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Sensitivity Analysis and Uncertainty Quantification

for the LAMMPS Molecular Dynamics Simulation Code

Rick Picard and K. Sham Bhat

Abstract
We examine sensitivity analysis and uncertainty quantification for molecular dynamics
simulation. Extreme (large or small) output values for the LAMMPS code often occur at
the boundaries of input regions, and uncertainties in those boundary values are overlooked
by common SA methods. Similarly, input values for which code outputs are consistent
with calibration data can also occur near boundaries. Upon applying approaches in the
literature for imprecise probabilities (IPs), much more realistic results are obtained than

for the complacent application of standard SA and code calibration.



1. Introduction

Molecular dynamics simulation codes based on density functional theory, e.g., Tuck-
erman and Martyna (2000), are very time consuming to run. Surrogate codes such as
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) provide approx-
imate but much faster results, and are often useful. In what follows, we examine the
LAMMPS code coupled with the Tersoff parameterization for the potential energy func-
tion. LAMMPS takes an initial atomic configuration as an input, which consists of the
positions and velocities of elemental atoms, as well as parameters defining the potential
energy function, and outputs physical properties of interest. More extensive documentation
on LAMMPS is available at the LAMMPS website, http://lammps.sandia.gov.

LAMMPS parameters are calibrated to outputs from aforementioned code runs based
on density functional theory (DFT), which take as input the same atomic configuration as
LAMMPS but do not use a parameterized potential energy model. These computationally
intensive DFT code runs are regarded as more accurate than LAMMPS. Once calibrated,
LAMMPS parameters providing good agreement between LAMMPS and DFT results are
identified — parameter values that are often not well known in advance.

The primary purpose of this report to show that, under many circumstances, stan-
dard sensitivity analysis and/or Bayesian calibration with uniform priors often results in

misleading and overconfident estimates of uncertainty in quantities of interest.



2. The Computer Model

2.1 Notation and Equations

Following Juslin et al. (2005), relevant physics equations and parameters for the Tersoff
model for potential energy (e.g., Tersoff (1988), Tersoff (1989)) are briefly described below.
For more details about the potential, see Juslin et al. (2005) and Tersoff (1988).

The total energy E for the atomic configuration is written

. bij + b
E = Y friy) |VE(riy) + =222 VA(riy)]| (1)

i>j

where the summation is over pairs of atoms (i, j) in the configuration. Here, the cut-off
function is
1 ifr,; <R - D,

fe(rig) =

3+ = sin(3 ) ifr; € (R—D,R+D),

0 itr,; > R+ D,
where r; ; denotes the distance between atoms 7 and j in the configuration. Parameters R
and D determine the cutoff region and are primarily used to expedite computation.

Atom pairs (i, j) whose atom-to-atom distances r; ; are large contribute minimal quan-
tities to the energy F, but can add greatly to the computation time since the total number
of atom pairs is proportional to the square of the number of atoms in the configuration.
The cut-off function f¢ may considerably reduce computational complexity by eliminating

calculations for atom pairs for large distances r; ; > R + D that contribute minimally to



the total result. For all of what follows, cut-off function values are fixed at R = 4 A and
D=02A.

The repulsive and attractive pair potentials in (1) are

Dy
S—1

VA(ry,) = 51_)01 e:z:p(—ﬂ\/2/5 (ri,j—r0)> :

where Dy is the dimer bond energy, ry is the dimer bond distance, [ is a parameter

VE(r;) = exp(—ﬁVQS (riﬁj—r0)> , and

that can be determined from the ground-state oscillation frequency of the dimer, and S is
an adjustable parameter.

The two-body bond-order parameter b; ; in (1) has the form

bi,j = 1/\/1 "‘Xi,j s

where
Xij = Y. Frin) 9(Oijn) wije exp(aijp (rij —Tin)) - (2)
ki,

and the three-body angular function

? c?
9( Vi) 7 Wi gk ( d2? >+ (h+ cos(@i,j,k))2 ) @

Here, 6, ;1 is the angle between line segment (i, ) connecting atoms ¢ and j and the
segment (i, k) connecting atoms i and k, while v, ¢, d, and h are two-body model param-
eters of the atoms ¢ and k. The three-body parameters w; ;, and «; j, must obey certain
symmetry relations that depend on the types of atoms (in the 29-atom example to follow,
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there are only types of atoms: tungsten and hydrogen). The parameters described here are
referred to as Juslin parameters, and are listed in Table 1.

