concentrating solar power facilities provide heat before making electricity

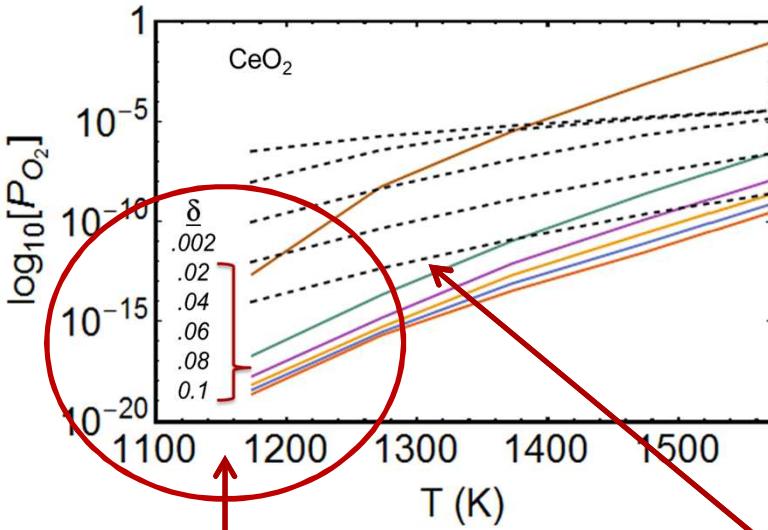
Cycle conditions and system metrics:

Reduction Temperature (T _{high})	<2000°C
“O” activity in reduction (p _{low})	$\mu_{\text{gas}} < \mu_{\text{solid}}$
Oxidation Temperature (T _{low})	debated
“O” activity in oxidation (p _{high})	$\mu_{\text{gas}} > \mu_{\text{solid}}$
H ₂ production rate	50-100mt/day
Solar-to-H ₂ conversion efficiency	>25%
H ₂ production cost (US DOE)	\$3/gge at plant gate



- The challenge is to develop efficient and scalable solar-powered reduction receivers and water-splitting reactors.

Technological challenges for materials

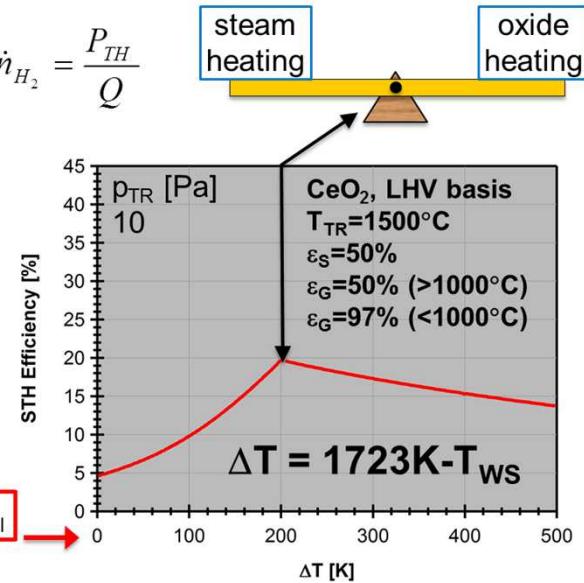

Miller et. al, *Advanced Energy Materials* 2013, DOI:10.1002/aenm.201300469

- Redox thermodynamics and kinetics.
 - Critical to reactor design and efficient operation
 - Large, reversible oxygen deficiency (reduction extent)
 - Fast redox rates and matched to solar flux
- Stability and long-term durability of redox active ceramic structures.
 - Cycle life $\sim 300,000$ cycles (10 year life)
 - heating rates ($1000^{\circ}\text{C}/\text{min}$)
 - Compatibility with materials of construction
- Earth abundant and easy to manufacture.

$\Delta H(\delta;T)$ to model reactor efficiency

requires high-quality experimental data over sufficient P_{O_2} -T- δ range.

challenged to measure P_{O_2} -T- δ
@ low T, low P_{O_2}


All inclusive efficiency metric

$$\eta = \left(\frac{P_{TH}}{P_S} \right) \left(\frac{LHV_{H_2}}{Q} \right) = \frac{\dot{n}_{H_2} LHV_{H_2}}{P_S} \rightarrow \dot{n}_{H_2} = \frac{P_{TH}}{Q}$$

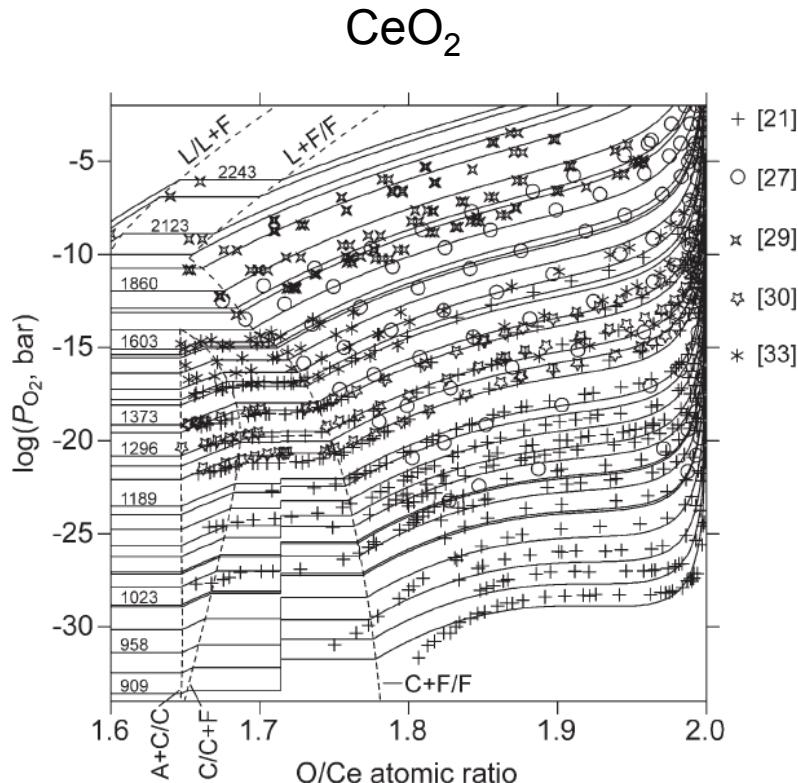
$$P_{TH} = r_{12} * r_d * t_W * A * P_S - P_{rad}$$

