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Application-Driven Use of Nanoantennas L

= Nanoantenna/FSS/Metamaterial/Metasurface
incorporation into infrared detectors

" [ntimate contact allows us to utilize the near field
* Fundamentally changes the detector architecture

" Improved detector performance
= New capabilities
" |n this talk:
= Description of concept
= Modeling results

= Preliminary measured data
= Where we are going




Background: Plasmonics and Perfe

= Absorption bandwidth is determined by .
the parameters of the nanoantenna and o
the materials used.

g

= Here we see a dual-band perfect
absorber.

= Measured absorption is over 99%.

= Note some of the features:

= No reflection in the design band without a
dielectric multilayer AR coat.

Angle of incidence (degrees)
5

= Absorption band does not change with angle.

AlCu~™

Sandia

ct Absorbers s

Feflectivity

WA SmuaI

Wavelngth (mlc:rans)

easureme .
-0.6
0.5

2 (um)

1

0.9

0.2

0.7

0.6

0.5

0.4

0.3

0.2




Application to an FPA Pixel h
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= The nanoantenna converts incoming

confined to a small volume.

» The pattern may be changed from

to have different spectral or
polarization response.

some current detector limitations.

new detector concepts.

= 2D Materials
= Tunable Materials

radiation to a surface wave with energy

pixel-to-pixel allowing adjacent pixels

= Confinement allows us to circumvent

= Confinement also enables us to look at




State of the Art Infrared Detectors

Why bother changing from the
current FPA architecture?

* Current architecture has limitations

» Cut-off wavelength determined at
manufacture

* Noise is nearing its floor for this
architecture

A nanoantenna-based architecture avoids
some of the assumptions made in the
Rule 07 calculation.

Changes in material composition or
architecture tweaks are not going to
lead to continued advancement.
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Using Confinement for Improving Detectors (i) &
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Standard Reticulated Detector Nanoantenna-Enabled Detector
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Dark Current Dark Current J,,,, = e-n, -t,, Less v_olume of active
* Leads to noise. Nyp-t, material leads to less
® |s reduced by cooling the detector. dark current.
® |s proportional to the volume of active material.

Crosstalk
¢ Causes image blur and loss of resolution. Finite-Element Model of Crosstalk fln the IR. the
* Reticulated detectors suffer reduced fill factors. "™ T Ul ’

limitation to
further
reducing
pixel size is

crosstalk.
N /

Etched sidewalls lead to increased surface
recombination/generation.

Exponential reduction in crosstalk with reduced
absorber thickness.

No loss of fill factor or creation of surface states
with nanoantenna detector design.
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Maximizing Active Area Improves MTF and Signal ) i
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[ MCT FPA architecture \
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Ideally for the MTF function, we want A,, A, as small as
possible to maximize the MTF (small pixels = better MTF).

This is clearly impossible, but we can make A, and A, as
small as possible for a given p, and p, (100% fill factor).

Made by carrou Imaging Our architecture gives us near 100% fill factor

= Maximizes input signal
= Maximizes the resolution




Nanoantenna Design and Modeling ) e,

A typical NA design:
this one using a
crossed-dipole

InAsSb
absorber
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Important Integration Considerations ) i,

" Process compatibility

= Wet chemistries might attack other materials
= Material synthesis temperatures
= QOrder of material deposition

= |ntegration with readouts

Configuration of contacts

CTE mismatch between materials

Order of integration

Mechanical stability of thin structures

= (QOperational concerns

= QOperating temperatures will be (80-130K)
= Accessing controls for pixels

Crosstalk between pixels
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Integration to Fanout Chip ) i,

= |ntegrated test chips which
include large area pixels and
miniarrays to Si fanout chip

= Post substrate removal
patterned chip with
nanoantenna using ebeam
lithography

. ~
Detector chip -

-

Detectors bonded to Si fanout with
patterned nanoantennas




Nanoantenna-Enhanced FPA: MWIR Accomplishments () s
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= Epitaxial growth of two designs for integration with
NA for test/evaluation

= Successful fabrication of detectors with integration of
NAs using a flip-chip bonding process and selective
substrate removal.

= At left: RCWA simulation of total absorption.
= At right: Measurement of external quantum efficiency.
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Using Confinement for Spectral Tuning

Bias-Tunable Nanoantenna Detector
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Reconfiqurable Smart Sensors

Wavelength

® Use the high-field region to magnify
effect of changing material.

®* Make 2D materials practical as
sensors.

® Graphene only absorbs 2.3% in
a single pass.

® Voltage bias tunability allows on-the-
fly changes in functionality (smart
sensor).

® Materials science, integration, and
characterization challenges.




Plasmonic Tuning ) i,

* All Sb-based semiconductor stack 08 e e
prepared with nanoantenna surface o] il oy

e G@Gating results in tuning of coupled
LWIR response at ~¥12 um

Transmission

* Current semiconductor efforts focused °
on gate dielectric development (HfO,) 1
for more efficient depletion
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N8 ) CdO being investigated as MWIR plasmonic
F‘IB‘.Eh-B.eEllm'Pt : material
* Doping series of epitaxial films obtained

from NCSU and Raman used to quantify
doping and lattice distortions

E— * Current semiconductor efforts focused on
gate dielectric development (MgO & HfO,)
and in-house CdO preparation




Graphene Spectral Tunability

Graphene has
interesting
electrically tunable
optical properties in
the infrared.

However, it is a 2D
material with very
low absorption.

Use a nanoantenna
to couple light more
efficiently.

Bandgap Tuning

Fermi Level Tuning
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Bernal Stacked

Bilayer Graphene

BLG: E-Field=0 BLG: E-Field>0

Bandgap opens in BLG'

with transverse E-field.

Interband
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Graphene Detector ) i,

Using the top nanoantenna as both an optical coupler and
as an electrical contact.

Dielectric _

Maximize the optical field
In the graphene layer.




Graphene Fermi-Level Tunability ) i,

= Tuning absorption through the thermal infrared band by
tuning the Fermi level of monolayer graphene.
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Summary ) i,

= Use a nanoantenna/metasurface/metamaterial to
enable advances in performance and allow new
capabilities such as tunability.

= Reduced dark current and increased QE in LWIR
detectors.

= Options to bring spectral tunability to FPAs.

= Ability to use new detector materials such as
graphene.




