
Emergent homogenization techniques 
and effective dynamical properties

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

tensile tester [7]

grippers w/1x1 mm gage section sample for testing [7]

1

Sample under test [7]

SAND2016-6973D



Team Members:

Chenchen Liu – University of Pennsylvania

Pulkit Sharma  – Arizona State University

Mentors:

Pania Newell – Sandia National Labs

Joe Bishop – Sandia National Labs

Ashley Spear – University of Utah

Brian Lester – Sandia National Labs

Gustavo Castelluccio – Sandia National Labs

Matthew Bonney – University of Wisconsin-Madison

2



Enable structure-property correlation analysis using a simplified 
microstructural representation:

• Generate statistically similar volume elements based on n-
point correlation functions for heterogeneous material.

• Test the effect of different RVE configurations on the static 
and dynamic macroscale response using a quasi-explicit 
multiscale solver.

Objective
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Theory: Volume elements

• Representative volume element 
(RVE), is the smallest volume 
over which a measurement can 
be made that will yield a value 
that is representative of the 
whole.

• Statistical volume element (SVE), 
also referred to as stochastic volume 
element in finite element analysis, 
takes into account statistics and 
variability in the microstructure of 
interest based on macroscopic 
property of interest. 

(a)                                        (b)

Fig. 1 Deduction of RVE for continuous fiber reinforced 
composite for square and hexagonal lattice

Fig. 2 Types of microstructure representation (a) 
Eigen microstructure – represented by discrete 
phases (here 0 & 1) (b) Non-eigen microstructure –
represented by continuous phase 
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Theory: Microstructural statistics

• One-point correlation function: probability that a randomly chosen 
point in the medium belongs to a phase 

• Two-point correlation function: probability that two randomly chosen 
points x1 and x2 both lie in the same phase 

• Lineal-path function: probability that the entire line segment between 
points x1 and x2 lies in the same phase 

• Two-point cluster function: the probability that two randomly chosen 
points x1 and x2 belong to the same cluster of a phase 

Fig. 3 Depiction of microstructure statistics (a) given microstructure (b) One point correlation (c) Two point 
correlation (d) Lineal-path correlation
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 Microstructure reconstruction algorithm

Target microstructure
• phi (black phase) = 0.16

• I : target indicator function

• NXN : grid size

Target 2-point correlation

Phase recovery iterative algorithm

Target microstructure
• (black phase) = 0.16

• I : target indicator function

• NxN : grid size

Step 1: Deduction of statistical parameter – two 
point correlation    

Gaussian random 
microstructure as initial 
iteration
• (constraint)

Step 2: Initialize optimization

Iteration steps 
• Fourier amp. & angle

• Replace amp. with target 
amplitude

• Assign 0’s & 1’s based on 
maximum likelihood 

Step 3: Phase recovery iteration    
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Optimized microstructure
• = 0.16

•Error

Reconstructed with 
periodic boundary 
condition

Step 4: Invoking periodic 
structure constraint    

Step 5: Selection of cluster 
of particles     

Optimization is 
performed only on the 
selected cluster through 
Simulated Annealing

Final reconstructed 
microstructure
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Theory: FE2 method
• Finite element squared (FE2) method is a computational homogenization 

approach, which is based on the solution of two boundary value 
problems, one for the macroscopic and one for the RVE scale. 
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RVE

≈

• A multiscale solver is recently formulated in the spirit of FE2 and is 
capable to deal with general loading conditions, including inertia effects. 
Each time incremental problem can be solved exactly with a single 
Newton-Raphson iteration with a constant Hessian, representing a quasi-
explicit multiscale solver (QEMS).

Fig. 4 Schematic figure of single scale and multiscale finite element mesh.



Quasi-explicit multiscale solver

Step-1 Setup initial configuration (two RVEs per 1-D element).

Step-2 Apply increment to the macroscopic boundary conditions.
Get boundary condition for all RVEs and solve RVE as BVP.

Step-3 Compute macroscopic force and update macroscopic nodes.

Step-4 Solve all RVE problems in the current macroscopic configuration. 
Update information for the next time step. 

Step-0 Consider a 1-D macroscopic mesh with n elements and n+1 nodes.
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• The original multiscale solver uses explicit Newmark method, which is conditionally 
stable. Instead of using same time step, different time steps could be used in the 
multiscale solver. In the step 4 of the flow chart, the boundary condition for all the RVE 
could be applied adaptively. 

 Improvement of QEMS

Initial 
RVE

Deformed
RVE

Fig. 5 Schematic figure of sub-cycling in multiscale solver.



Case Study
• Problem Description 

A microstructure with a circular inclusion is studied with both a 16X16 and a 8X8 
pixel grid. These microstructures represent actual and pixelated volume element 
image. The coarser mesh microstructure is generated iteratively by minimizing 
difference in two point correlation with the volume fraction constraint.  QEMS is 
used to test the macroscopic response of the two sets of RVEs.

(a) (b)

Fig. 6 (a) Microstructure with circular inclusion on 16X16 pixel grid. 
(b) Two point correlation of microstructure.

(a) (b)

Fig. 7 (a) Microstructure with circular inclusion on 8X8 pixel grid. 
(b) Two point correlation of microstructure.
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Fig. 8 Comparison of two point correlation 
deduced from original 8X8 pixel grid (-) and 
interpolated from 16X16 (--) pixel grid.

• Comparison of original and interpolated 
correlation shows the approximation 
during the mesh coarsening

• Interpolated values are higher than 
original data in general

• Two point correlation for r=0 (or 1 point 
correlation) are close for both cases

• Direct interpolation can cause distortion 
in complex asymmetric volume element
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• Computational results

Fig. 9 Multiscale and single scale finite element model.
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time
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Fig. 11 Displacement distribution 
along the macroscopic domain at 
final time.

Materials
E

(GPa)
density
(kg/m3)

Inclusion 20 1000

Matrix (steel) 200 7000

Effective
114.9 4750

Effective 
116.8 4750time

u
Boundary condition

Fig. 12 Time evolution of the 
volume average of stress along 
the macro domain. 

Table. 1 Material properties of 
the composite and the calculated 
Young’s modulus. 
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Fig. 10 Displacement distribution along macroscopic domain at final time with different loading rate.
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Conclusions
• Using the 2-point correlation function via fft, along with simulated 

annealing, a microstructure can be recreated with various grid sizes. 
• With the coarsening procedure, while keeping the similar statistic property 

of RVEs, the presented macroscopic displacement distribution is similar. 
• Effective Young’s modulus computed by the wavelength and evolution of 

static stress are shown to be in good agreement.
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