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« Observation of anti-levitation of Landau levels
In vanishing magnetic fields



outline
« Background

« Sample

— HIGFET (Heterojunction Insulated-Gate Field-Effect Transistor)
 High quality 2DEG, peak mobility u ~ 107 cm?/Vs at n ~ 1.5x10! cm-.

 Result

— Anti-levitation is observed at low Landau level fillings v=4,5,6.
— No (anti) levitation at high Landau level fillings

— This observation is in good agreement with recent theoretical
predictions (C. Wang et al, PRB 89, 045314 (2014)).
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Floating or anti-floating of Landau levels
In vanishing B field?
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Wang, Avishai, Meir, and Wang, PRB 89, 045314 (2014) B




HIGFET
high mobility down to low densities
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Straight sidewall is important
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Very big density tunable range
~ 1x10° to ~ 7.5x101! cm™




Linear I-V at very low densities
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SdH oscillations at a low magnetic field
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Landau Level Filling Factor v

B=0.19/T

B=0.165T
B=0.133T



Density (10" cm™)

=
N

T=15mK
10 HIGFET _
8 I il
6 il
v=nh/eB
4L v=16 |
| |
* v=16 .
O . I . I . I . I . I .
0.00 005 010 0.15 0.20 0.25

Magnetic Field (T)



An (10° cm™®)

Magnetc Field (T)

o o o

Ot o i
) )
() o
) )
° ° o
o )
¢ o
)

1Lk ® i
0.00 0.05 0.10 0.15 0.20 0.25

0.30



R

(arb. units)

XX

— B =0.260T
—— B =0.218T
— B = 0.165T
—— B =0.133T
— B =0.079T

@_4

10111213 14 15 16



4 —————p——

T=15mK
HIGFET
3T )
&
O
=
o 2f .
N
2 * v=16
c 1 = v=0 T
[
O ¢ v=h
O : 1 : 1 : 1 : 1 ° : V|:
0.00 005 010 0.15 0.20 0.25

Magnetic Field (T)



Observation of anti-floating in vanishing B field
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part | conclusion

In a high-quality HIGFET, anti-levitation of Landau
levels is observed in vanishing magnetic fields.

This observation is in a good agreement with the
theoretical prediction (C. Wang et al, PRB 2014).



* Bloch oscillations in 2D superlattices
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outline

* motivation
« sample fabrication and characterization
« evidence of Bloch oscillations



what is Bloch oscillation? Bloch, Z. Phys, 1928

Under a DC electric field E

T = F = mxa = m x dV/dt = dp/dt
e F =eE, p = hk
/ i h dk/dt = eE

k =eEt/h

\/ L . g, ~ 1- cos (ak)
K, | K, K .
: ‘ , Vv ~ g, Jok ~ sin(aeEt/h)
mmmmoo- "Bz r ~ cos(aeEt/h) = cos(2xft)

K, = n/a, a: lattice constant f=aeE/h



» THz application — frequency tunable

f = aeE/h

why Bloch oscillations (BO) ?

BO frequency

~ THz

~ GHz

a=5A
E=0.1kV/cm
- f~1GHz
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f~1THz




Issues in 3D crystal
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1D vertical superlattice
Esaki and Tsu, 1975

Superlattice
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Issues in 1D vertical superlattice

» formation of high electric field domains
» electron — phonon scattering

» Impurity scattering

» surface roughness scattering



2D quantum “dot” superlattice (QDSL)

I.A. Dmitriev and R.A. Suris, Semiconductors 35, 212 (2001).

« 3D-gquantum confinement, electron-phonon scattering suppressed
« High sample quality, disorder scattering reduced
« 2D dimensionality, formation of electric field domains suppressed

 easy to fabricate, using interferometric lithography



sample fabrication
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sample characterization — magneto-transport
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geometric oscillations
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2R./d = N-1/4
or

N-1/4 = (2hk/ed)x1/B

N-1/4
PR S A LA

R, — cyclotron radius
ke — Fermi wavefactor
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Weiss et al, PRL 66, 2790 (1991)
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positive magneto-resistance around B =0

Modulation ~ 3% E.
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evidence of Bloch oscillations in 2D QDSL



one of the signatures for Bloch oscillations is
negative differential conductance (NDC)
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In yet another sample
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physical origin of NDC ?

e Bloch oscillations?

 thermal runaway?



thermal runaway

conductance

Temperature (T)

Temperature dependent conductance can give rise to an apparent NDC



(Suggested by Mark Lee)

!

to lock-In

e

R,=1.5 kO
Vdc = 0 to 11V —/_L

Vac =10 mV @

V

Vlock-in = RO/(RO+r) x Vac

r = dV/dI, the differential resistance of Bloch sample

»thermal runaway, r positive, V| i, > 0
»Bloch oscillations, r negative, and |r| > R,, V|...in IS Negative



true negative differential conductance
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physical origin of NDC ?

e Bloch oscillation?

et ay”?



more results on Bloch oscillations
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Cyclotron motion
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Plasmon oscillations
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In an infinitely large sample, o, Is very small,
no coupling between the cyclotron mode and
plasmon mode.

In a sample of finite size, ~ um, there is strong

coupling between the two. This results in a new
resonance mode, edge magnetoplasmon

mode. i ¢
i ‘Wj

® = 02 + [(0/2)2 + ©,2]42 o 1/B at high B fields



edge magnetoplasmon resonance
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time-domain THz magneto-spectroscopy
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coherent cyclotron resonance in Bloch oscillator
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FFT Amplitude (arb. units)
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2D sample without patterning
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