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High-fidelity	simula(on

+Validated	RANS/LES	model:	matches	experiment	to	within	5%	

- Large	scale:	86	million	cells,	200,000	.me	steps	

- High	simula(on	costs:	6	weeks,	5000	cores

barrier

๏ rapid	design ๏ structural	health	monitoring ๏model	predic.ve	control๏UQ

+ Indispensable	for	analysis,	design,	and	qualifica(on	of	aerospace	systems	
- High	fidelity:	large-scale	nonlinear	dynamical-system	models

Time-cri(cal	aerospace	applica(ons

Goal:	break	computa.onal	barrier



1. Collect	state	snapshots

D
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Offline:	proper	orthogonal	decomposi.on
Full-order	model:

dx

dt
= f(x; t,µ); x(0,µ) = x0(µ), t 2 [0,T ] , µ 2 D

2. Compression	via	SVD: =
X1X2X3 U ⌃ VT�



How	to	select	test	basis															?

2. Reduce	number	of	equa.ons
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Online:	projec.on
Full-order	model:

dx

dt
= f(x; t,µ); x(0,µ) = x0(µ), t 2 [0,T ] , µ 2 D

x(t) ⇡ x̃(t) = �x̂(t)
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1. Reduce	number	of	unknowns
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pressure	fields	for	example	POD	modes
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Galerkin	v.	least-squares	Petrov–Galerkin	(LSPG)
Key	ques0on:	Op(mize	then	discre(ze	or	discre(ze	then	op(mize?

Full-order	model	ODE

Full-order	model	O∆E
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Galerkin	ROM	ODE
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LSPG	ROM	O∆E
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(me	discre(za(on

LSPG	ROM	ODE
 (x̂, t)T� ˙̂

x =  (x̂, t)T f(�x̂, t)

LSPG	
projec(on

LSPG	and	Galerkin	are	equivalent:	
• for	explicit	.me	integrators,	
• in	the	limit	∆t	→	0,	or	
• for	SPD	residual	Jacobians.

The	LSPG	ROM	ODE	exists:	
• for	explicit	.me	integrators	
• for	single-step	.me	integrators,	or	
• if	f	is	linear	in	x.

Error	analysis	(backward	Euler):	
• LSPG	smaller	error	bound	than	Galerkin	
• LSPG	bound	minimized	for	intermediate	∆t	
• Larger	basis	dim	→	smaller	op.mal	∆t
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Numerical	experiments:	cavity	flow
high-fidelity	model

• unsteady	Navier–Stokes	
• DES	turbulence	model	
• 1.2	million	dofs

• Re	=	6.3	x	106	

• M∞	=	0.6	
• CFD	code:	AERO-F

LSPG	ROMGalerkin	ROM

- unstable	for	long	.me	intervals + stable	and	accurate	(most	∆t)
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+ LSPG	more	accurate	than	Galerkin	
✓Methods	equivalent	as	∆t	→	0
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LSPG	ROM	results

+ LSPG	error	minimized	for	intermediate	∆t	
+ LSPG	error	and	wall	.me	reduced	by	>10x	by	increasing	∆t

0  t  2.5



Sample	mesh
LSPG	ROM:

Ques0on:	Can	we	choose	A	to	generate	significant	speedups?
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]
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Can we select A to make this inexpensive?
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ẑ2Rp
k�R r̂

n (�ẑ) k2
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+ GNAT: A = (P�R)+ P leads to low-cost

O✏ine: Construct �R (POD) and P (greedy method)
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n (�ẑ) k2
2.

Can we select A to make this inexpensive?

1. r

n(x) ⇡ r̃

n(x) = �R r̂

n(x) 2. r̂

n(x) = arg min
r̂

kP�R r̂ � Pr

n(x)k2

c

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

x̂

n = arg min
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ẑ2Rp

k (P�R)+ P| {z }
A

r

n (�ẑ) k2
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x̂

n = argmin
x̂

kArn(�x̂)k22

+	GNAT:																															leads	to	low	cost	
+	HPC	implementa.on:	extract	sample	mesh	associated	with	P

Sample mesh: HPC implementation

x̂

n = arg min
ẑ2Rp

k (P�R)+ Pr

n (�ẑ) k2
2

Key : GNAT samples only a few entries of the residual Pr

n

Idea: Extract minimal subset of the mesh

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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vor(city	field pressure	field

GNAT	ROM  
32	min,	2	cores

high-fidelity	
5	hours,	48	cores

+229x	savings	in	core–hours

+HPC	on	a	laptop

sample	
mesh

GNAT	results

See	demo!



Structure	preserva.on	for	finite-volume	methods
Ques0on:	Can	we	make	stronger	guarantees	of	our	LSPG	ROM	solu(on	in	CFD?

Full-order	model	ODE: dx

dt
= f(x; t,µ)
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+	Favorable	proper.es	over	Galerkin	projec.on	
- 	Likely	not	conserva.ve	over	any	subdomain
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Example:	quasi-1D	Euler
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Problem Description for Demo

July 8, 2016

1 Reaching to a steady state

First numerical example solves a quasi 1D-Euler equation for an inviscid compressible flow in one

dimensional nozzle with continuously varying crossectional area. The nozzle has a bottleneck in the

middle. Figure 1 shows the cross-sectional area of the nozzle along the major axis.
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Figure 1: Cross-sectional area of the nozzle

The geometry of the nozzle and gas property are defined as they follow:

• The length of the nozzle is 0.25 m

• The specific heat ratio (�) is 1.3

• The gas constant (R) is 355.4

• The total temperature is 2800 K

The discretizations are defined as it follows:

• Number of control volumes : 300

• Number of time steps : 29

• The time step size : 0.01

A parametric reduced order model based on LSPG is constructed. Two parameters RP
exit

and

M
b

are defined as

• RP
exit

: A rate of increase in exit pressure

• M
b

: An initial Mach number at the bottleneck

Two sample points for RP
exit

are used (RP
exit

2 {0, 0.1}). Four sample points for M
b

are used

(M
b

2 {1.7, 1.8, 1.9, 2.0}). Figure 2 shows initial Mach number distribution throughout the spatial

discretization for four di↵erent sample values of M
b

.
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method speedup
LSPG 0.57
GNAT 4.4

LSPG-FV 0.44
GNAT-FV 5.3

• 900	control	volumes	
• 2700	dofs

• 			:	(1)	ini.al	M∞,	(2)	exit-pressure	rate	
• constrained	ROMs:	one	subdomain +	constraints:	be=er	

long-.me	behavior

µ

Structure	preserva.on	for	finite-volume	methods
Idea:	Equip	LSPG	ROM	with	conserva(on-law	constraints	over	subdomains

LSPG	ROM:

LSPG-FV	ROM:
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See	demo!


