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Abstract— Secure high-speed communication is required to 

ensure proper operation of complex power grid systems and 

prevent malicious tampering activities. In this paper, artificial 

neural networks with temporal dependency are introduced for 

false data identification and mitigation for broadcasted IEC 

61850 SMV messages. The fast responses of such intelligent 

modules in intrusion detection make them suitable for time-

critical applications, such as protection. However, care must be 

taken in selecting the appropriate intelligence model and decision 

criteria. As such, this paper presents a customizable malware 

script to sniff and manipulate SMV messages and demonstrates 

the ability of the malware to trigger false positives in the neural 

network’s response. The malware developed is intended to be as 

a vaccine to harden the intrusion detection system against data 

manipulation attacks by enhancing the neural network’s ability 

to learn and adapt to these attacks. 
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I.  INTRODUCTION 

The power industry is increasingly relying on robust 
communication infrastructures to transmit and analyze 
transmission and distribution measurements in adaptive 
protection and control schemes. As the reliance on these 
technologies increases, so does the threat posed by attackers. If 
not properly secured, these communication-enabled 
technologies will be vulnerable and pose a potential to cripple 
the reliability and economy of the grid. The main enabler of 
automated adaptive protection schemes is the IEC 61850 data 
modelling standard. One of the main security challenges faced 
by modern IEC 61850-based protection techniques is data 
manipulation attacks within the process bus. According to the 
IEC 61850 model, the process bus is the medium where current 
and voltage measurements and event triggered commands are 
communicated as Sampled Measured Values (SMV) and 
Generic Object Oriented Substation Event (GOOSE) messages, 
respectively, within a local area network. The core 
vulnerability is in the fact that these time-critical messages are 
broadcasted over the local area network (LAN) unencrypted. 
Therefore, in the event of a network breach or the presence of a 

malicious insider within the network, data manipulation of 
such messages is an easy task and thus the opening and closing 
of circuit breakers is possible via injecting fake current and 
voltage values [1][2]. 

In fact, the catastrophic impacts of data manipulation and 
false data injection attacks on the reliable operation of the 
power system have been widely researched in recent literature. 
Authors in [3] showed how false measurements feedback to 
automatic generation control could impact the physical system 
stability by causing sudden declines in the system frequency, 
which in its turn causes unwanted load shedding schemes. The 
work in [4] demonstrates two realistic false data attack 
scenarios in which attackers introduce arbitrary errors to state 
variables to achieve a false state estimation of the power 
system. In the study conducted in [5], the authors quantitatively 
analyze the damage caused by false data injection with regards 
to the power system operation and security. 

On the other hand, there are several works in the literature 
that focus on defense strategies to minimize service loss 
through several defense mechanisms. In [6], the authors 
recognize the potential impacts of data injection on the process 
bus and proposed an agreement algorithm to detect, locate, and 
prevent malicious data from being accepted by the IEDs and 
protection devices. In [7], the authors present an overview of 
vulnerabilities in the IEC 61850 protocol suite and discuss a 
method of GOOSE message modification using a malware 
script to sniff, manipulate, and inject control messages into the 
process bus in detail. In [8], the authors presented an intrusion 
detection system that is capable of filtering malicious messages 
based on predefined rules and known malicious signatures. In 
[9], an intrusion detection system based on GOOSE and SMV 
rule violation indicators was presented. This system, similar to 
other rule based systems, will not be able to detect unknown 
attacks that are not defined in their rule base. 

Even though the Intrusion Detection System (IDS) will 
filter out uncoordinated attacks, it is still not robust enough to 
secure IEC 61850 automation processes. These solutions are 
also network-based and are themselves vulnerable to data 
manipulation from a savvy attacker. Attackers with sufficient 
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information can spoof different data fields to obfuscate 
themselves from this IDS. 