$$Q = Q_{TR} + Q_{SH} + Q_{AUX}$$

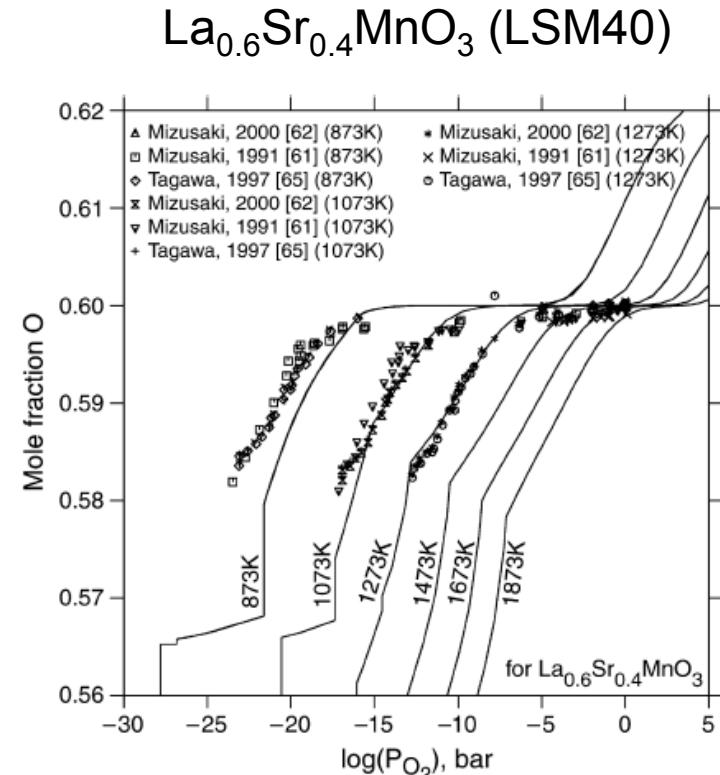
$\Delta H(\delta;T)$ embedded here

- No *a priori* assumptions about material defect behavior required to model reactor efficiency.

“O” activity in reduction (p_{low})

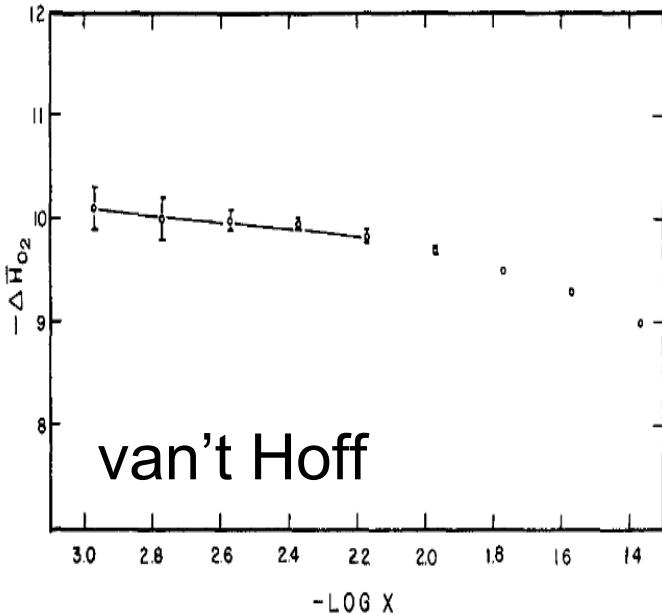

$\mu_{gas} < \mu_{solid}$

“O” activity in oxidation (p_{high})


$\mu_{gas} > \mu_{solid}$

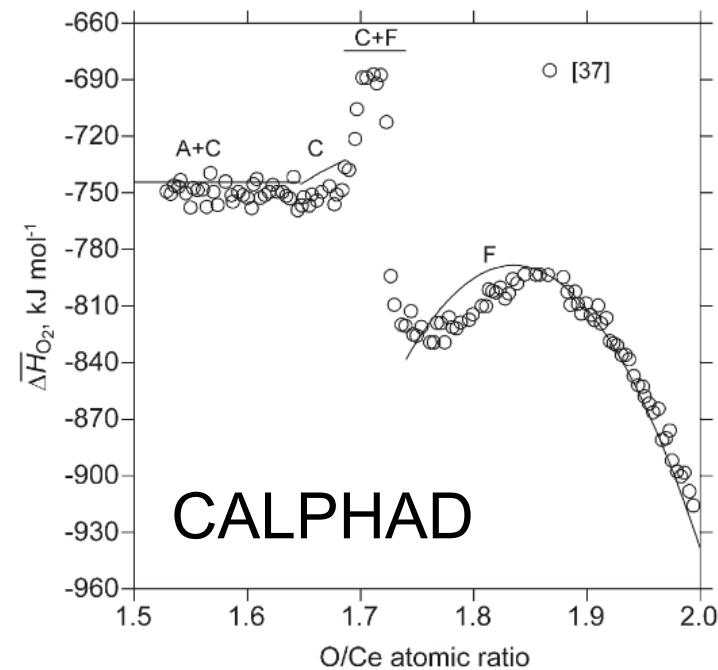
Mapping the P_{O_2} -T- δ space

M. Zinkevich et al., *Solid State Ionics*. **177**, 989–1001 (2006).


A. N. Grundy et al., *Calphad*. **28**, 191–201 (2004).

- Measure oxygen defect concentration (δ) in non-stoichiometric oxides as a function of P_{O_2} and Temperature.
 - Thermogravimetry (TGA), coulometric titration, other methods?

$\Delta H(\delta)$: from van't Hoff to CALPHAD


R. J. Panlener et al., *Journal of Physics and Chemistry of Solids*. **36**, 1213–1222 (1975).

van't Hoff

M. Zinkevich et al., *Solid State Ionics*. **177**, 989–1001 (2006).

CERIA

CALPHAD

- Invoke assumptions about defect behavior.
 - Species [], reactions, K_{eq} 's, etc.
- Linearize system then use slopes and/or intercepts.