For the rest of this report, only two-body parameters with interactions of one tung-
sten and one hydrogen atom (W-H) are varied; two-body parameters with H-H and W-W
interactions are taken to be constant. The summation for x;; in (2) is somewhat com-
plex, using periodic boundary conditions which are standard for MD simulations (Schlick
(2010)). And for each (7, j) atom pair, the k-th atom is chosen among all 27 k-th atoms

based on a minimum image distance criterion.

2.2 “Non-Physical” Code Runs and Correlated LAMMPS Inputs
The LAMMPS code inputs are described in the LAMMPS online documentation. In
particular (see page 4 of http://lammps.sandia.lanl.gov/doc/pair_tersoff.html), LAMMPS

relies on the quantities

A = Sl})l exp (BroV2S)

SD,
B = o1 exp(ﬁrm&/S) ,
A = [BV2S , and

Ao = B1/2/S .

Using this reparameterization, for the (7, ) atom pair, the repulsive and attractive pair

potentials are written as

VR(ri,j) = Aexp(—XAr;) , and
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VA(TM) = Bexp(—Aarij) -

The LAMMPS code does not verify whether the parameter values for A and B are fea-
sible, i.e., it does not check whether there exist specific values of the Juslin parameters
{ Dy, S, B,19 } within their allowable ranges for which the LAMMPS parameter values A
and B are simultaneously obtained. Nor does LAMMPS check whether there exist legiti-
mate values of S and § that produce LAMMPS inputs (A1, Ag).

Along similar lines, the user must ensure that LAMMPS code inputs {«;;x} and
{7ijx } obey symmetry relations. For example, if i and j denote tungsten atoms while atom
k denotes a hydrogen atom, then the three-body term «; ;1 = agpw must exactly equal
o, = ogw for the system to be physically feasible; LAMMPS does not automatically
enforce this requirement.

The responsibility lies with the user to ensure that all LAMMPS input values are indeed
physically legitimate. When LAMMPS input values do not correspond with physically le-
gitimate combinations of Tersoff parameters, non-physical LAMMPS outputs are obtained.
The functional dependence of LAMMPS parameters A, B, A\;, and Ay on the same under-
lying physical parameters induces a strong correlation among these inputs. An arguably

extreme example is the ratio A\; /Ay =5, and other examples are given in the next section.



3 Uncertainty Quantification

3.1 Background

As is typically the case with many simulations of physical processes, the “true” LAMMPS
input parameter values (A, B, A, Ay, ...) are not known exactly. Physical measurements
used to determine parameter values are not perfect, and there are uncertainties in the
Juslin parameters (on which the LAMMPS parameters are based). The “Nominal Prior”
columns of Table 1 summarize the corresponding two-body W-H and three-body model pa-
rameters (see Juslin et al. (2005)) and the best guesses from local materials science experts
of plausible ranges for their values.

Although Juslin’s implementation framework allows for varying all two-body parame-
ters, the W-H parameters are considered to be more sensitive than the respective H-H and
W-W two-body terms; hence for the duration of this report, only W-H two-body parameters
will be allowed to vary.

Consider the first four parameters, Dy, 19, 8, and S, which entirely determine the
LAMMPS code inputs (A, B, A1, A2). The ranges of Nominal Prior values in Table 1 were
obtained through a calibration exercise, running the DFT code with 20 two-atom con-
figurations of tungsten and hydrogen. W-on-H forces were obtained in the z, y, and z
directions for each of these configurations. Juslin parameter values producing LAMMPS
output forces in good agreement with DFT forces (as quantified by adding in quadrature

the force differences in the three dimensions) are provided in the Nominal Prior columns



Table 1. Nominal ranges for other parameters in Table 1 were obtained upon consulting

local materials science experts, and are discussed later.

Table 1. Plausible Ranges for Juslin Parameter Values.