 To accomplish the goal of robust security, machine learning 
techniques have been introduced to leverage the intelligence of 
rule based IDS. Machine-learning systems use the approach of 
anomaly detection in which a model is defined and positioned 
as normal and if an outlier is detected that differs, it is 
considered to be an anomaly [10]. This need is recognized by 
the authors in [11] and to that end, they incorporated a 
protection algorithm using a trained coupled time-series neural 
network (NN) that predicts incoming current measurement 
based on the microgrid’s recent operating history. Then, an 
intrusion is detected and announced if a real measured value 
deviates from the predicted one. The potential of this solution 
was tested on data collected from a simulated microgrid and 
the results in [11] are promising for rapid verification of data 
integrity. However, the accuracy demonstrated was cultivated 
in a controlled testing environment using high current values 
for the malicious data injection. In a case where the attack is 
designed for the target system, the accuracy of the IDS deviates 
from the results in [11]. This issue must be addressed in the 
NN to ensure reliability in real-world attack scenarios. 

Accordingly, the work in this paper is an extension of the 
authors’ previous work in [11] where a configurable malware 
is developed to be used as a tool to examine and quantify the 
reduction in accuracy experienced by the NN in targeted attack 
scenarios. The purpose of this tool is to be used as a vaccine to 
harden the IDS against smart attacks by fine tuning its decision 
criteria and model parameters. 

The rest of the paper is organized as follows: Section II 
describes the power microgrid model and the predictive IDS. 
Section III explains the development of the details of the 
malware script. Section IV will demonstrate the reduction in 
the accuracy of the NN against a variety of attack scenarios and 
Section V concludes this work. 

II. SYSTEM DESCRIPTION 

The developed microgrid model, shown in Fig. 1, consists 
of two AC generators with a power capacity of 4.5 kW each. 
The generators are feeding two AC loads at buses 3 and 5 and 
two DC loads through the unidirectional converters shown. The 
microgrid is connected to the main utility grid via CB21. The 
microgrid model was built on MATLAB SIMULINK. An IEC 
61850-based protection scheme was developed for fault 
localization and clearance. Consider the case of transmission 
line TL3. Merging units (MU31 and MU32) publish the current 
measurements as SMV messages from the left and right ends of 
the transmission line, respectively. An intelligent electronic 
device (IED3) subscribes to these messages and calculates their 
difference. If the difference is greater than a pre-specified 
threshold, a fault on the line is detected and IED3 issues a trip 
signal to CB31 and CB32 to clear the fault. Therefore, an 
attacker can inject fake packets with high current values in 
order to trigger an unwanted trip signal.  

 Fig. 2 shows a flowchart of the proposed IDS. The main 
idea is to add a trained intelligent module to IED3 which holds 
a buffer of N previous current measurement samples. These 
samples represent the recent history of operation at the section 
where IED3 is located and are used to forecast the value of the 
current in the incoming message. Once a new message is 
received, IED3 will compare the real value to the forecasted 
one. If the difference in the error is less than 2%, the message 
is processed, otherwise an alarm is issued and the forecasted 
value is provided to assist the decision on whether to block or 
process the incoming packets by the protection control logic 
while the intrusion is identified and removed. The actual 
blocking decision is to be taken by a higher security layer 
which will be addressed in future work. 

 The microgrid was simulated under different operating 
conditions and varying fault scenarios to generate the database 
used to train the neural network. Two major cases were 
studied: the first is in the grid-connected mode of operation and 
the second is in the islanded mode of operation. For each of the 

Fig. 1. Power Microgrid Model. 
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two cases mentioned, and on each transmission line, five types 
of faults were applied, namely, single-line-to-ground (A-G), 
line-to-line (B-C), double-line-to-ground (B-C-G), three-phase 
(A-B-C), and 3-phase-to-ground (A-B-C-G) faults. 
Additionally, each type of fault was applied on the beginning 
(10%), middle (50%), and end (90%) of each transmission line. 
For all cases mentioned above, the current measurements from 
both ends of TL3 were recorded. It is worth noting that the 
aforementioned contingency scenarios were utilized as a proof 
of concept of the developed IDS. The extension of this work 
would involve the utilization of the microgrid model to train 
the IDS neural network for more contingency scenarios, such 
as the sudden loss of a generating unit for example.  