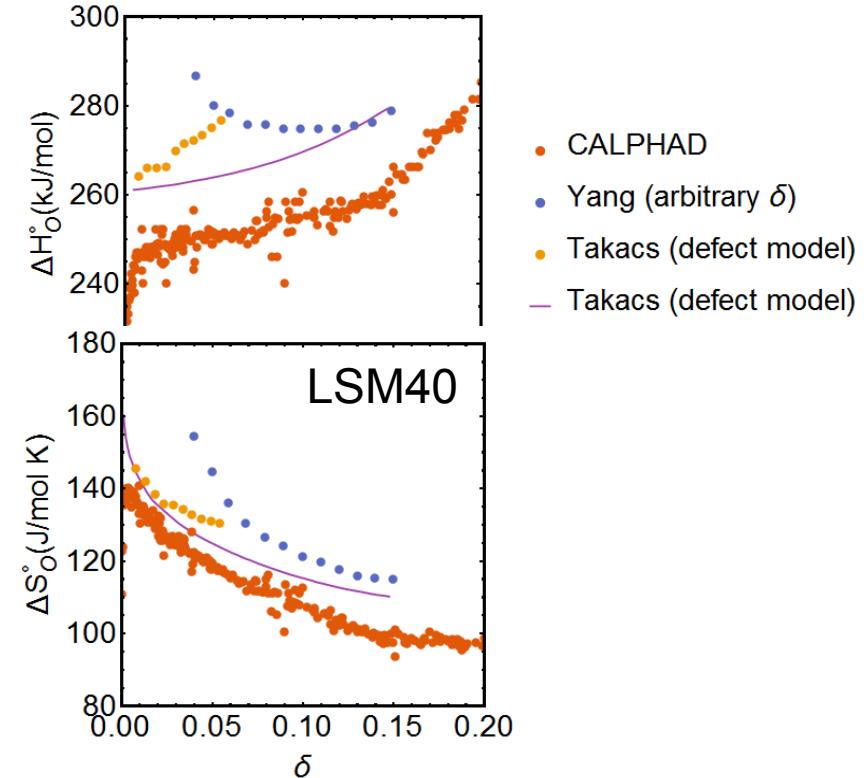
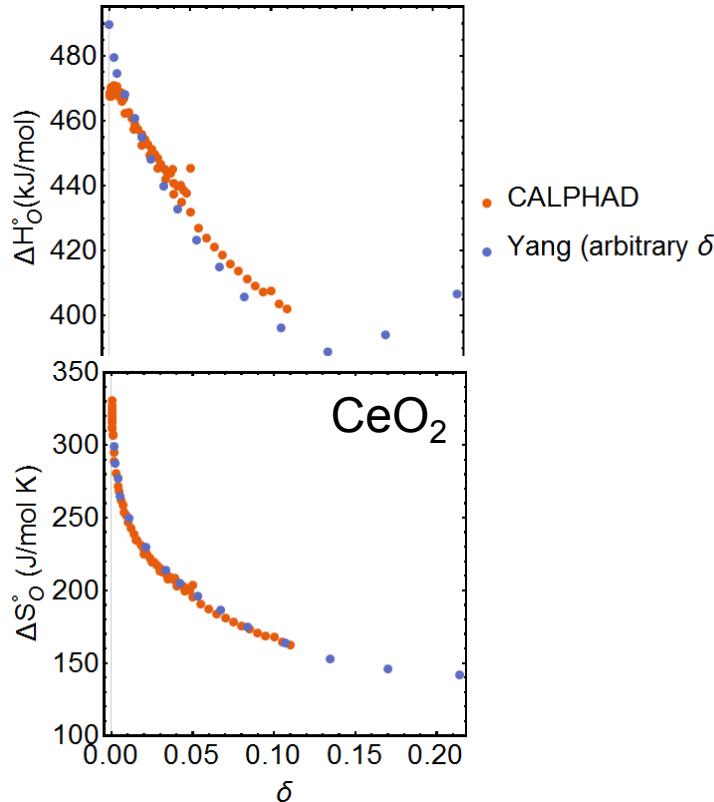
- Combine all reported phase behavior.
 - Various approximations for phase-dependent ΔG 's
 - ΔG 's are additive

CALPHAD rigor is a lost art

M. Zinkevich et al., *Solid State Ionics*. **177**, 989–1001 (2006).

CERIA

The experimental database for Ce-O system



Data description	Temperature range (K)	Composition range (O/Ce)	Phases involved	Ref.
Equilibrium oxygen pressure	813–1323	1.670–1.996	F, A	[19]
Equilibrium oxygen pressure	968–1282	1.581–1.960	F, A	[20]
Equilibrium oxygen pressure	909–1442	1.500–1.997	F, C, A, Ce_2O_3	[21]
Equilibrium oxygen pressure	1073–1273	1.930–1.984	F	[22]
Equilibrium oxygen pressure	1173–1573	1.727–2.000	F	[23]
Equilibrium oxygen pressure	1173–1323	1.710–2.000	F	[24]
Equilibrium oxygen pressure	1173–1823	1.723–1.992	F	[25]
Equilibrium oxygen pressure	900–1400	1.650–2.000	F, C, A, Ce_2O_3	[26]
Equilibrium oxygen pressure	1023–1773	1.721–2.000	F	[27]
Equilibrium oxygen pressure	1173–1673	1.749–1.997	F	[28]
Equilibrium oxygen pressure	1750–2243	1.600–1.958	F, liquid	[29]
Equilibrium oxygen pressure	1244–1353	1.731–1.999	F, C, A, Ce_2O_3	[30]
Equilibrium oxygen pressure	1273–1573	1.720–2.000	F	[31]
Equilibrium oxygen pressure	1073	1.997–2.000	F	[32]
Equilibrium oxygen pressure	1273–1603	1.647–1.994	F, C, A	[33]
Equilibrium oxygen pressure	1073–1218	1.968–1.998	F	[34]
Equilibrium oxygen pressure	1073	1.995–2.000	F	[35]
Equilibrium oxygen pressure	1073–1273	1.750–2.000	F	[36]
Partial enthalpy of oxygen dissolution	1353	1.529–1.994	F, C, A	[37]
Enthalpy of formation	298	1.500	A	[38–42]
Heat capacity	50–298	1.500	A	[43]
Heat capacity	5–300	1.500	A	[44]
Heat capacity	3–420	1.500	A	[42]
Heat capacity	578–1116	1.500	A	[45]
Heat capacity	400–1100	1.500	A	[46]
Enthalpy increment	400–1000	1.500	A	[47]
Enthalpy increment	470–883	1.500	A	[42]
Enthalpy of formation	298	2.000	F	[48,49]
Heat capacity	5–300	2.000	F	[50]
Heat capacity	608–1172	2.000	F	[51]
Heat capacity	418–758	2.000	F	[52]
Enthalpy increment	298–1800	2.000	F	[53]
Enthalpy increment	492–1141	2.000	F	[54]
Enthalpy increment	391–1624	2.000	F	[55]
Enthalpy of reaction	722	1.846	$\text{F, Ce}_{11}\text{O}_{20}$	[56]
Enthalpy of reaction	736	1.818	$\text{F, Ce}_{10}\text{O}_{20}, \text{Ce}_{6}\text{O}_{12}$	[56]
Enthalpy of reaction	766	1.808	$\text{F, Ce}_{10}\text{O}_{12}, \text{Ce}_6\text{O}_{12}$	[56]
Heat capacity	348–1200	1.823–2.000	$\text{F, Ce}_{11}\text{O}_{20}, \text{Ce}_{6}\text{O}_{12}, \text{Ce}_{10}\text{O}_{12}$	[57]
Phase diagram	293–1273	1.790–2.000	F	[58]
Phase diagram	673–901	1.800–2.000	F	[59]
Phase diagram	573–1073	1.750–1.960	$\text{F, Ce}_{10}\text{O}_{20}, \text{Ce}_{9}\text{O}_{16}, \text{Ce}_{12}\text{O}_{12}$	[60]
Phase diagram	600–1200	1.714–2.000	$\text{F, Ce}_{10}\text{O}_{20}, \text{Ce}_{10}\text{O}_{12}, \text{Ce}_{10}\text{O}_{12}, \text{Ce}_{10}\text{O}_{14}, \text{Ce}_{10}\text{O}_{16}, \text{Ce}_{12}\text{O}_{12}$	[56,57,61]
Phase diagram	597–1064	1.698–1.800	$\text{F, Ce}_{10}\text{O}_{12}, \text{Ce}_{10}\text{O}_{12}, \text{Ce}_{10}\text{O}_{14}, \text{Ce}_{10}\text{O}_{16}, \text{Ce}_{12}\text{O}_{12}$	[15]
Phase diagram	2123–2243	1.600–1.660	F, liquid	[29]
Phase diagram	1606–2302	1.330–1.540	A, liquid	[62]
Phase diagram	923–1386	0.002–0.008	fee-Ce, bcc-Ce, liquid, A	[63]

