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Abstract— Secure high-speed communication is required to
ensure proper operation of complex power grid systems and
prevent malicious tampering activities. In this paper, artificial
neural networks with temporal dependency are introduced for
false data identification and mitigation for broadcasted IEC
61850 SMV messages. The fast responses of such intelligent
modules in intrusion detection make them suitable for time-
critical applications, such as protection. However, care must be
taken in selecting the appropriate intelligence model and decision
criteria. As such, this paper presents a customizable malware
script to sniff and manipulate SMV messages and demonstrates
the ability of the malware to trigger false positives in the neural
network’s response. The malware developed is intended to be as
a vaccine to harden the intrusion detection system against data
manipulation attacks by enhancing the neural network’s ability
to learn and adapt to these attacks.
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I. INTRODUCTION

The power industry is increasingly relying on robust
communication infrastructures to transmit and analyze
transmission and distribution measurements in adaptive
protection and control schemes. As the reliance on these
technologies increases, so does the threat posed by attackers. If
not properly secured, these communication-enabled
technologies will be vulnerable and pose a potential to cripple
the reliability and economy of the grid. The main enabler of
automated adaptive protection schemes is the IEC 61850 data
modelling standard. One of the main security challenges faced
by modern IEC 61850-based protection techniques is data
manipulation attacks within the process bus. According to the
IEC 61850 model, the process bus is the medium where current
and voltage measurements and event triggered commands are
communicated as Sampled Measured Values (SMV) and
Generic Object Oriented Substation Event (GOOSE) messages,
respectively, within a local area network. The core
vulnerability is in the fact that these time-critical messages are
broadcasted over the local area network (LAN) unencrypted.
Therefore, in the event of a network breach or the presence of a
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malicious insider within the network, data manipulation of
such messages is an easy task and thus the opening and closing
of circuit breakers is possible via injecting fake current and
voltage values [1][2].

In fact, the catastrophic impacts of data manipulation and
false data injection attacks on the reliable operation of the
power system have been widely researched in recent literature.
Authors in [3] showed how false measurements feedback to
automatic generation control could impact the physical system
stability by causing sudden declines in the system frequency,
which in its turn causes unwanted load shedding schemes. The
work in [4] demonstrates two realistic false data attack
scenarios in which attackers introduce arbitrary errors to state
variables to achieve a false state estimation of the power
system. In the study conducted in [5], the authors quantitatively
analyze the damage caused by false data injection with regards
to the power system operation and security.

On the other hand, there are several works in the literature
that focus on defense strategies to minimize service loss
through several defense mechanisms. In [6], the authors
recognize the potential impacts of data injection on the process
bus and proposed an agreement algorithm to detect, locate, and
prevent malicious data from being accepted by the IEDs and
protection devices. In [7], the authors present an overview of
vulnerabilities in the IEC 61850 protocol suite and discuss a
method of GOOSE message modification using a malware
script to sniff, manipulate, and inject control messages into the
process bus in detail. In [8], the authors presented an intrusion
detection system that is capable of filtering malicious messages
based on predefined rules and known malicious signatures. In
[9], an intrusion detection system based on GOOSE and SMV
rule violation indicators was presented. This system, similar to
other rule based systems, will not be able to detect unknown
attacks that are not defined in their rule base.

Even though the Intrusion Detection System (IDS) will
filter out uncoordinated attacks, it is still not robust enough to
secure IEC 61850 automation processes. These solutions are
also network-based and are themselves vulnerable to data
manipulation from a savvy attacker. Attackers with sufficient



information can spoof different data fields to obfuscate
themselves from this IDS.

To accomplish the goal of robust security, machine learning
techniques have been introduced to leverage the intelligence of
rule based IDS. Machine-learning systems use the approach of
anomaly detection in which a model is defined and positioned
as normal and if an outlier is detected that differs, it is
considered to be an anomaly [10]. This need is recognized by
the authors in [11] and to that end, they incorporated a
protection algorithm using a trained coupled time-series neural
network (NN) that predicts incoming current measurement
based on the microgrid’s recent operating history. Then, an
intrusion is detected and announced if a real measured value
deviates from the predicted one. The potential of this solution
was tested on data collected from a simulated microgrid and
the results in [11] are promising for rapid verification of data
integrity. However, the accuracy demonstrated was cultivated
in a controlled testing environment using high current values
for the malicious data injection. In a case where the attack is
designed for the target system, the accuracy of the IDS deviates
from the results in [11]. This issue must be addressed in the
NN to ensure reliability in real-world attack scenarios.

Accordingly, the work in this paper is an extension of the
authors’ previous work in [11] where a configurable malware
is developed to be used as a tool to examine and quantify the
reduction in accuracy experienced by the NN in targeted attack
scenarios. The purpose of this tool is to be used as a vaccine to
harden the IDS against smart attacks by fine tuning its decision
criteria and model parameters.

