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Abstract 

Intermolecular coupling of dipole moments is studied for a model system consisting of two 

diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently 

bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as 

of the distance between the centers-of-mass of the two molecules.  The calculations show that 

intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-

AB intermolecular potential.  This in turn alters the energies of the low-lying bound states of the 

dimers, producing isotope-dependent changes in the AB-AB dimer partition function.  Explicit 

inclusion of intermolecular vibrational coupling then changes the predicted gas-dimer isotopic 

fractionation.  In addition, a mass dependence in the intermolecular potential can also result in 
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changes in the number of bound dimer states in an equilibrium mixture.  This in turn leads to a 

significant dimer population shift in the model monomer-dimer equilibrium system considered 

here. The results suggest that intermolecular coupling terms should be considered when probing 

the origins of isotopic fractionation. 

Keywords:  isotopic fractionation, intermolecular vibrational coupling 

 

I.  Introduction 

 

 Isotopologues of a molecule differ in the isotope present in one or more of the atoms 

comprising the molecule. The isotopic composition in a given sample is known to depend on 

how the constituent molecules were formed and the phase equilibria they underwent.  Sample-to-

sample variations in isotopic composition are typically a few tenths of 1% and are usually 

reported as pars per mil (i.e. part per thousand).  However, these small deviations can provide 

important information regarding the processes and conditions that led to the formation of the 

molecules in a given sample. 

 Early treatments of isotopologue thermodynamics focused largely on the direct effect of 

mass differences and differences in zero-point energies[1-5].  Such conventional prescriptions 

predict, for example, that the vapor phase should always be enriched in the lighter isotopologue 

when in equilibrium with a condensed phase.  In addition, the chemical bonds in a molecule will 

require more energy to break in a heavier isotopologue due to its lower zero-point vibrational 

energy.  As a result, the activation energy for a reaction will be higher and the reaction slower for 

the heavier isotopologue using conventional approaches. 

 However, there are many experimental cases in which these conventional predictions are 

incomplete, indicating that other physical aspects can play an important role.  For instance, there 

are examples of vapor-liquid and vapor-solid phase equilibria in which the vapor is enriched in 
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the heavier isotopologue[5-14].  In some chemical processes, such as the extraction of certain 

metals with crown ethers, fractionation appears to depend significantly on whether the nuclear 

mass number of the metal atom is even or odd[15-19].  Some chemical reactions also do not 

obey predictions based solely on zero-point energy considerations, where the heavier species 

reportedly show faster rather than slower kinetics[20].  Furthermore, the formation of O3 seems 

to be largely independent of the isotopic composition of the reactants[21-25], and similar results 

have also been observed in other reactions.[26-30].  Proposed explanations of these observations 

include changes in the size and spin of the nucleus[31-33] as well as variations in transition state 

electronic structure[25,34]. Also, in gas chromatography, it has been observed that heavier 

isotopologues of carbon dioxide can elude from the column before lighter CO2 isotopologues.[35]
 

 It has recently been pointed out that dipole moment variation accompanying changes in 

the internal coordinates of a molecule results in a coupling of the vibrational modes of the 

different molecules[36].  This leads to a dependence of the intermolecular forces on the isotopic 

composition of the molecules.  In this paper, the significance of this mass dependence arising 

from the vibrational and Lennard-Jones interactions is investigated quantitatively using a simple 

1-D model system consisting of collinear interacting diatomic monomer molecules.  The goal is 

to utilize this model to provide insight into the question of whether inclusion of the 

intermolecular coupling between different isotopologue vibrations can have a significant effect 

on the thermodynamic properties of an isotopologue mixture.  In our model system, two AB 

molecules align co-linearly in an AB-AB arrangement, so that the dipole-dipole interaction is 

attractive, and we also consider the AB-BA and BA-AB configurations in which the dipole-

dipole interaction is repulsive.  The Lennard-Jones(LJ) interactions employed in this work are 

strong enough that the attractive interactions support non-covalent bound dimer states in all three 