~ 50 independent observations!

Phase, parameter	Phase, parameter
Liquid ($\text{Ce}^{4+}, \text{Ce}^{4+}$) _{p} ($\text{Va}^{2-}, \text{O}^{2-}$) _{p} , Eqs. (2)–(4)	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -247150-71\text{T}+11^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}+4^0\text{G}_{\text{p}-\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}^{10} = 126654-54.4977\text{T}+^0\text{G}_{\text{A}-\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -488650-155\text{T}+24^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}+8^0\text{G}_{\text{p}-\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}^{11} = 87177-29.0597\text{T}+^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -730900-237.37\text{T}+38^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}+12^0\text{G}_{\text{p}-\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}^{12} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -121419-40.45\text{T}+7^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}+2^0\text{G}_{\text{p}-\text{Ce}_{10}\text{O}_{12}}$
Function	Function
$^1\text{L}_{\text{Ce}^{4+}, \text{Ce}^{4+}, \text{O}^{2-}}^{10} = -105398$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -1832388-667.3307\text{T}-119.855\text{T}$
$^1\text{L}_{\text{Ce}^{4+}, \text{Ce}^{4+}, \text{O}^{2-}}^{11} = -35158$	$T \ln \text{T} - 0.012155\text{T}^2+546000\text{T}^{-1}$
$^0\text{L}_{\text{Ce}^{4+}, \text{O}^{2-}, \text{Va}^{2-}}^{10} = 114250$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = 32699-13.986\text{T}+^0\text{G}_{\text{A}-\text{Ce}_{10}\text{O}_{12}}$
fee-Ce (Ce)–Ce (O, Va), Eq. (5)	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = 43724-18.555\text{T}+^0\text{G}_{\text{A}-\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}^{10} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = 1116518+434.8339\text{T}-72.366\text{T}$
$^0\text{L}_{\text{Ce}^{4+}, \text{O}^{2-}, \text{Va}^{2-}}^{10} = -102206$	$T \ln \text{T} - 0.003992\text{T}^2+602000\text{T}^{-1}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{10} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = 2/3^0\text{G}_{\text{A}-\text{Ce}_{10}\text{O}_{12}}+2/3^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{11} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = 4390+7.232\text{T}+^0\text{G}_{\text{A}-\text{Ce}_{10}\text{O}_{12}}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{12} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -1804481+1067.043\text{T}-175.3336\text{T} \ln \text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{13} = ^0\text{G}_{\text{Ce}_{10}\text{O}_{12}}$	$-6.49862\text{T}-4\text{T}^2+546000\text{T}^{-1}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{14} = 4117865-11.423898\text{T}-7.5383948\text{T} \ln \text{T}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -0.02936407\text{T}^2+4.8227734\text{E}-6\text{T}^4$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{15} = -198834\text{T}^{-1}$ (298 K < T < 1000 K)	-198834T^{-1} (298 K < T < 1000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{16} = -6730.05+183.023193\text{T}$	$-6730.05+183.023193\text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{17} = -37.6978\text{T} \ln \text{T}$ (1000 K < T < 4000 K)	$-37.6978\text{T} \ln \text{T}$ (1000 K < T < 4000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{18} = -7160.519+84.23022\text{T}-22.3664\text{T} \ln \text{T}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -7160.519+84.23022\text{T}-22.3664\text{T} \ln \text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{19} = -0.0067103\text{T}^2-3.2073\text{E}-7\text{T}^3$	$-0.0067103\text{T}^2-3.2073\text{E}-7\text{T}^3$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{20} = -18117\text{T}^{-1}$ (298 K < T < 1000 K)	-18117T^{-1} (298 K < T < 1000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{21} = -7967.506+6.9.4664\text{T}-101.32248\text{T} \ln \text{T}$	$-7967.506+6.9.4664\text{T}-101.32248\text{T} \ln \text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{22} = +0.026046487\text{T}^2-1.930297\text{E}-6\text{T}^3$	$+0.026046487\text{T}^2-1.930297\text{E}-6\text{T}^3$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{23} = +11.51707\text{T}^{-1}$ (1000 K < T < 2000 K)	$+11.51707\text{T}^{-1}$ (1000 K < T < 2000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{24} = -14198.639+190.370192\text{T}$	$-14198.639+190.370192\text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{25} = -37.6978\text{T} \ln \text{T}$ (2000 K < T < 4000 K)	$-37.6978\text{T} \ln \text{T}$ (2000 K < T < 4000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{26} = -1334.69-5.21501\text{T}-7.7305867\text{T} \ln \text{T}$	$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}} = -1334.69-5.21501\text{T}-7.7305867\text{T} \ln \text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{27} = -0.02998402\text{T}^2+4.784299\text{E}-6\text{T}^3$	$-0.02998402\text{T}^2+4.784299\text{E}-6\text{T}^3$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{28} = -196303\text{T}^{-1}$ (298 K < T < 1000 K)	-196303T^{-1} (298 K < T < 1000 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{29} = -12101.106+187.449688\text{T}$	$-12101.106+187.449688\text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{30} = -37.6142\text{T} \ln \text{T}$ (1000 K < T < 1072 K)	$-37.6142\text{T} \ln \text{T}$ (1000 K < T < 1072 K)
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{31} = -11.950.375+186.333811\text{T}$	$-11.950.375+186.333811\text{T}$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{32} = -37.4627992\text{T} \ln \text{T}-5.7145\text{E}-5\text{T}^2$	$-37.4627992\text{T} \ln \text{T}-5.7145\text{E}-5\text{T}^2$
$^0\text{G}_{\text{Ce}_{10}\text{O}_{12}, \text{O}^{2-}}^{33} = +2.348\text{E}-9\text{T}^2-25897\text{T}^{-1}$ (1072 K < T < 4000 K)	$+2.348\text{E}-9\text{T}^2-25897\text{T}^{-1}$ (1072 K < T < 4000 K)