The rest of the paper is organized as follows: Section Il
describes the power microgrid model and the predictive IDS.
Section 11l explains the development of the details of the
malware script. Section IV will demonstrate the reduction in
the accuracy of the NN against a variety of attack scenarios and
Section V concludes this work.

CB: Circuit Breaker

TL: Transmission Line

SW: Switch

SMV: Sampled Measured Value
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Fig. 1. Power Microgrid Model.
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Il. SYSTEM DESCRIPTION

The developed microgrid model, shown in Fig. 1, consists
of two AC generators with a power capacity of 4.5 kW each.
The generators are feeding two AC loads at buses 3 and 5 and
two DC loads through the unidirectional converters shown. The
microgrid is connected to the main utility grid via CB21. The
microgrid model was built on MATLAB SIMULINK. An IEC
61850-based protection scheme was developed for fault
localization and clearance. Consider the case of transmission
line TL3. Merging units (MU31 and MU32) publish the current
measurements as SMV messages from the left and right ends of
the transmission line, respectively. An intelligent electronic
device (IED3) subscribes to these messages and calculates their
difference. If the difference is greater than a pre-specified
threshold, a fault on the line is detected and IED3 issues a trip
signal to CB31 and CB32 to clear the fault. Therefore, an
attacker can inject fake packets with high current values in
order to trigger an unwanted trip signal.

Fig. 2 shows a flowchart of the proposed IDS. The main
idea is to add a trained intelligent module to IED3 which holds
a buffer of N previous current measurement samples. These
samples represent the recent history of operation at the section
where IED3 is located and are used to forecast the value of the
current in the incoming message. Once a new message is
received, IED3 will compare the real value to the forecasted
one. If the difference in the error is less than 2%, the message
is processed, otherwise an alarm is issued and the forecasted
value is provided to assist the decision on whether to block or
process the incoming packets by the protection control logic
while the intrusion is identified and removed. The actual
blocking decision is to be taken by a higher security layer
which will be addressed in future work.

The microgrid was simulated under different operating
conditions and varying fault scenarios to generate the database
used to train the neural network. Two major cases were
studied: the first is in the grid-connected mode of operation and
the second is in the islanded mode of operation. For each of the
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two cases mentioned, and on each transmission line, five types
of faults were applied, namely, single-line-to-ground (A-G),
line-to-line (B-C), double-line-to-ground (B-C-G), three-phase
(A-B-C), and 3-phase-to-ground (A-B-C-G) faults.
Additionally, each type of fault was applied on the beginning
(10%), middle (50%), and end (90%) of each transmission line.
For all cases mentioned above, the current measurements from
both ends of TL3 were recorded. It is worth noting that the
aforementioned contingency scenarios were utilized as a proof
of concept of the developed IDS. The extension of this work
would involve the utilization of the microgrid model to train
the IDS neural network for more contingency scenarios, such
as the sudden loss of a generating unit for example.

Fig. 3 shows the hardware setup built to test the IDS and
implement the developed malware script over a real IEC 61850
process bus architecture. The recorded current values of both
transmission lines from the simulated microgrid model
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Fig. 2. IDS Algorithm Flowchart.
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were recorded in a database of coefficient files and fed as
inputs to the merging units. The measuring units then publish
these measurements as IEC 61850 SMV packets. IED3 is
programmed to subscribe to these messages and processes
them through the IDS NN, which it hosts. The firmware for
MU31, MU32, and IED3 along with the IDS were coded in C
and downloaded on three different Odroid C2 devices running
a Linux kernel.

I1l. MALWARE DEVELOPMENT

A. SMV Message Structure

In order to better understand the malware development
procedure shown in Fig. 4, the structure of the SMV message
will be explained first. An SMV datagram follows a modified
Abstract Syntax Notation One (ASN.1) Basic Encoding Rules
(BER) Tag/Length pair encoding scheme [12]. The Tag field
represents the type of information which is represented in the
following SMV frame.

As shown in Fig. 5, the SMV datagram starts with the
Destination MAC Address, which is a multicast address
reserved for IEC 61850 applications always starting with 01-
0C-CD and is followed by the source MAC address. An SMV
message has an IEEE 802.1Q VLAN ID and a unique Ethernet
type (88-BA). The APPID field is a 4 octet field which the
subscribing IEDs use to identify messages they are subscribing
to. The Length field represents the length of the overall SMV
datagram and is followed by two reserved fields left out by the
standard for future use.