Input Nominal Prior Low SA Prior High SA Prior
Parameter Lower & Upper Limits | Lower & Upper Limits | Lower & Upper Limits
Dy (eV) 241 5.11 241x1.1  5.11x1.1 |241x1.1  5.11x1.1
ro (A) 1.27 1.91 1.27 1.91 1.27x1.1  1.91x1.1
B (A_1> 0.99 1.85 0.99/1.1 1.85/1.1 0.99/1.1 1.85/1.1
S (M /A2) 1.25 2.55 1.25 2.55 1.25/1.1 2.55/1.1
c 0 3 0 2 0 4
d 0 3 0 4 0 2
h -1 2 -1 2 -1 2
0 0 0.1 0 0.07 0 0.11
OHHW = CHWH 0 10 0 5 0 12
OHWW 0 10 0 5 0 12
awHH 0 10 0 5 0 12
aOWwHW = OWWH 0 10 0 5 0 12
WHHW = WHWH 0 10 0 5 0 12
WHWW 0 10 0 5 0 12
WWHH 0 10 0 5 0 12
WWHW = WWWH 0 10 0 5 0 12




The subject of sensitivity analysis is concerned with the propagation of uncertainties
through computer codes such as LAMMPS. That is, as code inputs are varied over their
plausible ranges, LAMMPS outputs such as E, VE (r; ;) and V4 (r; ;) also vary. Quantifying
the extent of this variation, and understanding which specific code inputs most affect
LAMMPS code outputs, are the main goals of sensitivity analysis.

A second subject of interest is code calibration, i.e., identifying which LAMMPS input
values provide the best match of LAMMPS outputs to more precise DFT results. This ex-
ercise is similar to the effort leading to the ranges in Table 1 of the four physical parameters.
In general, calibration can be done using a frequentist approach, similar to solving a non-
linear least squares problem, where the sum of squared differences between the LAMMPS
and DFT code outputs is minimized as a function of LAMMPS code inputs. The cali-
bration can alternatively be done using a Bayesian approach, where prior information on
code input values is combined with the fit of the code outputs to the data. Either way, a
“best” (MLE or HPD) set of code inputs can be identified, together with corresponding

uncertainties.

3.2 Sensitivity Analysis: Important Inputs and Rare Events
Traditional sensitivity analysis generally begins by assigning uniform distributions to
the input parameters of the computer code of interest, and propagating the corresponding

uncertainty to the code output(s) of interest. To illustrate, consider the plausible ranges of



nominal prior values in Table 1 and focus initially on the repulsive pair potential VZ(r; ;)
for a particular atom pair (i, 7j), here involving a single hydrogen and a single tungsten
atom.

Because the output V¥(r; ;) can be quickly computed, sensitivity analysis properties
can be obtained by brute force, i.e., simulating many thousands of sets of inputs and
obtaining corresponding output values. For more complex codes, the brute force approach
is not practical, and sensitivity analysis requires more sophisticated experimental designs
for code runs, such as the Latin hypercube for common output summaries (McKay et al.
(1979)) or importance sampled designs for rare events (Picard and Williams (2013)).

Note that only the inputs Dy, ro, 8, and S affect the outputs VZ(r; ;) and VA(r;;) in
(1). Further, only the W-H two-body terms v, ¢, d, h, and the three-body terms «; ;, and
wi ;r affect the outputs b; ; and b;,;. Hence, the sensitivity analysis can be partitioned to
some extent.

Figure 1 shows the resulting scatter of LAMMPS inputs A, B, A;, and A\; from a 1K
uniform sample of the Juslin parameters (Dy, ro, 3, S). All points in the plots lie above
the x=y lines, so that A < B and A; < \s in all cases. Inputs A and B have highly skewed
induced distributions, while A\;, and A\, are reasonably Gaussian. Finally, there are large
regions of the (A, B) and (A1, Ag) spaces that correspond to non-physical code runs.

These plots indicate that applying standard sensitivity analysis methods to LAMMPS

inputs directly — methods that too casually assume independence among input parameters
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Figure 1: Sample of LAMMPS Input Parameters.

and uniform marginal distributions — often lead to poor conclusions.