species, phases, and governing equations

Comparing analysis methods using CALPHAD as ground truth

- Good agreement for the “best-known” system.
- Poor agreement for a well-known system.

C.-K. Yang et al., *Journal of Materials Chemistry A* (2014).

M. Takacs et al., *Acta Materialia*. **103**, 700–710 (2016).

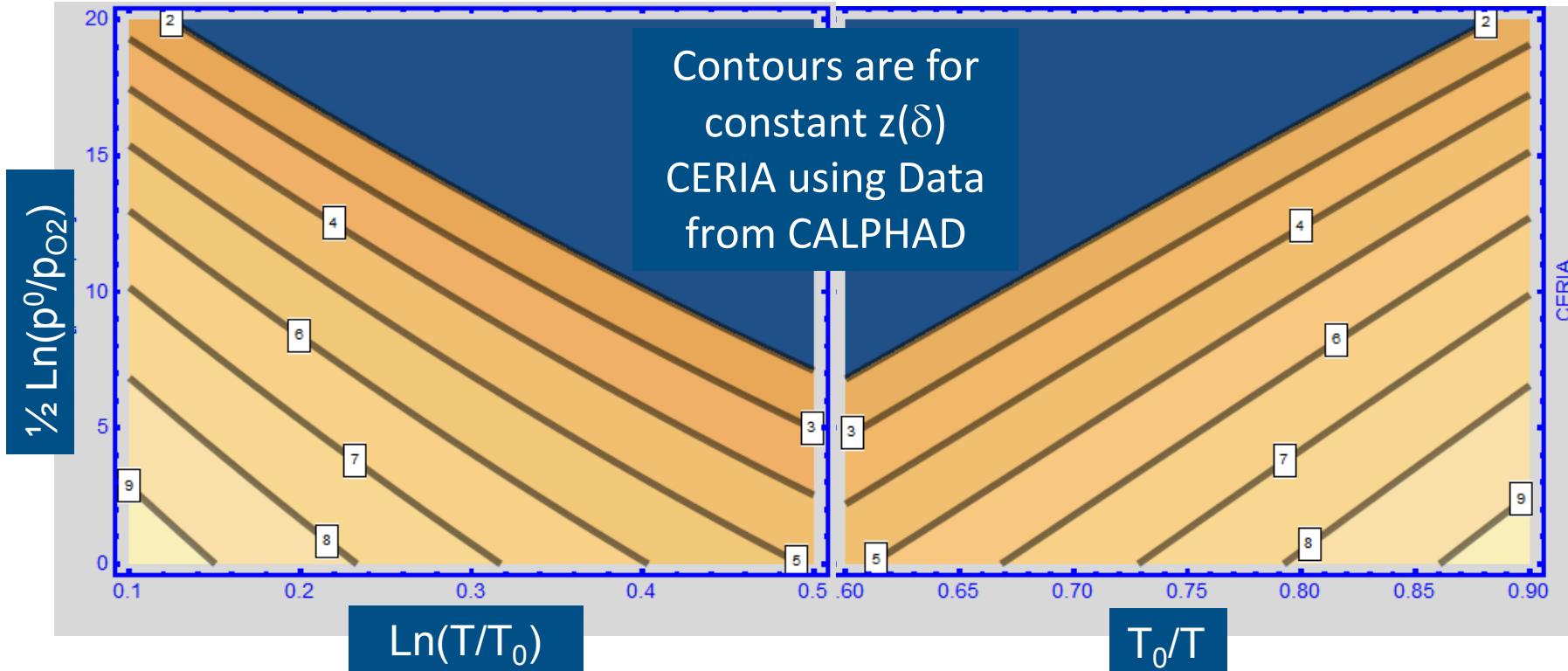
Reactions measured at fixed T and p_{O_2}

- What we refer to as $\Delta H(\delta; T)$ and $\Delta S(\delta; T)$ is really:

$$\Delta H(\delta; T) = \lim_{d\delta \rightarrow 0} \frac{H_{sol}(\delta + d\delta; T) - H_{sol}(\delta; T)}{d\delta} + \frac{1}{2} H_{O_2,g}(T)$$

$$\frac{\partial H_{sol}(\delta; T)}{\partial \delta} = \frac{RT_0 \partial \ln(p^0/p_{O_2})}{2 \partial (T_0/T)} - \frac{1}{2} H_{O_2,g}(T)$$

