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Objective

Enable structure-property correlation analysis using a simplified
microstructural representation:

* Generate statistically similar volume elements based on n-
point correlation functions for heterogeneous material.

* Test the effect of different RVE configurations on the static
and dynamic macroscale response using a quasi-explicit
multiscale solver.



<> Theory: Volume elements

* Representative volume element « Statistical volume element (SVE),

(RVE), |s-the smallest volume also referred to as stochastic volume
over which a measurement can

be made that will yield a value
that is representative of the
whole.

element in finite element analysis,
takes into account statistics and
variability in the microstructure of
interest based on macroscopic
property of interest.
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Fig. 2 Types of microstructure representation (a)

Eigen microstructure — represented by discrete
Fig. 1 Deduction of RVE for continuous fiber reinforced phases (here 0 & 1) (b) Non-eigen microstructure —

composite for square and hexagonal lattice represented by continuous phase




<> Theory: Microstructural statistics

* One-point correlation function: probability that a randomly chosen
point in the medium belongs to a phase

* Two-point correlation function: probability that two randomly chosen
points x1 and x2 both lie in the same phase

* Lineal-path function: probability that the entire line segment between
points x1 and x2 lies in the same phase

* Two-point cluster function: the probability that two randomly chosen
points x1 and x2 belong to the same cluster of a phase

(b) (d)

Fig. 3 Depiction of microstructure statistics (a) given microstructure (b) One point correlation (c) Two point
correlation (d) Lineal-path correlation



<> Microstructure reconstruction algorithm

Phase recovery iterative algorithm

Step 1: Deduction of statistical parameter — two
point correlation
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<> Theory: FEZ2 method

Finite element squared (FE2) method is a computational homogenization
approach, which is based on the solution of two boundary value
problems, one for the macroscopic and one for the RVE scale.
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Fig. 4 Schematic figure of single scale and multiscale finite element mesh.

A multiscale solver is recently formulated in the spirit of FE2 and is
capable to deal with general loading conditions, including inertia effects.
Each time incremental problem can be solved exactly with a single

Newton-Raphson iteration with a constant Hessian, representing a quasi-
explicit multiscale solver (QEMS).



<> Quasi-explicit multiscale solver
Step-0 Consider a 1-D macroscopic mesh with n elements and n+1 nodes.

Step-1 Setup initial configuration (two RVEs per 1-D element).

o - o o- o

Step-2 Apply increment to the macroscopic boundary conditions.
Get boundary condition for all RVEs and solve RVE as BVP.

e

Step-3 Compute macroscopic force and update macroscopic nodes.

Step-4 Solve all RVE problems in the current macroscopic configuration.
Update information for the next time step.




< Improvement of QEMS

The original multiscale solver uses explicit Newmark method, which is conditionally
stable. Instead of using same time step, different time steps could be used in the

multiscale solver. In the step 4 of the flow chart, the boundary condition for all the RVE
could be applied adaptively.

Initial
RVE

Deformed
RVE
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Fig. 5 Schematic figure of sub-cycling in multiscale solver. 10



<> Case Study

* Problem Description

A microstructure with a circular inclusion is studied with both a 16X16 and a 8X8
pixel grid. These microstructures represent actual and pixelated volume element
image. The coarser mesh microstructure is generated iteratively by minimizing
difference in two point correlation with the volume fraction constraint. QEMS is
used to test the macroscopic response of the two sets of RVEs.
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Fig. 6 (a) Microstructure with circular inclusion on 16X16 pixel grid.
(b) Two point correlation of microstructure.
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Fig. 7 (a) Microstructure with circular inclusion on 8X8 pixel grid.
(b) Two point correlation of microstructure.
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Comparison of original and interpolated
correlation shows the approximation
during the mesh coarsening
Interpolated values are higher than
original data in general

Two point correlation for r=0 (or 1 point
correlation) are close for both cases
Direct interpolation can cause distortion
in complex asymmetric volume element

deduced from original 8X8 pixel grid (-) and
interpolated from 16X16 (--) pixel grid.

 Computational results
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Fig. 9 Multiscale and single scale finite element model.
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Quasi-static response by multiscale solver (MS)
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Fig. 10 Displacement distribution along macroscopic domain at final time with different loading rate.
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Conclusions

* Using the 2-point correlation function via fft, along with simulated
annealing, a microstructure can be recreated with various grid sizes.

* With the coarsening procedure, while keeping the similar statistic property
of RVEs, the presented macroscopic displacement distribution is similar.

» Effective Young’s modulus computed by the wavelength and evolution of
static stress are shown to be in good agreement.
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