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Reflection Transmission

1.7 um Te cube array

Dielectric Resonator Metamaterials @ sandia

Laboratories

Low loss option for IR & visible wavelengths
Ohmic currents replaced by displacement currents
High permittivity materials

Starting Point: Mie theory - multipole resonances
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How do we achieve sharp resonances?
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Fano resonances of metasurfaces: 0.8 ‘ N o ;
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Wu, et al.
Nature Comm. 5, 3892, 2014
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AOM 10, 1431, 2015
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Nature Comm. 5, 5753, 2014
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High Quality-Factor Fano Metasurfaces

Outline
* Operating principles

* Hi-Q monolithic design
 Nature of the Fano mode

* Experimental demonstrations:

> SOI: measured Q-factor of = 350 at 990 nm
» GaAs: Q-factor of * 600 at 975 nm
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Operating principles
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Design is scalable from NIR through RF!
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“Numerical Experiment”: multipole decomposition of the resonator’s response in the array.

7'\ Understanding the nature of the Fano mode @ sandia

incident plane wave surface

currents
LM

= 8 (B &8 = =

Love’s
Equivalence Principle

incident plane wave

1. Simulate array response 3. Replace resonator with surface
2. Collect tangential fields on fictitious box currents on box
i\ %
/ \
4. Calculate far-field due to surface currents on
box alone
5. Fit to multipoles —all dipole and quadrupole
modes
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Multipole decomposition of resonator response
 x-polarized electric field excitation for full array
* Far-field scattering for single cube
* Extract multipole powers

At the Fano resonance:

* m, dominates

* p, is extinguished

* p, and M,, (magnetic
quadrupole) are excited
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What about p, and M,,? @ Netonel
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At Fano resonance:
* both multipoles are excited
* radiated fields cancel in forward and backward directions!!

|E|2 on the x-z plane |E|? on the y-z plane
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Residual imbalance of scattering by p, and M,,
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FDTD simulations at the A = 10.8 um resonance
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electric field vector plots

min

5X5 array

Sandia

Array effect on the magnetic dipole National
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m, can’t radiate
broadside (no forward
lobe)

near center: local
fields inhibit radiative

decay of m,

near edges: m, can
radiate laterally
quality factor increases
towards center

quality factor increases
with array size
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Field Enhancement vs. Array Size @ National
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H, for central resonator
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* beginning to saturate for 9x9 array
» effect arises from nearby resonators
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Experimental Demonstrations of Fano Metasurfaces

1.Silicon-on-insulator Fano arrays

2.GaAs Fano arrays
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S Experimental verification: @ Natorel
@l@ Laboratories
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DRs are now possible in 1l1-V semiconductors@ Laboratories
New process for (Al)GaAs resonators

Deposit SiO,+ Deposit Ni+
Spin PMMA+ lift-off+dry
E-beam etch SiO,

Iithographi

Oxidation

n~=3.5
nh= 1.6

mbsincl@sandia.gov 16



Sandia
. . National
GaAs Cylindrical Resonators @ Laboratories

measured
10—
Gold mirror
* height =300 nm ]
. . E
* diameter varies near 300 nm 3 -
> D340 nm
2 051 ~—— D360 nm
2
>
8
S
(19
0.0 : S
800 1000 1200 1400 1600
Wavelength (nm)
T PR— simulated
Gold mirror
s ﬂ\ —ed
= — D340 nm
= D360 nm
E
» 05}
>
>
i ’
@
flectivit ds gold at | -
reflectivity exceeds gold at severa T T
wavelengths Wavelength (nm)

mbsincl@sandia.gov 17



1.0 1.1 3.2 1.3 1.4 1.5
Wavelength (um)

- T
1.0

. . . . Sandia
Multilayer IlI-V Dielectric Metamaterials @ Natioral
1.0 T e ———————————
. (-
l éo.s !
2
. 0.0

mirror

0.5}

Reflectivity (experiment)

1.0 g & 1.2 1.3 1.4 1.5
Wavelength (um)

Broad spectral bands of near perfect reflectivity!

mbsincl@sandia.gov 18



=INE

\1/

GaAs Fano Resonators: Q ~ 600!
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FWHM=1.6 nm
Q~600
Highest DR Q-factor :22::2; ]
reported to date — Scale 3
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* GaAs is direct bandgap = lower absorption losses
* GaAs has a large y?) 2 nonlinear devices (SHG, down-conversion, etc.)
* Can incorporate InGaAs quantum wells for gain and photon detection
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Conclusions @ Leoraeties

* A new, simpler design for dielectric Fano resonator
metasurfaces

» One resonator per unit cell

* Intra-resonator coupling between bright and dark modes

» Bright electric dipole and dark magnetic dipole
* Approach is scalable from NIR - RF
* High Q-factors for SOl (=350) and GaAs (~600)

 Extension to (Al)GaAs will allow for active devices
» Spectrally selective detectors
» Optical modulators
» Nonlinear devices
» Lasers??
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