configurations.  This model is similar in spirit to the one-dimensional model employed by Balan 
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et al. to investigate the isotope dependence of sulfur gas absorption on a surface[37].  In our 

calculations, isotopic masses and parameters defining the potential energy of the system are 

taken from the NO molecule, since this is a diatomic molecule with a moderate dipole moment 

of about 0.16 Debye with a known bond length dependence[38].  The goal of this work is not to 

provide a complete theoretical description of any specific AB-AB dimer, since a complete 

description would also depend on features not included in this simple model, such as, the 

rotations of the molecules and the three-dimensional motion of the vector between centers of 

mass of the two molecules.  Furthermore, the isotopic fractionation in a real system would also 

have to account for any reactions involving covalent bonding.  For instance, the real NO 

molecule has an unpaired electron and can form a covalent bond between the N atoms of the two 

NO molecules[39].  Since dimers are bound in this model due to the Lennard-Jones interactions, 

they are an example (within a simplified model) of a van der Waals complex[40-42]. 

Conventional Monte Carlo and molecular dynamics simulations are often performed 

using force fields to model the interactions between the different atoms, or groups of atoms, in 

each of the molecules.  Such simulations generally do not account for the bond length 

dependence of the coupling of the vibrations of different molecules.  Thus, the question of the 

thermodynamic significance of the mass-dependent intermolecular coupling is an important one.  

Hou et al. have recently reported calculations which demonstrate that inclusion of the 

dependence of the H2O-Ar potential energy surface on the intramolecular coupling of the 

vibrational modes of H2O is necessary to obtain a high level of accuracy[43].  This work, on the 

other hand, focuses on intermolecular vibrational couplings.  It should also be noted that several 

computational studies on the quantum nature of hydrogen isotopes in water and in hydrogen shift 

reactions have been performed using quantum path integral techniques[44-48].  The less 

computationally demanding method presented here would not, in its current form, account for 
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the light nuclei quantum effects considered in those studies.  The quantum path integral 

calculations would also account for the isotope mass dependence for the interactions between the 

molecules that is considered in this work, as would higher-level quantum chemistry methods.  

However, force fields are still useful for large systems, and it is important to note that obtaining 

the correct isotope fractionation requires that these bond length dependent intermolecular 

interactions be included.  

 The organization of this paper is as follows.  The one dimensional, co-linear two AB 

model is described in section II.A.  The semiclassical method used for evaluating the two AB  

bound state energies is presented in section II. B.  Results are presented in section II.C, which 

show that mass dependent intermolecular vibrational couplings can have an important effect on 

isotopic fractionation in the non-covalent monomer-dimer reaction, and the mass dependent 

interaction also results in changes in the fraction of AB present in dimer form.  These results and 

their potential importance in more complicated molecular systems are discussed in section III. 

 

II. Calculations 

A. AB Dimer Model 

 The model employed in this work consists of two AB molecules (denoted as 1 and 2) 

with all four atoms aligned co-linearly, as shown in fig. 1 for an AB1-AB2 alignment.  The 

separation between the centers-of-mass (COM) of the two molecules is denoted as R and the 

bond lengths for the two molecules are r1 and r2.  The model potential energy for this alignment 

then has the following form: 

   V(R, r1, r2) = VM(r1) + VM(r2) + VAA(R + a1r1 – a2r2) + VBB(R – b1r1 + b2r2) + 

        + VAB(R + a1r1 + b2r2) + VAB(R – b1r1 – a2r2) + Vµ(R, r1, r2)  (1) 
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where ajrj and bjrj are the distances of the A and B atoms, respectively, from the COM of 

molecule j (j = 1 or 2), 

    VM(r) = D(1 - exp[-α(r - re)])
2
     (2) 

is the Morse potential employed to model the bond length dependence of the energy of a AB 

molecule,  

    VIJ(r) = 4εIJ[(σIJ/r)
12

 - (σIJ/r)
6
]     (3) 

(with IJ = AA, BB, or AB) is the Lennard-Jones (LJ) interaction between atoms I and J separated 

by the distance r, and 

    Vµ(R, r1, r2) = - 2µ(r1)µ(r2)/R
3
     (4) 

is the dipole-dipole interaction between the two molecules.  The dipoles are taken to have a bond 

length dependence of the form 

    µ(r) = µ0 + µ1(r - re) + µ2(r - re)
2
 .    (5) 

The potential energy for the AB-BA and BA-AB case are obtained by changing the sign in Eq. 