The second layer of a SMV message is the Application
Protocol Data Unit (APDU), which consists of one or more
Application Service Data Units (ASDU). The number of
ASDUs is in the noASDU field [13]. Each ASDU then contains
the following subfields [14]:

svID: unique identifier for each SMV message.
SmpCnt: incrementing counter with each published
SMV.

e ConfRev: counter for configuration changes.

e SmpSynch: A boolean  value
synchronization with a clock signal.

e SegData: List of data values related to the data set
definition.

indicating

B. Malware Development

In order to properly inoculate the NN against smart attacks,
a malware script for targeted attacks against the process bus
was developed. The malware was written in Python in
conjunction with network sniffing and packet crafting libraries
from Scapy. As mentioned earlier, SMV messages are
broadcasted over the LAN and are unencrypted. Once the
malware is run, it starts to passively sniff packets from the
network. Next, it filters those messages looking for the
destination MAC address assigned for SMV messages, the
Ethertype (88xBA), and the designated APPID identifier.

Once the SMV packet has been identified, it is converted
into a list of hexadecimal pair strings that will make searching
the packet more convenient. After the packet has been properly
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Fig. 4. Malware Development Process.
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Fig. 5. SMV Datagram Structure.

decoded and stored as hex pairs, the malware can be utilized to
spoof any desired field of the captured SMV packet. However,
the developed malware will spoof all the fields (source MAC
address, destination MAC address, APPID ...) and change only
the seqData field, which holds the value of the current
measurement. This is intended to trick the IED into recognizing
this packet as being sent from its original merging unit.

In order to manipulate the current measurements, a class
called “ASDU” was created and used to store the data collected
from the packet, and to conveniently build the new packet
before it is injected into the process bus. A major obstacle in
the design of this script is to write it in a way that will be able
to process any number of ASDUs and seqData for the SMV
packet. These values are not static and can be changed by the
network administrators based on how often they want the
collected measurements to be sent. In order to address this
issue, we implement our datafield search function, which is
called in an incremental manner to make sure the packet will
be of the appropriate length and that it modifies all ASDUs and
seqData fields detected by the script.

Sniffed
five
Packets?

Check Tags to . .
Verify SMV Convert Packet into String

Message Hex Pairs

Construct Packet in Scapy-
Readable Form.

Data Set in seqData Field.

Send Packet (Scapy)

The first field searched for is the noASDU field as this will
describe the number of ASDUs present in the packet. Once this
value is determined, a loop is created that iterates through each
ASDU and records the information into the ASDU class. An
array of pointers to ASDU objects is used to easily navigate
through the collected data as this can become quite tedious
when an extremely large amount of ASDUs are introduced. For
each ASDU, the datafield type, length, and value of each field
is stored into its own array of hex pairs for reasons that become
apparent when the script re-crafts the packet with the modified
data. As each field is decoded, it is stored into the
corresponding ASDU class member. Once the entire packet has
been decoded, the final step is to modify the existing data and
send the new packet.

It is important to note that the attacker must configure
which fields they wish to modify and either manually change
the value of the data, create an arithmetic function to
manipulate the data, or read in predetermined values from a
file. Depending on the method chosen, the script will begin to
modify the data based on the attacker’s configuration, and
overwrite the original ASDU class members with these new
values. Once the modification is complete, the packet is rebuilt
in the correct order and the spoofed packet with false data is
broadcasted into the LAN. The flowchart in Fig. 4 presents the
malware algorithm for visualization of the process.

IV. RESULTS AND DISCUSSION

Once this tool had been developed, spoofed messages were
injected into the process bus to test the response of the IDS.
The malware is assumed to be running on a computer device
connected to the LAN of the microgrid under study. In order to
test efficacy of the NN for intrusion detection, two data
modification methods were used and the results for each were
observed.
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Fig. 8. Sample Shifting.

First, the values of the currents were recorded and analyzed
for the first few AC cycles. It was noticed that the amplitude of
the recorded current waveform was around 3 A. As appreciated
from [11], injecting values far above 3 A triggered an intrusion
alarm. However, as explained earlier, the NN was trained to
recognize the current values for normal and fault conditions.
Therefore, in the first attack, fake packets were injected with

alternating 3.5 A and -3.5 A at a fixed rate to signal a fake
beginning of a fault situation. When configuring the malware
script, the two values will be written to an input file and then
the malware changes the data fields of the sniffed packets by
alternating between these values. The following algorithm was
used to inject the fake packets and is written generically to be
applicable for many systems:
f=fopen(“FakeSV.txt”, rt)
Generate Fake Values (inject +/- 3.5)
f.write(Fake Values)
SetSampleRate(pps)
while(!f. EndofFile){
f.readline(n)
sendpacket(rate, mod_pkt)
n+=1}