 Fig. 3 shows the hardware setup built to test the IDS and 
implement the developed malware script over a real IEC 61850 
process bus architecture. The recorded current values of both 
transmission lines from the simulated microgrid model 
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Fig. 2. IDS Algorithm Flowchart. 
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Fig. 3. Hardware Setup. 

were recorded in a database of coefficient files and fed as 
inputs to the merging units. The measuring units then publish 
these measurements as IEC 61850 SMV packets. IED3 is 
programmed to subscribe to these messages and processes 
them through the IDS NN, which it hosts. The firmware for 
MU31, MU32, and IED3 along with the IDS were coded in C 
and downloaded on three different Odroid C2 devices running 
a Linux kernel. 

III. MALWARE DEVELOPMENT 

A. SMV Message Structure 

 In order to better understand the malware development 
procedure shown in Fig. 4, the structure of the SMV message 
will be explained first. An SMV datagram follows a modified 
Abstract Syntax Notation One (ASN.1) Basic Encoding Rules 
(BER) Tag/Length pair encoding scheme [12]. The Tag field 
represents the type of information which is represented in the 
following SMV frame. 

 As shown in Fig. 5, the SMV datagram starts with the 
Destination MAC Address, which is a multicast address 
reserved for IEC 61850 applications always starting with 01-
0C-CD and is followed by the source MAC address. An SMV 
message has an IEEE 802.1Q VLAN ID and a unique Ethernet 
type (88-BA). The APPID field is a 4 octet field which the 
subscribing IEDs use to identify messages they are subscribing 
to. The Length field represents the length of the overall SMV 
datagram and is followed by two reserved fields left out by the 
standard for future use. 

 The second layer of a SMV message is the Application 
Protocol Data Unit (APDU), which consists of one or more 
Application Service Data Units (ASDU). The number of 
ASDUs is in the noASDU field [13]. Each ASDU then contains 
the following subfields [14]: 

 svID: unique identifier for each SMV message. 

 SmpCnt: incrementing counter with each published 

SMV. 

 ConfRev: counter for configuration changes. 

 SmpSynch: A boolean value indicating 

synchronization with a clock signal. 

 SeqData: List of data values related to the data set 

definition. 

B. Malware Development 

 In order to properly inoculate the NN against smart attacks, 
a malware script for targeted attacks against the process bus 
was developed. The malware was written in Python in 
conjunction with network sniffing and packet crafting libraries 
from Scapy. As mentioned earlier, SMV messages are 
broadcasted over the LAN and are unencrypted. Once the 
malware is run, it starts to passively sniff packets from the 
network. Next, it filters those messages looking for the 
destination MAC address assigned for SMV messages, the 
Ethertype (88xBA), and the designated APPID identifier. 

 Once the SMV packet has been identified, it is converted 
into a list of hexadecimal pair strings that will make searching 
the packet more convenient. After the packet has been properly
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Fig. 5. SMV Datagram Structure. 

decoded and stored as hex pairs, the malware can be utilized to 
spoof any desired field of the captured SMV packet. However, 
the developed malware will spoof all the fields (source MAC 
address, destination MAC address, APPID …) and change only 
the seqData field, which holds the value of the current 
measurement. This is intended to trick the IED into recognizing 
this packet as being sent from its original merging unit. 

In order to manipulate the current measurements, a class 
called “ASDU” was created and used to store the data collected 
from the packet, and to conveniently build the new packet 
before it is injected into the process bus. A major obstacle in 
the design of this script is to write it in a way that will be able 
to process any number of ASDUs and seqData for the SMV 
packet. These values are not static and can be changed by the 
network administrators based on how often they want the 
collected measurements to be sent. In order to address this 
issue, we implement our datafield search function, which is 
called in an incremental manner to make sure the packet will 
be of the appropriate length and that it modifies all ASDUs and 
seqData fields detected by the script.  