(4) and the appropriate modification of the signs before a1, a2, b1, and b2 in the LJ terms in 

Eq.(1).  

 The LJ parameters εAA, εBB, σAA, and σBB employed here are literature values for N and O 

obtained from fits to experimental data[49,50].  The LJ parameters for the interaction between an 

A atom and a B atom are obtained using the combining rules εAB = (εAAεBB)
1/2

 and σAB = (σAA + 

σB)/2.  The Morse potential D and α parameters were fit to match experimental values of the NO 

vibrational constants ωe and xeωe, while re is taken to be the experimental bond length for an 

isolated NO molecule[51], and the same re is used for all isotopologues. The dipole moment of 

the AB molecule is assumed to have a quadratic dependence on bond length, Eq. (5), where µ0, 

µ1, and µ2 have values obtained from an analysis of Einstein coefficients for the NO vibrational-

rotational transitions[38]. 
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 Two types of calculations are reported in this work.  In one type, the values of r1 and r2 

that minimize the potential V(R, r1, r2) are found for each value of R, and the power series 

expansion of V(R, r1, r2) in terms of r1 – r1,min and r2 – r2,min is used to calculate the (R-dependent) 

vibrational modes and energies of this coupled two oscillator system.  These calculations are 

referred to as the "coupled" calculations.  Calculations are also reported for which the values of 

r1 and r2 are held at re when evaluating the Lennard-Jones and dipolar potentials, and the 

vibrations are taken to be the uncoupled vibrations of the two isolated AB molecules.  These are 

referred to as the "uncoupled" calculations in this work.  This parallels the common practice in 

molecular simulations to evaluate Lennard-Jones and dipolar intermolecular interactions, and the 

vibrations of the individual molecules are treated as unchanged by the intermolecular 

interactions, as is the case in the uncoupled calculations reported below.   

 In coupled calculations, the values of r1 and r2 that minimize V for a fixed R are obtained 

iteratively using the first and second derivatives of V with respect to r = (r1, r2).  The R- 

dependent two dimensional matrix ∂2V ∂r∂r  is then evaluated at this minimum, rmin(R), 

converted to mass-weighted coordinates, and diagonalized to give the force constants k1 and k2 

for the two vibrational modes.  The vibrational frequencies ω
1
= k

1
 and ω

2
= k

2
 are then 

obtained.  These R-dependent force constants also depend on the masses of the two AB 

molecules through the conversion to mass-weighted coordinates.  The third and fourth 

derivatives of V(R, r1, r2) in terms of the mass-weighted vibrational coordinates are also 

calculated, and these are used in evaluating first and second order perturbation corrections to the 

vibrational energies.  The total energy of the two AB system for the coupled (cpl) calculations is  

   Ecpl(R) = Vs(R, rmin) + Ev,1(R, rmin) + Ev,2(R, rmin)      (6) 

where Ev,j is the ground state energy of vibrational mode j, which is given by  
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E
v, j

(R,r
min

) = E
0, j

(0) (R,r
min

) + E
0,j

(1) (R,r
min

) + E
0, j

(2)(R,r
min

)    (7) 

and the superscripts give the order in perturbation theory[52].  The shifted potential Vs(R, r) in 

Eq. (6) is V(R,r
1
, r

2
)− E

vib

(∞)
, where E

vib

(∞)
 is the sum of the ground state vibrational energies in the 

R → ∞ limit.  With Vs(R, r) defined this way, Ecpl(R) → 0 in the R → ∞ limit.  The rmin in 

Ev,1(R, rmin) and Ev,2(R, rmin) indicates that these vibrational energies are evaluated using an 

expansion of the potential around rmin.     