Figure 2 suggests the pairwise potentials are strongly correlated. Furthermore, the
pairwise potentials span a wide range (from just above zero to almost 40 eV for this atom
pair having r;; ~ 1.5 A). In terms of the effects on total energy and on its uncertainty,
large values have the greatest impact.

Consequently, understanding extreme VT and V4 values is important. Consider con-

ducting a larger simulation, using 100K samples in place of the 1K samples to this point.
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Figure 2: 1K Sample of LAMMPS Input Parameters.

Quantities of interest are then more accurately determined. The average repulsive pair po-
tential here is 6.34, estimated to a standard deviation of slightly more than 0.01; the average
attractive pair potential is 9.78, again estimated to a standard deviation of slightly more
than 0.01. The standard deviations of the skewed V® and V4 distributions, as induced by
the uncertainty distribution on the inputs, are 5.0 and 5.1, respectively.

In principle, the average and standard deviation of each pair potential distribution

can be determined to arbitrary accuracy simply by increasing the number of code runs.
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Taken literally, this implies that statistical properties of these outputs could be determined
exactly. This counterintuitive property of sensitivity analysis is revisited shortly, and is an
artifact of treating input distributions as if they were known perfectly, when in fact they
are not.

The 100K data sample also allows for a more complete exploration on the portion of the
output space where V' and V4 are large. For example, only 33 of the 100K runs resulted in
a repulsive pair potential exceeding 40 eV. In other words, such large output values are rare
(= 0.03%) events. Depending on the specific use of the code (e.g., its aid in understanding
material science properties for nuclear reactor safety), rare event probabilities could be of
great interest. Similar to the output uncertainty of the average value V¥ (r; ;), quantified by
the standard deviation of V®(r, ;) divided by y/n, where n denotes the number of ordinary
code runs, rare event probabilities can also be determined with essentially zero uncertainty
by letting n become extremely large.

The study of rare events involves exploring which inputs “cause” these rare events to
happen. Figure 3 displays two inputs correlated with rare (V(r;;) > 40 eV) events.
The plot displays the entire assumed ranges of the input quantities as per the nominal
prior in Table 1, and shows that only a small portion of the input space is correlated
with this rare event, which exclusively involves small values of S (the ratio of LAMMPS
exponential factors A\j, and \s) and large values of the dimer bond distance 5. Admittedly,

this conclusion could have been reached by visual inspection of the equation for VR(n-,j)
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or from a first-principles understanding of the physics involved. For more complex codes,

however, rare event plots such as Figure 3 may be needed.
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r 0

Figure 3: Juslin Input Parameters for Large (V®(r; ;) > 40 eV) Pairwise Potentials.

As should be intuitively obvious from Figure 3, the rare event probability is clearly
dependent on the lower limit 1.25 for S and the upper limit 1.91 for ry. If these limits
were truly known exactly, then the rare event probability Pr( V#(r; ;) > 40 ) could then
be determined to great accuracy via a large number of code runs.

Importantly, the above limits are not known exactly — they are quantitative estimates
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from a calibration exercise. For the other input parameters in Table 1, the “plausible
limits” are essentially best guesses from subject matter experts, and they are not precisely
known either, primarily because the experts’ intuition regarding input parameters is more
limited than their intuition about the underlying physics. Consequently, quantities such
as rare event probabilities can be highly dependent on uncertainties in presumed ranges of
values such as in Table 1.

One common statistical tool to deal with this situation involves hierarchical modeling.
Probability distributions are assigned to the unknown limits, such as 1.25 for S and 1.91
for rg. In straightforward hierarchical sensitivity analysis, input quantities are obtained
by first sampling limits from the hierarchical prior, and then sampling input quantities
from uniform distributions conditional on those limits. Thus, ordinary sensitivity analysis
quantities and rare event probabilities are averaged with respect to the hierarchical prior.

This approach has substantial downsides as follows:

a) these hierarchical prior probability distributions on the limits are themselves not

known exactly, and thus should not be taken literally, and

b) the end result of the hierarchical analysis is still pretentiously precise because there
is only a single posterior distribution from which a large number of MCMC samples
are simulated, allowing quantities such as a rare event probability to be obtainable

with essentially zero uncertainty when sample sizes are very large.