The first field searched for is the noASDU field as this will 
describe the number of ASDUs present in the packet. Once this 
value is determined, a loop is created that iterates through each 
ASDU and records the information into the ASDU class. An 
array of pointers to ASDU objects is used to easily navigate 
through the collected data as this can become quite tedious 
when an extremely large amount of ASDUs are introduced. For 
each ASDU, the datafield type, length, and value of each field 
is stored into its own array of hex pairs for reasons that become 
apparent when the script re-crafts the packet with the modified 
data. As each field is decoded, it is stored into the 
corresponding ASDU class member. Once the entire packet has 
been decoded, the final step is to modify the existing data and 
send the new packet. 

It is important to note that the attacker must configure 
which fields they wish to modify and either manually change 
the value of the data, create an arithmetic function to 
manipulate the data, or read in predetermined values from a 
file. Depending on the method chosen, the script will begin to 
modify the data based on the attacker’s configuration, and 
overwrite the original ASDU class members with these new 
values. Once the modification is complete, the packet is rebuilt 
in the correct order and the spoofed packet with false data is 
broadcasted into the LAN. The flowchart in Fig. 4 presents the 
malware algorithm for visualization of the process. 

IV. RESULTS AND DISCUSSION 

Once this tool had been developed, spoofed messages were 

injected into the process bus to test the response of the IDS. 

The malware is assumed to be running on a computer device 

connected to the LAN of the microgrid under study. In order to 

test efficacy of the NN for intrusion detection, two data 

modification methods were used and the results for each were 

observed. 
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Fig. 6. Incorrect Forecasting Triggered by Malicious Alternating Sampled 
Values. 
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Fig. 7. Resuls for Injected Measurements Simulating a Real AC Waveform 
Measurements. 
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Fig. 8. Sample Shifting. 

First, the values of the currents were recorded and analyzed 

for the first few AC cycles. It was noticed that the amplitude of 

the recorded current waveform was around 3 A. As appreciated 

from [11], injecting values far above 3 A triggered an intrusion 

alarm. However, as explained earlier, the NN was trained to 

recognize the current values for normal and fault conditions. 

Therefore, in the first attack, fake packets were injected with 

alternating 3.5 A and -3.5 A at a fixed rate to signal a fake 

beginning of a fault situation. When configuring the malware 

script, the two values will be written to an input file and then 

the malware changes the data fields of the sniffed packets by 

alternating between these values. The following algorithm was 

used to inject the fake packets and is written generically to be 

applicable for many systems: 

f = fopen(“FakeSV.txt”, r+) 

Generate Fake Values (inject +/- 3.5) 

f.write(Fake Values) 

SetSampleRate(pps) 

while(!f.EndofFile){ 

f.readline(n) 

sendpacket(rate, mod_pkt) 

n += 1 } 
 

It is to be noted that the user of the malware tool is free to 

experiment with other algorithms or arithmetic functions for 

generating the fake values. The user can also experiment with 

the packet sending rate for a completely configurable data 

injection tool. The received and the forecasted samples from 

the IED were recorded in a log file and are plotted in Fig. 6. 

The blue waveform represents the SMV packets received by 

the IED, whereas the red waveform represents the forecasted 

values by the NN. The actual measurements (blue) were 

broadcasted at a rate of 4,800 Hz in accordance to the 

recommendations of the IEC 61850 standard, whereas the 

malware tool was transmitting its fake data at a rate of 48 Hz (1 

fake packet for every 100 true packets). A stream of 9,400 real 

current samples was published and in the meantime, the 

malware published 80 manipulated packets. Out of the 80 

attempts, 11 attempts (13.75%) were successful in attacking the 

NN and thus passing into the IEC protection logic false values 

reaching a maximum of around 4.5 A. This value is 1.5 times 

the rated value and was enough to issue a false positive and 

trigger a trip command. 