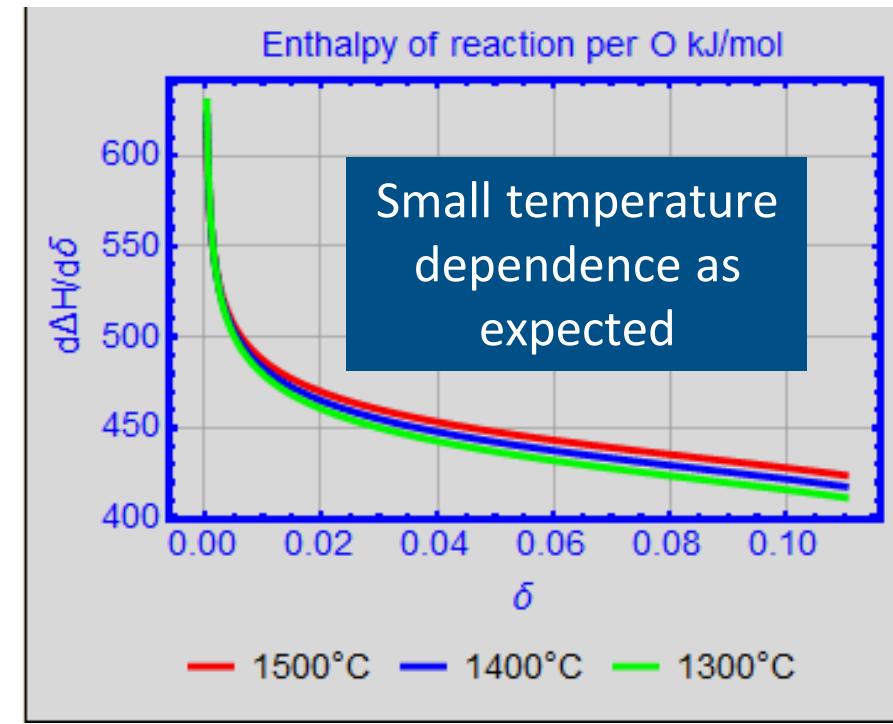
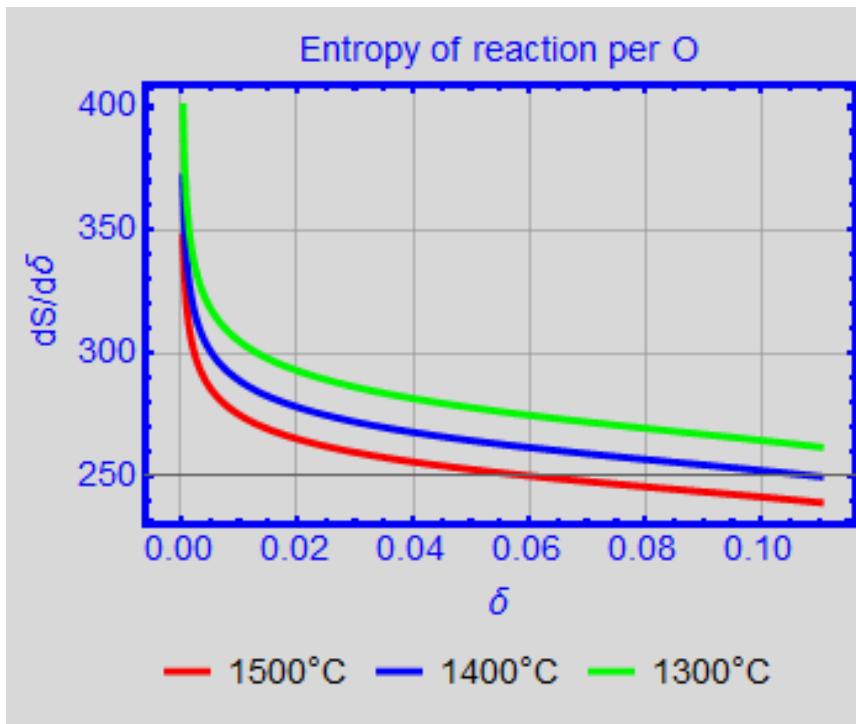
$$\Delta S(\delta; T) = \lim_{d\delta \rightarrow 0} \frac{S_{sol}(\delta + d\delta; T) - S_{sol}(\delta; T)}{d\delta} + \frac{1}{2} S_{O_2,g}(T; p_{O_2}(\delta; T))$$


$$\frac{\partial S_{sol}(\delta; T)}{\partial \delta} = \frac{-R \partial \ln(p^0/p_{O_2})}{2 \partial \ln(T/T_0)} - \frac{1}{2} S_{O_2,g}(T; p_{O_2}(\delta; T))$$

- Enthalpy and entropy of reaction (incremental change in δ) are local partial derivatives of the same function.

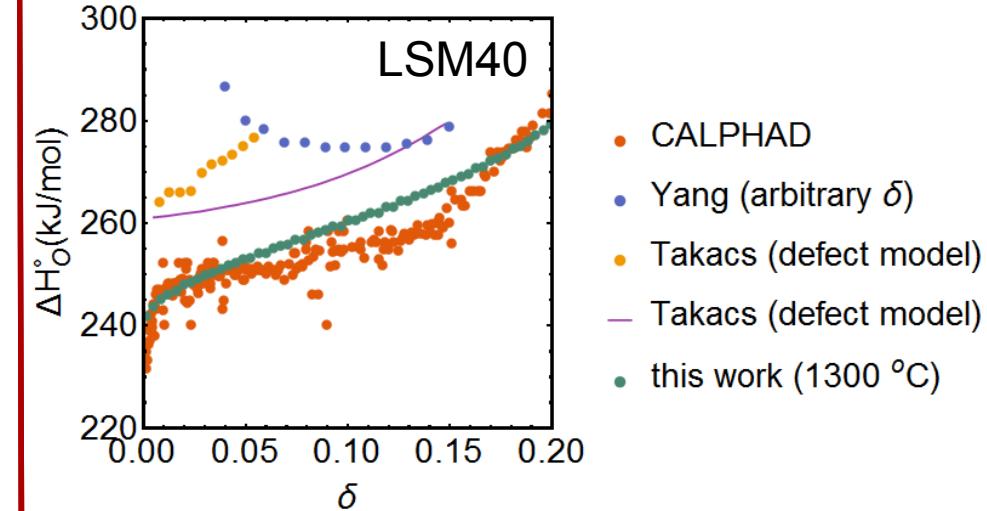
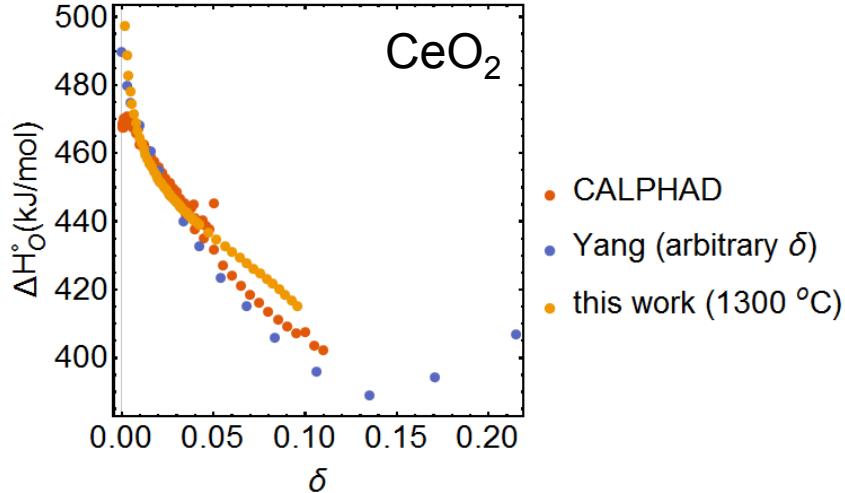
Knowing O₂ gas properties and equilibrium δ