What is needed here is a sensitivity analysis for the sensitivity analysis. Such an ap-

14



proach goes under the moniker of imprecise probability (Walley (1991); Picard and Vander-
Wiel (2017)).

Classic sensitivity conclusions can be greatly affected by comparatively modest uncer-
tainties on input bounds, in part due to rare events occurring near the presumed bounds on
certain inputs (Figure 3). To illustrate, suppose that the Dy, ro, 5, and S values in Table 1
has a plausible range of £10%. For example, suppose the lower bound for Dy, 2.41 eV,
could plausibly be between the values 2.41/1.1 and 2.41x1.1.

The calculations can be run quickly, and so it is possible to consider all 2% = 256 cases,
that is, there are two endpoints for each of the four inputs Dy, ro, £, and S affecting the
repulsive pair potential V(r; ;). For each of these 8 endpoints, lower and upper limits such
as 2.41/1.1 and 2.41x1.1 for Dy, are considered. For each of these 256 cases, a 1M sample of
input sets is obtained. Recall that the average repulsive pair potential is equal to 6.34+0.01
eV for the nominal prior parameters in Table 1. Across the 256 cases, however, the “6.34
eV” ranges from 2.97 eV to 15.38 eV. The lower plausible value 2.97 eV is achieved when
endpoints for Dy and 7y are reduced by 10% and endpoints for 8 and S are increased by
10% from their nominal values in Table 1. The upper plausible value, 15.38 eV, is achieved
when endpoints for Dy, o, and 5 are increased by 10% while S, is decreased by 10% from
their nominal values in Table 1.

Even though the £10% nominal uncertainties on limits for the inputs may seem modest,

the effects of these uncertainties in input parameter bounds create more than a fivefold
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range of the average repulsive pair potential V*(r; ;). The situation with the rare event
probability Pr(V#(r; ;) > 40), whose nominal value was ~ 0.03%, is even more extreme.
Here, modest 10% uncertainties in bounds for inputs lead to rare event probabilities that
range from zero to 6%, the latter value indicating that the nominally “rare” event may not
even be all that rare. And the nominal standard deviation of V(r; ;), 5.0 eV, ranges from
2.1 to 14.5 eV over the 256 cases.

The bottom line is that classic sensitivity analysis, in treating the nominal prior end-
points in Table 1 as if known exactly, yields grossly misleadingly and overly precise results.
Accounting for uncertainties in the assumed bounds for the inputs sometimes leads to
wide ranges of plausible output values, especially when extreme outputs occur near the
endpoints of the ranges as displayed in Figure 3. As would be expected from Figure 3,
the most important inputs are the dimer bond distance ry and the ratio S of LAMMPS
parameters A; and As.

This sensitivity analysis is specific to one atom pair (i, ), and is done for expository
purposes, to show that in this easily understood case, uncertainty in input bounds can
sometimes swamp the nominal sensitivity analysis uncertainties in quantities of interest.

Similar effects can occur in more complex applications. Return to the 29-atom con-
figuration of interest and consider the total energy E in (1). Taking the ranges of inputs
in Table 1 as being perfect, and propagating 100K sets of input values through the code

produces the spectrum of total energy values displayed in Figure 4. Total energy values
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span a range from -246 eV to -75 eV; the negative sign reflects that the attractive pair

potentials generally exceed the repulsive pair potentials.

20000
|

15000
|

Frequency
10000
|

5000
|

[ I I |
-250 -200 -150 -100

Total Energy

Figure 4: Total Energy Distribution.

The most important inputs for the total energy E are the v and wyyw parameters. A
rare event plot, Figure 5, displays the smallest 100 (of the 100K) output energies. Note
the clustering of inputs for these rare (one-in-1000) large values, with low parameter values
corresponding to low energies. Conversely, large values of v and wy gy and large values of
ro and ¢ are also related to extremely high energies, as seen in Figure 6.
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Figure 6: Input Values for Very High Energies.
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Assuming the same +10% uncertainties in input bounds as before for the Dy, rq, [,
and S inputs, which are based on calibration to the DFT code. For the other inputs based
on expert opinion, consultation with the subject matter experts revealed that the nominal
upper endpoints of the U(0, 3) distributions for ¢ and d could be plausibly as low as 2, or as
large as 4. Similarly, the upper endpoint for the nominal U(0,0.1) prior for v could range
from 0.07 to 0.11, and the upper endpoints of the nominal U(0, 10) priors for the w; ;, and
o ;x parameters could be as small as 5 or as large as 12 (aside: the “WWW?” and “HHH”
three-body parameters are not varied herein). Lastly, the lower endpoint of the nominal
U(—1,2) prior for h could plausibly be as small as -1.5, and the upper endpoint, 2, could
range between 1 and 2.5. These values are expressed in Table 1.