 In the uncoupled calculations, the vibrational energy for each molecule is calculated to 

second order in perturbation theory using an expansion of the Morse potential up to fourth order 

in r-re.  This approximation is used for the vibrational energies, rather than the exact Morse 

ground state energy, since this is the same as the approximation for the vibrational energies in 

the coupled calculations[52].
 
 The total energy for the AB dimer system in uncoupled (unc) 

calculations is given by  

   Eunc(R) = Vs(R, re) + EM,1 + EM,2         (8) 

where re denotes that both r1 and r2 are at re.  Here EM,j is the second order perturbative 

approximation for the ground state energy of the Morse oscillator using the reduced mass for AB 

isotopologue j.  Note that Vs(R, re) = V(R, re, re) - E
vib

(∞)
, and E

vib

(∞)
 = EM,1 + EM,2.  As a result, 

Eunc(R) = V(R, re) is just the sum of the LJ and dipolar terms in Eq. (1) with r1 = r2 = re, since the 

vibrational terms cancel and the Morse potential, VM(r), is zero at re. 

 

B. Evaluation of Dimer Bound State Energies 

 The energies Ecpl(R) and Eunc(R) serve as the potential energy for the dynamics of the 

intermolecular coordinate R for the coupled and uncoupled calculations, respectively.  Once 

Ecpl(R) or Eunc(R) have been obtained, they are employed to calculate the energies of the AB-AB, 
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AB-BA, or BA-AB bound states, which in turn are used to evaluate the corresponding dimer 

partition function.  Semiclassical bound states are located at energies for which[53]
 

     W(E)/ħ = (n + 1/2)π,       (9) 

where n is an integer, ħ is Planck's constant divided by 2π, and the action W(E) is given by 

W(E) = p(R,E)dR
RTL

RTR∫      (10) 

In this expression, p(R, E) = 2m
R

E − V
d
(R)   is the momentum for the motion of the R 

coordinate, and either Ecpl(R) or Eunc(R) is used for the dimer potential energy, Vd(R).  RTR and 

RTL are the right and left classical turning points for Vd(R) at energy E [i.e. the points at which 

Vd(R) = E] and mR = m1m2/(m1 + m2) is the dimer reduced mass with m1 and m2 being the 

masses of the two AB molecules. 

 Since the momentum is an increasing function of E and the distance between the turning 

points in Eq. (10) also increases as E increases, W(E) must be an increasing function of E.  

Furthermore, bound states must have energies less that E = 0, since Vd(R) goes to zero at large R.  

Therefore, it follows for Eq. (9) that the quantum number of the highest bound state, nb, is given 

by the largest integer smaller than W(0)/πħ - ½.  The zero energy action W(0) is calculated by 

performing the integral in Eq. (10) with E = 0 from the value of R at which Vd(R) = 0 to a large 

value of R.  The upper limit of the integration for W(0) should be ∞ for the AB-AB case.  At 

large R, Vd ~ -R
-3

 for the AB-AB alignment, which can be used to obtain an estimate of the error 

in W(0) when the upper limit is large but at finite R.  In these calculations, this error in W(0)/ħ is 

on the order of 10
-3

. It was checked for all calculations that W(0)/πħ - ½ was further away from 

an integer value than the truncation error in W(0), showing that the reported values of nb are 

accurate.   
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 In the AB-BA and BA-AB cases, Vµ ~ R
-3

 is greater than zero.  As R becomes larger 

there is a point where Vµ is equal in magnitude to the more rapidly decaying attractive LJ 

interactions.  As R increases past this point, the total potential becomes (very slightly) positive 

and then decays to zero.  The W(0)/πħ - ½ is evaluated for the AB-BA and BA-AB cases by 

integrating W(0) between the point at which Vd(R) = 0 at small R and the point where Vd(R) = 0 

at large R.  For all alignments of the two AB molecule, the energy for each bound state from n = 

0 to n = nb was obtained by an iterative procedure in which a pair of E values were found for 

which W(E) bracketed the value (n + 1/2)πħ, and then the En for which W(En) = (n + 1/2)πħ was 

obtained iteratively using a locally linear approximation for W(E).   