- Fit a two dimensional response surface given measured triplets {T, p_{O_2} , δ } so that:
 - $z(\delta) \equiv f \left(\ln \frac{T}{T_0}, \frac{1}{2} \ln \frac{p^0}{p_{O_2}} \right)$ and
 - $\frac{1}{2} \ln \frac{p^0}{p_{O_2}} \equiv g \left(\ln \frac{T}{T_0}, z(\delta) \right)$ - convenient if easily invertible
- Take temperature derivatives of “g” from response surface to yield incremental changes with δ in the reaction enthalpy and entropy.
- Need reliable and reproducible (T, p_{O_2} , δ) data over a relevant range of expected conditions.
 - Low T, low P_{O₂} for gas splitting
 - Avoid extrapolating outside data envelope



Initial response surface for Ceria

Negative of the slope
determines $\frac{\partial \Delta s(\delta; T)}{\partial \delta}$

Slope determines $\frac{\partial \Delta H(\delta; T)}{\partial \delta}$



Derivatives determine enthalpy and entropy of incremental reaction for Ceria

Negative of the slope and scaling R determined $\frac{\partial \Delta s(\delta;T)}{\partial \delta}$

Slope and scaling parameter RT_0 determined $\frac{\partial \Delta H(\delta;T)}{\partial \delta}$

Comparing analysis methods for $\Delta H(\delta)$

- Established a sound framework to analyze and explore material thermodynamic properties.
- Continue to refine fitting of the equilibrium response surface.

Summary and future direction

- Defect models are not needed to extract ΔH or ΔS .
- Apply advanced surface fitting strategies to further develop method (i.e., Basis Splines).
 - Caveat: ***extrapolate*** at your own peril
- Formulate new insights from manipulating thermodynamic equations.
 - Made possible by vetted response surface representative of equilibrium phase space
- Rigorously evaluate the impact of uncertainties.
 - Statistically-based UA/UQ enabled by this approach

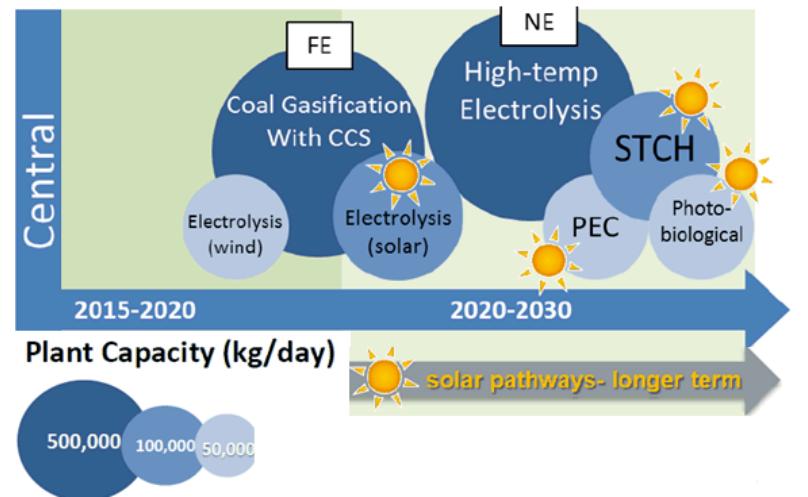
- Leverage ideas to build consensus around standard practices.
 - Experimental protocols and benchmarked tools

Challenged by moving beyond these popular non-stoichiometric oxide material systems

Fe²⁺/Fe³⁺ systems:

- Deep reduction at 1400 °C.
- High redox capacity ($\Delta\delta > 0.1$).
- Slow H₂O oxidation kinetics.
- YSZ, ZrO₂, Al₂O₃ matrix required.

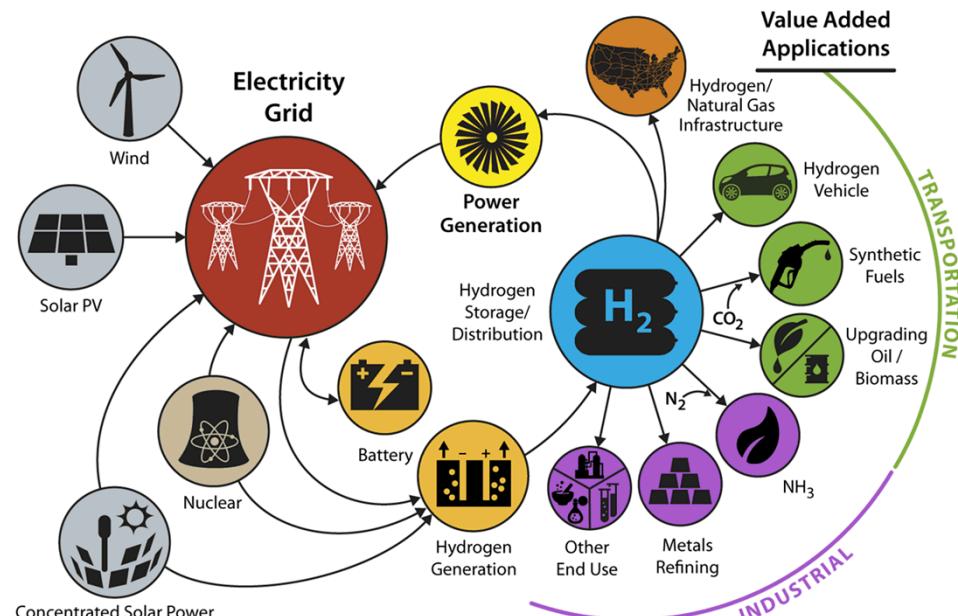
Ce³⁺/Ce⁴⁺ systems:


- Shallow reduction at 1500 °C.
- Low redox capacity ($\Delta\delta < 0.08$).
- Fast H₂O oxidation kinetics.
- Durable.