 The next data injection method is one that showed more 

promising results in successfully corrupting a network. This 

attack continuously replays values from a recoded log file that 

simulates the same waveform that the NN had been trained on 

for forecasting a fault. This method will increase the period of 

the injected values; however, the results show that the NN was 

not prepared to handle this kind of targeted attack. In Fig. 7, it 

is observed that the NN incorrectly forecasted the sampled 

values in two different locations within a window of 200 

samples between sample 17,050 and sample 17,250. Any one 

of these incorrectly forecasted paths would trigger a false 

positive and cause service interruption. If the injected data 

results in a false negative for more than three AC cycles, 

permanent damage can be inflicted upon the power grid’s 

equipment. 

It is known that Layer 2 broadcast messages, such as SMV 

messages, cannot be blocked. An important observation from 

the results of these attacks is that when the IED received the 

fake packet, it was not able to receive the true message 

simultaneously. This is shown in packet number 17,166 in Fig. 

8(a). As can be seen from Fig. 8(a), when the IED received the 

fake packet, the original data stream of legitimate SMV 



                          
Fig. 9. Malware Data Injeciton Statistics. 

messages was shifted by 1 sample. This shift was accumulated 

as more fake SMV packets were injected. As can be seen in 

Fig. 8(b), the shift accumulation lead to the IED receiving 

SMV messages that are totally out of phase from the original 

data stream. Here again, the utilization of the developed 

malware exploited another vulnerability in the studied process 

bus which needs to be addressed. 

It is also important to mention that the malware provides 

the user a means to control the rate of sending fake packets 

using the Scapy library function pps or packets per second. A 

test has been conducted to test the maximum speed at which 

the malware could broadcast fake SMV messages. Fig. 9 shows 

a summary of the statistics of the conducted experiment. For 

around one minute, the malware was sending at an average 

speed of 9,656 Hz, which is almost double than that set by IEC 

61850 (4,800 Hz). These statistics are affected by the message 

length and the specifications of the machine hosting the 

malware. In this test, the malware was run on Linux machine 

with Intel i7 processor rated at 3.50 GHz with an average 

packet size of 95 bytes. 

The previous results showed the effectiveness of the 

developed malware in testing the efficacy of the proposed 

predictive IDS. Using this developed malware as a training 

tool, not only can this NN be trained to detect several targeted 

attacks, but it can also be used to fine tune event thresholds to 

prevent service interruption during targeted attacks. Moreover, 

the developed malware tool can be used to benchmark other 

NN-related intrusion detection algorithms present in the 

literature. As mentioned earlier, the developed tool is 

configurable. Therefore, the user can control the type of attack 

by manually changing the value of the measurements, 

providing the tool with an arithmetic function to simulate 

certain scenarios or replay given values from a log file. Also, 

the user can adjust the rate of false data injection as desired. 

By these experimentations, the user can quantitatively analyze 

the performance of his or her IDS in terms of the ability of the 

tool to produce false positives and false negatives. 

V. CONCLUSIONS  

This paper developed the design and implementation of a 
targeted data injection attack that will simulate real AC 
waveforms in an attempt to interrupt power flow in a 
compromised power network. The targeted malware was 
developed in a configurable manner to allow the attacker to 
choose different methods of data injection. A predictive NN-
IDS was then tested against the targeted malware to observe 
how it would handle the smart attack. The results of the 
experiment demonstrated that the NN is yet to be properly 

trained or fine-tuned enough to detect malicious measurements. 
Fake measurements could lead IEDs to issue trip signals that 
would result in service interruptions in a real system. The NN 
showed resistance to less sophisticated data injection methods; 
however, it is still vulnerable to malicious data injection 
methods. Also, the NN demonstrated very little resistance to 
the simulated AC waveform. In order to better prepare the NN, 
the developed malware will also be used as a training tool to 
identify attack signatures, and allow the user to tune the event 
thresholds that would result in controlling messages being sent 
to the IEDs. The malware is configurable, easy to understand, 
and is simple to use to train predictive intrusion detection 
systems. 
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