It is to be noted that the user of the malware tool is free to
experiment with other algorithms or arithmetic functions for
generating the fake values. The user can also experiment with
the packet sending rate for a completely configurable data
injection tool. The received and the forecasted samples from
the IED were recorded in a log file and are plotted in Fig. 6.
The blue waveform represents the SMV packets received by
the IED, whereas the red waveform represents the forecasted
values by the NN. The actual measurements (blue) were
broadcasted at a rate of 4,800 Hz in accordance to the
recommendations of the IEC 61850 standard, whereas the
malware tool was transmitting its fake data at a rate of 48 Hz (1
fake packet for every 100 true packets). A stream of 9,400 real
current samples was published and in the meantime, the
malware published 80 manipulated packets. Out of the 80
attempts, 11 attempts (13.75%) were successful in attacking the
NN and thus passing into the IEC protection logic false values
reaching a maximum of around 4.5 A. This value is 1.5 times
the rated value and was enough to issue a false positive and
trigger a trip command.

The next data injection method is one that showed more
promising results in successfully corrupting a network. This
attack continuously replays values from a recoded log file that
simulates the same waveform that the NN had been trained on
for forecasting a fault. This method will increase the period of
the injected values; however, the results show that the NN was
not prepared to handle this kind of targeted attack. In Fig. 7, it
is observed that the NN incorrectly forecasted the sampled
values in two different locations within a window of 200
samples between sample 17,050 and sample 17,250. Any one
of these incorrectly forecasted paths would trigger a false
positive and cause service interruption. If the injected data
results in a false negative for more than three AC cycles,
permanent damage can be inflicted upon the power grid’s
equipment.

It is known that Layer 2 broadcast messages, such as SMV
messages, cannot be blocked. An important observation from
the results of these attacks is that when the IED received the
fake packet, it was not able to receive the true message
simultaneously. This is shown in packet number 17,166 in Fig.
8(a). As can be seen from Fig. 8(a), when the IED received the
fake packet, the original data stream of legitimate SMV
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Fig. 9. Malware Data Injeciton Statistics.

messages was shifted by 1 sample. This shift was accumulated
as more fake SMV packets were injected. As can be seen in
Fig. 8(b), the shift accumulation lead to the IED receiving
SMV messages that are totally out of phase from the original
data stream. Here again, the utilization of the developed
malware exploited another vulnerability in the studied process
bus which needs to be addressed.

It is also important to mention that the malware provides
the user a means to control the rate of sending fake packets
using the Scapy library function pps or packets per second. A
test has been conducted to test the maximum speed at which
the malware could broadcast fake SMV messages. Fig. 9 shows
a summary of the statistics of the conducted experiment. For
around one minute, the malware was sending at an average
speed of 9,656 Hz, which is almost double than that set by IEC
61850 (4,800 Hz). These statistics are affected by the message
length and the specifications of the machine hosting the
malware. In this test, the malware was run on Linux machine
with Intel i7 processor rated at 3.50 GHz with an average
packet size of 95 bytes.

The previous results showed the effectiveness of the
developed malware in testing the efficacy of the proposed
predictive IDS. Using this developed malware as a training
tool, not only can this NN be trained to detect several targeted
attacks, but it can also be used to fine tune event thresholds to
prevent service interruption during targeted attacks. Moreover,
the developed malware tool can be used to benchmark other
NN-related intrusion detection algorithms present in the
literature. As mentioned earlier, the developed tool is
configurable. Therefore, the user can control the type of attack
by manually changing the value of the measurements,
providing the tool with an arithmetic function to simulate
certain scenarios or replay given values from a log file. Also,
the user can adjust the rate of false data injection as desired.
By these experimentations, the user can quantitatively analyze
the performance of his or her IDS in terms of the ability of the
tool to produce false positives and false negatives.

V. CONCLUSIONS

This paper developed the design and implementation of a
targeted data injection attack that will simulate real AC
waveforms in an attempt to interrupt power flow in a
compromised power network. The targeted malware was
developed in a configurable manner to allow the attacker to
choose different methods of data injection. A predictive NN-
IDS was then tested against the targeted malware to observe
how it would handle the smart attack. The results of the
experiment demonstrated that the NN is yet to be properly

trained or fine-tuned enough to detect malicious measurements.
Fake measurements could lead IEDs to issue trip signals that
would result in service interruptions in a real system. The NN
showed resistance to less sophisticated data injection methods;
however, it is still vulnerable to malicious data injection
methods. Also, the NN demonstrated very little resistance to
the simulated AC waveform. In order to better prepare the NN,
the developed malware will also be used as a training tool to
identify attack signatures, and allow the user to tune the event
thresholds that would result in controlling messages being sent
to the IEDs. The malware is configurable, easy to understand,
and is simple to use to train predictive intrusion detection
systems.
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