 Once the number of dimer bound states, nbnd = nb +1, and their energies are evaluated, 

then the partition function for the dimer is given by[54] qd = qbqtr,d, where qb is the bound state 

partition function for the potential Vd(R)   

q
b

= e
−βE

n

n=0

nb

∑ ,      (11) 

and qtr,d is the classical translational partition function for the center of mass of the AB-AB dimer 

     qtr,d = (2πMkBT/h
2
)

1/2
 V.    (12) 

M = m1 + m2 is the dimer mass.  The volume in the classical translational partition function, V, is 

just the box length in this one dimensional case.  In order to model the thermodynamics of the 

non-covalent AB dimerization reaction  

    AB1 + AB2 → AB1AB2      (13) 

the partition function for the two monomer system 

     qm = q1q,2       (14) 

is also needed, where the subscripts 1 and 2 in Eqs. (13) and (14) label the two AB molecules.  
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 The contribution to the vibrational partition functions from excited AB vibrational states 

is negligible compared to the ground vibrational state contribution, whether it is obtained using 

the harmonic vibrational frequency of 
14

N
16

O, 1904 cm
-1

 [5] or 
15

N
16

O, or the corresponding 

ground state frequencies corrected for anharmonicity.  Furthermore, the ground state vibrational 

energies are subtracted from the AB-AB potential, which means the zero of energy corresponds 

to the separated molecules in their uncoupled vibrational states.  Given this zero of energy, the 

vibrational partition functions for the individual AB molecules are each unity plus a negligible 

excited state contribution.  (The Boltzmann factor corresponding to 1904 cm
-1

 and T = 150 K is 

about 10
-8

)   Thus, q1 and q2 are given by the translational partition function, Eq. (12), with M 

replaced with m1 and m2, respectively.   

 The error arising from the use of the classical partition function for the free-particle 

translational motion, Eq. (12) in these calculations, was examined numerically.  The partition 

function in Eq. (12) can be obtained as the large box-length limit of the quantum particle in a box 

partition function (L = V in Eq. (12)).[55].  The quantum partition function was obtained for the 

E > 0 states using the Vd(R) for the coupled or uncoupled reaction with a hard wall at L (i.e., Vd 

= ∞ if R ≥ L).  (Since there is a hard wall at L, all states are actually “bound” states.  However, 

we will use the bound states here to mean states for which the two AB molecules are held close 

to each other; i.e., states with E < 0.  Correspondingly, unbound states refers to states with E > 0, 

since the AB molecules can move far from each other in this case.) The quantum energies were 

obtained semiclassically in a manner similar to the evaluation of the bound state energies 

described above.[56]  Using Vd(R) in the calculations shifts the energies of the allowed states 

compared with the free particle, V(R) = 0, case.  This results in a small change in the value of the 

partition function, which is largely independent of the value of L.  Since the partition function is 

proportional to L, the difference between the partition function for E > 0 states using Vd(R) and 
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the free particle partition function, Eq. (12), becomes negligible at large L, justifying the use of 

Eq. (12) in this work. 

 The equilibrium constant for the dimerization reaction, Eq. (13), is given by[55]  

        Keq = [AB1AB2]/[AB1][AB2]  

    = (qd/V)/[(q1/V)(q2/V)]      (15) 

This gives Keq = Vqd/qm.  While Eqs. (13) and (15) are written for the AB-AB alignment, the 

analysis applies for the AB-BA and BA-AB alignments as well.  A value for V of 2.5x10
4
 Bohr 

radii (~1.32x10
3
 nm), which was used in all calculations, was found to be large enough to justify 

the use of the classical partition function, Eq. (12), for the translations.  The partition functions 

qd, q1, and q2 are proportional to the value chosen for V due to the form of the translational 

partition function, Eq, (12).   On the other hand, the q/V factors in Eq. (15) are independent of V, 

as is Keq. The box length does not enter into the calculations other than as the volume factor in 

the translational partition functions and in the q/V factors in Eq. (15).[57] 