Recall that the nominal prior produces an induced distribution (Figure 4) for total en-
ergy F having mean -154 eV, a value that is essentially determined exactly based on 100K
brute force samples. Other properties of this distribution, such as rare event probabilities,
are also determined with great accuracy. Upon investigating the spectrum of prior distri-
butions having plausible endpoints, histograms of two (chosen to be best and worst case)
induced total energy distributions are shown in Figure 7. Endpoint values for these two
cases are given in Table 1, where parameters deemed less important are not varied.

Rare event plots such as Figures 5 and 6 are useful in guiding this process when code
runs are too time consuming to consider all possible combinations of priors. Means of the

displayed distributions for the two cases are -185 eV and -110 eV. Both distributions are
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skewed to the right, implying that the usual “plus-or-minus-2¢” confidence intervals do not
have the usual Gaussian probabilities. Also greatly affected are rare event probabilities.
As is typical for IP (imprecise probability) analyses, results are quoted for the nominal
prior (e.g., the mean of the induced energy distribution is -154 eV) as well as for the two
extreme cases (e.g., the values -185 eV and -110 eV). For the nominal prior, the goth
percentile of the output distribution is -129.7 eV (based in 100K simulated samples), i.e.,
there is only a 10% chance of a larger total energy. For the best and worst case priors, the
corresponding IP range of probabilities for the nominal 10% figure is from 5.5% to 56.5%.
For computer models where the output(s) of interest are monotonic in certain input
variables, ordinary SA results using only a nominal prior distribution can have apparent
precisions that are highly misleading. It can easily (and wrongly) be concluded that output
quantities of interest are determined with little uncertainty because of the large number of
samples generated from the nominal prior. This misleading state of affairs is clearly bogus,
but is a logical consequence of the “perfect-input-in, perfect-output-out” presumption of
the Bayesian paradigm. As noted previously, replacing a nominal non-hierarchical prior
with a hierarchical prior does nothing to change this “perfect-in-perfect-out” phenomenon.
Sensitivity to assumed prior conditions should be considered when assessing such results.
A possible complication here is that subject matter experts can be overconfident in their

abilities to determine prior parameters, with the consequence of such overconfidence being

an understatement of IP ranges.
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3.3 Code Calibration

Using a much more accurate and time consuming code based on density functional
theory (DFT) as ground truth (e.g., Tuckerman and Martyna (2000)), code calibration here
involves finding values of Juslin input parameters such that the LAMMPS code outputs
best match ground truth. The DFT code takes as input only the configuration and does
a lengthy calculation for the forces on individual atoms. The results herein are generated
using DFT output of eight different configurations. Upon comparing LAMMPS values to
those from DF'T, calibrated input values can be obtained; as noted in Section 3.1, computed
W-on-H forces are used as the basis for comparison. In more general code calibration
contexts, code outputs are often compared with corresponding experimental data. The
calibration approach pioneered by Kennedy and O’Hagan (2001) is used for the analysis to
follow.

Similar to ordinary sensitivity analysis, uncertainty in the nominal prior distribution
may (or may not) be large enough to matter. When calibrated inputs are well inside
assumed prior bounds, so that the nominal prior is flat over the entire region of parameter
values consistent with the data, then there may be little sensitivity to those assumed prior
bounds. Otherwise, when the parameter values most consistent with the data are closer to
the assumed bounds (or worse, outside of the assumed bounds), an IP approach is needed.