TM²⁺/TM³⁺/TM⁴⁺ perovskite systems:

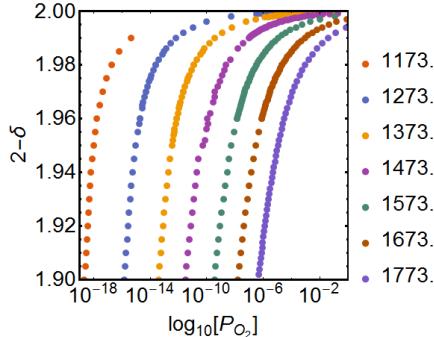
- Deep reduction at 1400 °C.
- High redox capacity ($\Delta\delta > 0.1$).
- Promising H₂O oxidation kinetics.
- Vast material space!

PROPERTY	FERRITE (MFeO _x /ZrO ₂) (MFeO _x /Al ₂ O ₃)	CERIA (CeO ₂) Current State of the Art	PEROVSKITE (ABO ₃)	IDEAL
Redox Kinetics	SLOW	FAST	?	FAST
Capacity ($\Delta\delta$)	HIGH	LOW	HIGH	HIGH
T _{TR} @ Reduction	MED/HIGH	HIGH	LOW	LOW
H ₂ O/H ₂ @ Oxidation	MED	LOW	?	LOW
Durability	MED/HIGH	HIGH	?	HIGH
Earth Abundance	HIGH	LOW/MED	HIGH	HIGH

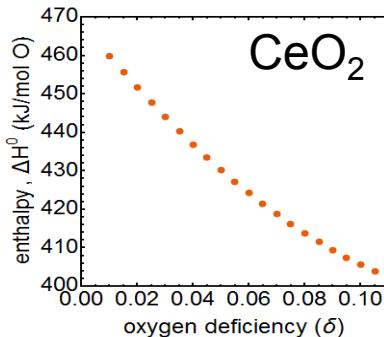

US DOE vision for H₂ production and utilization

- Multi-laboratory consortium and Energy Materials Network announced in 2016.

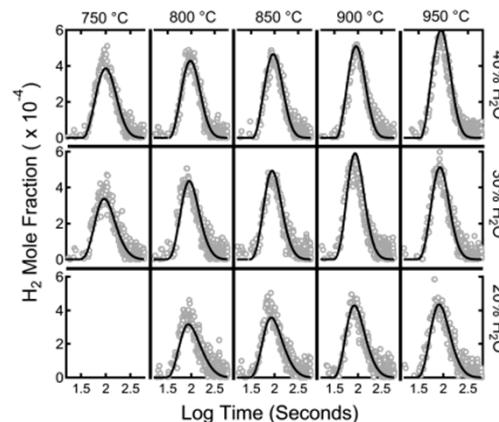
<http://energy.gov/eere/energy-materials-network/energy-materials-network>

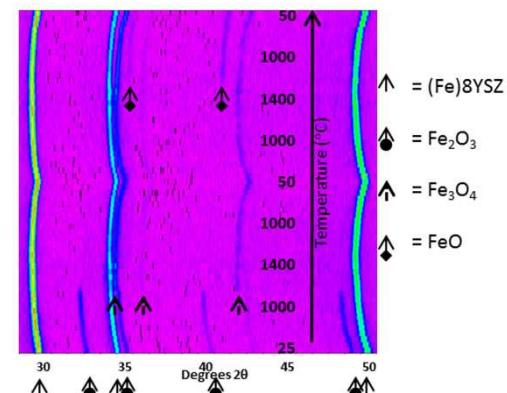
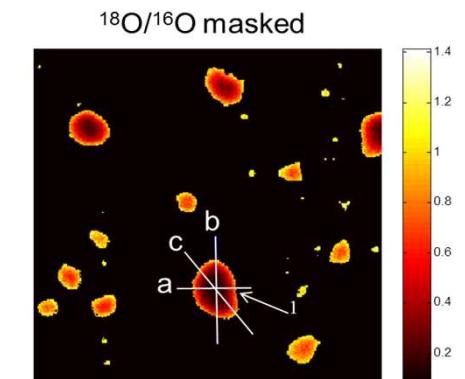


H₂
at Scale:
Deeply Decarbonizing
our Energy System


BIG IDEA

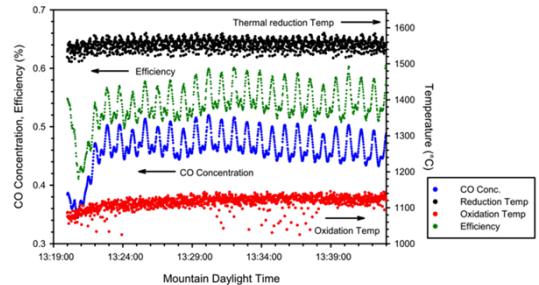
Opportunities to work with Sandia


determine P_{O_2} -T- δ relation using TGA or other methods



derive thermodynamic properties for material from P_{O_2} -T- δ relation

derive kinetic information at technology-specific conditions using idealized flow reactor

derive structural and mechanistic information using advanced diagnostics (i.e., HTXRD, ToF-SIMS)


- Requires high-quality experimental data over large P_{O_2} -T- δ range.

- Cycled under high radiative flux.
- Technology-specific operation.

- Great potential for operando X-ray scattering.

Opportunities to work with Sandia

National Solar Thermal Test Facility

- 16kW_{th} solar furnace.
- 6MW_{th} power tower.
- Technology-specific operation at scale.

Cascading Pressure Receiver/Reactor (CPR2)

25 ft. tall

- ~5kW_{th} system capable of producing 0.5slpm H₂.
- Derive engineering test data necessary for model validation and scale-up.

Thank you for your attention.

Questions?