 

III. Results 

 Calculations were performed for five different sets of potential energy parameters for the 

one-dimensional AB dimer model.  These parameter sets are given in table 1.  Five parameter 

sets are used in the calculations in order to test the sensitivity of the results to the potential model 

employed.  The set of potential energy parameters labeled as set 1 contains the parameters 

described above with the LJ parameters fit to solubility data[48].  The set 2 parameters use 

different LJ parameters, which were optimized for DNA bases in water[49].  Using a 

significantly different set of LJ parameters for comparison provides useful information 

concerning the robustness of the qualitative findings discussed below.  The set 3 parameters are 

the same as the first set, except µ0 is multiplied by 1.2.  Similarly, the set 4 parameters are the 
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same as the first set, except µ1 is now multiplied by 1.2.  The set 5 parameters are the same as set 

1 except that µ1 = µ2 = 0, which removes the r dependence of the dipoles.  Even though the bond 

length-dependent intermolecular dipolar coupling is turned off in this case, the LJ potentials 

depend on r1 and r2, as can be seen in Eq. (1), and this still results in the vibrations of the two AB 

molecules being coupled since ∂2
V ∂r

1
∂r

2
≠ 0.  

 Three AB dimer combinations with different isotopic composition for the AB molecules 

are compared in table 2 for the AB-AB alignment.  In the first case, both AB molecules are 

14
A

16
B.  In the second case, one molecule is 

14
A

16
B and the other is 

15
A

16
B, while in the third 

case, both molecules are 
15

A
16

B. The masses for 
14

A, 
15

A, 
16

B correspond to the isotope masses 

for 
14

N, 
15

N, and 
16

O, respectively.  Each line in table 2 compares the dimer partition functions, 

qd, and Keq = Vqd/qm, for two different AB-AB isotopologues, where V is the box length.  One of 

the dimers is either 
14

A
16

B-
14

A
16

B or 
15

A
16

B-
15

A
16

B and the other dimer is always 
14

A
16

B-

15
A

16
B.  The monomer partition function, qm, does not depend on the potential parameters, and 

its value is provided in the table caption for the three isotopic cases considered.  The ratio of the 

non-covalent dimerization equilibrium constants, Eq. (15), for the different dimers is also given 

in table 2.  The ratio of the Keq’s provides the relative monomer-dimer fractionation of the 

different isotopic species.  All calculations are at T = 150 K. (For comparison, the NO boiling 

point is 121 K.)
 

 The results from the set 1 potential parameters show that the ratio of dimer-monomer 

equilibrium constants for the 
14

A
16

B-
14

A
16

B case and for the 
14

A
16

B-
15

A
16

B case is equal to 

0.9563 for the coupled calculation.  Since the ratio of these equilibrium constants is less than 

one, 
15

A
16

B molecules would have a higher than statistical abundance in the dimer, while 
14

A
16

B 

molecules would have a higher than statistical abundance in the monomer form in this system. 

This change due to the intermolecular coupling of the vibrations is quite large.  The variations in 
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isotopic fractionation in real systems are typically a few tenths of a percent for this ratio. The 

ratio of the dimer-monomer equilibrium constant from the uncoupled calculation is 1.0053, 

giving smaller preference for 
14

A
16

B molecules in the dimer form. Thus, the very significant 

preferential placement of the 
15

A into the dimer when the vibrations of the two molecules are 

coupled is not reproduced in the calculations with uncoupled vibrations.  This shows that, in this 

model system, the coupling of the vibrations of the two AB molecules, and the relaxation of the 

bond length to the minimum of V(R, r1, r2), has a significant effect on the isotopic fractionation 

between the monomer and the dimer.  On the other hand, the ratio of the equilibrium constants 

for the 
14

A
16

B - 
15

A
16

B, 
15

A
16

B - 
15

A
16

B comparison are nearly the same for the coupled and 

uncoupled calculations, yielding essentially the same fractionation for the two calculations. 