On the next several pages, simulated distributions of Juslin parameters (as induced by

the calibrated posterior) are displayed. The first two plots (Figure 8 and 9) are the two-
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and three-body Juslin parameters, respectively, for the nominal prior. The following plots
are the two- and three-body Juslin parameters for the low and high energy SA priors.
Ideally, the volume of calibration data would be considerable and the best calibrated
parameters would be well inside the prior bounds, so that essentially the same posterior
would be obtained in all cases. In the case at hand, however, results are somewhat sensitive

to the nominal prior.
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Figure 11: Posterior Densities for Three-Body Parameters using the Low Energy SA Prior
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Figure 12: Posterior Densities for Two Body Parameters using the High Energy SA Prior
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Figure 13: Posterior Densities for Three Body Parameters for the High Energy SA Prior
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Figures 8 and 9 show that for the nominal prior, it is not entirely clear that all param-
eters lie within the initially prescribed bounds. For only 7y, d, and aygw do the calibrated
distributions appear clearly within the assumed bounds, so that values outside these bounds
are not implausible. For some parameters, such as A and the awgy, agwg, and wwygy,
whwy parameters, the posterior distribution strongly resembles the prior. This is an in-
dication that energy is not sensitive, within the stated ranges, to these parameter values
(recall that these parameters were not important in the sensitivity analysis, either). In
which case, the DFT runs themselves contain little information on the parameters, and the
information used in forming the prior is, comparatively speaking, more relevant.

Posterior means and standard deviations for the input parameters are given in Table 2;
5K MCMC samples were obtained for each case. In a true IP analysis, the two extreme
priors would be determined upon first choosing a quantity of interest, such as the posterior
mean of the energy F, and finding which priors produce the smallest and largest posterior
means. Because the calibration runs here are time consuming, the “best” and “worst”
priors are taken to be the ones from the sensitivity analysis. As such, true IP ranges of

quantities of interest are likely larger than those in Table 2.
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Table 2. Calibrated Juslin Parameter Values.

Input Nominal Posterior | Low SA Posterior | High SA Posterior
Parameter Mean Std.Dev. | Mean Std.Dev. | Mean  Std.Dev.

Dy (eV) 3.68 0.72 3.86 0.78 3.96 0.73
To (A) 1.54 0.15 1.48 0.12 1.59 0.12
15} (A_l) 1.45 0.20 1.50 0.12 1.30 0.16
S (A /A2) 1.91 0.35 1.99 0.32 1.89 0.27
c 1.41 0.78 1.00 0.54 1.91 1.05
d 1.90 0.56 2.33 0.87 1.44 0.30
h 0.48 0.83 0.53 0.84 0.48 0.82
y 0.041 0.024 0.036 0.019 0.042 0.025
awHw 5.10 2.32 2.52 1.36 6.19 2.88
QwHH = CHHW 4.89 2.86 2.49 1.43 5.70 3.39
WHWW = WWWH 4.11 2.52 2.63 1.35 5.23 2.98
Wy HW 5.14 2.82 2.56 1.45 6.13 3.43
WHWH 4.93 2.90 3.17 1.15 6.44 3.14
VE(r=1.5) (eV) 5.22 2.28 4.24 2.14 6.16 2.31
VA(r=1.5) (eV) 8.70 2.45 8.02 2.32 9.95 2.44
Total Energy E (eV) | -179 10.9 -192 10.8 -172 11.0
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The range of mean energy values in Table 2, from -192 eV to -172 eV, conveys a much
better measure of uncertainty in the nominal mean energy -179 eV than does the intrinsic
variability in the sample mean from the nominal MCMC simulation — a sample mean that
could be computed to arbitrary accuracy by simply increasing the MCMC sample size.
Similarly, the range of values for the mean repulsive pair potential, V¥, and the mean
attractive pair potential, V4 in Table 2 presents a better measure of uncertainty than the
nominal mean V% and V4 values of 5.22 eV and 8.70 eV.

In terms of input parameters, certain mean values are sensitive to uncertainty in the
assumed limits for their ranges; note the factor-of-2.5 range in mean values for wy gy, for
example. For other code inputs, such as the ratio S of LAMMPS parameters A; and Ao,
the relative range of mean values is only 5%. In cases where a particular parameter is of
interest, in and of itself, it may be worthwhile to invest additional effort in identifying best
and worst case priors than in the LAMMPS example here.

