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Goal: break computational barrier
High-fidelity simulation
+Indispensable for analysis, design, and qualification of aerospace systems

- High fidelity: large-scale nonlinear dynamical-system models

+ Validated RANS/LES model: matches experiment to within 5%
- Large scale: 86 million cells, 200,000 time steps

- High simulation costs: 6 weeks, 5000 cores

barrier

Time-critical aerospace applications

o rapid desigh o UQ e structural health monitoring ¢ model predictive control



Offline: proper orthogonal decomposition

d
Full-order model: d_)t( =f(x;t,u); x(0,u)=xo(p), t€l0, T], pmeD

1. Collect state snapshots

2. Compression via SVD:




Online: projection

d
Full-order model: d—: =f(x;t,u); x(0,u)=xo(p), t€l0, T], pmeD
1. Reduce number of unknowns 2. Reduce number of equations
~ ~ a X
x(t) ~ %(t) = ®K(t) W, )T (F(®% t 1) — D) =0

s o DL

e R |
PN A

pressure fields for example POD modes



Galerkin v. least-squares Petrov—Galerkin (LSPG)

Key question: Optimize then discretize or discretize then optimize?

-----------------------------------------
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LSPG and Galerkin are equivalent: The LSPG ROM ODE exists: Error analysis (backward Euler):
* for explicit time integrators, * for explicit time integrators * LSPG smaller error bound than Galerkin
* inthe limit At - 0, or * for single-step time integrators, or ¢ LSPG bound minimized for intermediate At

* for SPD residual Jacobians. * if fis linearin x. * Larger basis dim - smaller optimal At



Numerical experiments: cavity flow

high-fidelity model

* unsteady Navier—Stokes
* DES turbulence model
* 1.2 million dofs

* Re=6.3x10°
* Mo=0.6

* CFD code: AERO-F
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+ LSPG more accurate than Galerkin
v Methods equivalent as At - 0

Galerkin ROM
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- unstable for long time intervals
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Sample mesh
LSPG ROM: X" = arg minHAr”(Cl))’E)Hg

X
Question: Can we choose A to generate significant speedups?
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+ GNAT: A= (P®;)" P leads to low cost
+ HPC implementation: extract sample mesh associated with P




GNAT results

sample
mesh
o + HPC on a laptop
vorticity field pressure field
GNAT ROM

32 min, 2 cores

high-fidelity
5 hours, 48 core!

+229x savings in core—hours

See demo!




Structure preservation for finite-volume methods
Question: Can we make stronger guarantees of our LSPG ROM solution in CFD?

Full-order model ODE: ﬁ = f(x;t, )

dt
fQ X, t")dx fr X, t")ve(X, t)ng(X)dXx
Xj = fQ X, )vie(X, t)dx fi = fr X, t) Vk(X t)ve(X, t)ng(X)dX
fQ X, t)E(X, t)dx fr E(X, t)ve(X, t)ng(X)dx

Full-order model OAE: r" (x) =0
[o p(X, ") — p(X, t") dx+f fr p(X, t)ve(X, t)ng( X)dXdt
rf'(x) = fQJ_ p(X, t" T v (X, t"T) — p(X, t") v (X, t7) dx—l—f fr X, t)vi(X, t)ve(X, t)ne(X)dxXdt
fQj. p(X, t"TH)E(X, t"h) — p(X, t")E(X, t”)dx+f fr o(%, t)E(R, t)ve(X, t)ne(X)dXdt
Interpretation of r; : Violation of conservation laws over (2;

LSPG ROM: X" = arg min||Ar"(®X)[|5 < Min. sum of squares of conservation-law violations
%
+ Favorable properties over Galerkin projection

- Likely not conservative over any subdomain



Structure preservation for finite-volume methods
Idea: Equip LSPG ROM with conservation-law constraints over subdomains

LSPG ROM: minimize |Ar"(®%)]]5

LSPG-FV ROM: minimize ||Ar"(®X)||3

subject to r'(®x) =0
fQj (%, t"1) — p(X, t")d% + finﬂ ffj p(X, t)ve(X, t)ng(?)d?dt
r'(x) = ffzj p(X, t" v (X, ") — p(X, t")vie(X, t")dX + f fr X, t)vi(X, t)ve(X, t)ng(X)dXdt
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Example: quasi-1D Euler

L —LSPG method speedup
\ \ \ , O | —GNAT |
o 005 = 100} ==+ LSPG-FV _ LSPG 0.57
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; | 01 015 | | o S LSPG-FV 0.44
. . (Vp)
spatial variable S GNAT-FV 5 3
* 900 control volumes * (t: (1) initial M, (2) exit-pressure rate E AR AN v -= .

7 Y + constraints: better

* 2700 dofs

* constrained ROMs: one subdomain

See demo!
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long-time behavior