Rare event probabilities, which can be essential in reliability-based work, are often
most sensitive to uncertainty in priors. Based on 5K MCMC samples for the three priors in
Table 2, the upper 99.8% quantiles of the energy distribution have been obtained. For the
nominal prior, the estimated upper quantile is -139 eV for the Low SA prior, the estimated
quantile is -163 eV. In reliability safety applications, where rare event probabilities matter,
uncertainties in the prior distribution should almost always be incorporated into bottom-

line conclusions.
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4. Related Issues

An important problem related to the calibration of inputs is producing predictions of
DFT output (recall that DFT is the ground truth here) for new configurations different
than those used for calibration. The construction of a fast surrogate for DFT predictions
using the calibration procedure and the LAMMPS code could save much time and effort in
comparison to running the DFT code. This approach however requires learning a “distance
metric” between two general configurations, perhaps using proxies that characterize the
configuration. This framework is conceptually similar to the computational methods used
in drug discovery (e.g., Sliwoski et al. (2014)), which assign measures of similarity to
previous known drugs. A large database of existing drugs against which to compare is
usually required to be successful; it is unclear whether a similarly large database (vs. a
smaller set) of DFT output from configurations is required.

Calibration approaches using Gaussian processes (e.g. Kennedy and O’Hagan (2001),
Higdon et al. (2008)) may provide a good framework to construct this surrogate for DE'T
predictions by incorporating this distance metric. Another issue to note is the construction
of an emulator (i.e., a fast-running surrogate for computer code) for the LAMMPS (or other
computer codes) codes when they are too time consuming to use directly for sensitivity
analysis or calibration (e.g. Kennedy and O’Hagan (2001), Higdon et al. (2004)). Gaussian
processes are often used to build emulators trained on a relatively small set of code runs

(e.g. Sacks et al. (1989), Welch et al. (1992)).
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An alternative approach for emulator construction and calibration using polynomial
chaos expansions (PCEs) is also popular in some quarters (e.g., Ghanem and Spanos (2003),
Debusschere et al. (2004)), although the use of PCEs is somewhat controversial in the
statistics community (e.g., O’'Hagan (2013)).

Because these issues go well beyond the scope of this report, they are not pursued here,

although they may arise in the future.

5. Conclusion

The complacent approach to sensitivity analysis and code calibration, based on inputs
for a computer code being assigned uniform distributions over prescribed ranges, is not
inherently robust. As shown in the examples, uncertainty in the prior distribution itself
can propagate to be large or small relative to other uncertainties in a problem. Also,
certain quantities of interest, such as rare event probabilities, may be strongly affected
by uncertainty in prior distributions, while other quantities in the same problem may be
barely affected.

Tools exist to help data analysts detect situations where care is needed. Rare event
plots, such as Figures 5 and 6, can reveal whether extreme code output values are achieved
near a boundary of the nominal input space. Similarly, posterior contour plots, such as
Figures 8-13, can reveal whether parameter values that are consistent with calibration data

are near input boundaries. When these circumstances occur, special attention should be
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given to the uncertainties in assumed limits for nominal input parameters.

For population-based quantities, such as the mean value of a posterior distribution
for an input parameter, an imprecise probability (IP) approach to inference is essential.
Population-based quantities of interest can, in principle, be determined with essentially no
error by running an MCMC simulation until eternity. The apparent accuracy of resulting
quantities is fully dependent on the presumed perfection of the prior distribution in rep-
resenting prior information. Only when the prior achieves such perfection (which, frankly,
never happens in reality) is the minuscule output precision believable. Rectifying this
quandary is not achieved by the standard Bayesian approach of using hierarchical priors.

In quoting results relative to sensitivity analysis or code calibration, the standard IP
approach is to find “extreme” prior distributions (representing best and worst case prior
scenarios that are consistent with available prior information). Once such priors are iden-
tified, quantities of interest are computed for the two extreme cases, and are presented in
conjunction with corresponding quantities based on the nominal prior. In this way, the
nominal uncertainties in baseline quantities, which can be greatly understated for large

MCMC sample sizes, are not subject to misinterpretation.
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