 It should be noted that, in the 
14

A
16

B-
15

A
16

B and 
15

A
16

B-
15

A
16

B systems, the dimer 

partition functions and Keq are about 0.3%-0.4% different between coupled and uncoupled 

calculations, compared to roughly a 5.5% difference for the 
14

A
16

B-
14

A
16

B system.  The coupled 

Keq is 3.802 and uncoupled Keq is 4.011 for 
15

A
16

B-
15

A
16

B system.  The corresponding numbers 

are 3.976 and 3.990 for the 
14

A
16

B-
15

A
16

B system.  A higher Keq = Vqd/qm corresponds to more 

of the AB in the dimer form. Thus, these differences in qd correspond to a change in the fraction 

of AB molecules in dimer form when the dipolar and LJ intermolecular vibrational couplings are 

accounted for.   

 The large 5.5% reduction in the ratio of the equilibrium constants when going from the 

uncoupled to the coupled calculations for the 
14

A
16

B-
14

A
16

B system results primarily from the 

fact that there is one less bound dimer state in the coupled calculations than in the uncoupled 

calculations.  When the center-of-mass distance between two AB molecules is large, the dipole-

dipole interaction dominates and decays with a relatively slow R
-3

 dependence.  This slow 

asymptotic approach to zero results in the highest energy bound states lying very close to the E = 
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0 dissociation limit.  As a consequence, a relatively small change in Vd(R) can result in a change 

in the number of bound states for the dimer.   

 The potential parameter set 2, in which different LJ parameters are used, and the potential 

parameter set 4, in which the µ1 dipole parameter is increased by 20%, provide the same 

qualitative results as parameter set 1.  The partition function and Keq values obtained from the 

coupled and uncoupled calculations for the 
14

A
16

B-
15

A
16

B dimer and 
15

A
16

B-
15

A
16

B dimer differ 

by about 0.3%-0.4%, and the number of bound states for the 
14

A
16

B-
14

A
16

B dimer differs by one 

in the two calculations.  While the parameter set 4 results differ from the parameter set 1 results 

only very slightly, it was found that, if the value of µ1 was increased to 1.3 times its parameter 

set 1 value, then the number of bound states for the case 2 coupled calculations changed from 14 

to 13.  This results in the corresponding partition function changing from 2.818 x10
4
 for 

parameter 4 to 2.681x10
4
, while Keq changes from 3.975 to 3.781.  The ratio of Keq’s changes 

from 0.9563 to 1.0052 for the case1/case2 system, and it changes from 0.9944 to 1.0452 for the 

case3/case2 system, demonstrating the sensitivity of the results to the µ1 parameter.   

  A change in the number of bound states is not present for parameter set 3, for which the 

magnitude of the dipole at re is increased by 20% compared with the parameter set 1.  Since the 

µ1 parameter is not increased, this amounts to a smaller fractional increase in the dipole with 

increasing r, and it is this r-dependent increase in µ that couples the dipoles of the two AB 

molecules.  In this case, there is still an approximately 0.4% difference between coupled and 

uncoupled partition functions and equilibrium constants.  There is also not a change in the 

number of bound states when using parameter set 5, which neglects the bond length dependence 

of the dipole moments.   In this case, the difference between the coupled and uncoupled partition 

functions and equilibrium constants shrinks to about 0.25%.  While this is smaller than when the 

dipolar vibrational coupling is included, it is not negligible, which indicates that the LJ 
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interactions by themselves can induce non-negligible coupling between the vibrations of 

different molecules.  On the other hand, the change in the number of bound dimer states is only 

seen in the cases in which there is a strong dependence of the molecular dipole on bond length. 

 The solid line in Fig. 2a shows Vd(R) from the coupled calculations for the 
14

A
16

B-
14

A
16

B 

dimer case when set 1 potential parameters are used.  Fig. 2b shows coupled and uncoupled 

Vd(R) near the minimum for this dimer.  The difference between the coupled and uncoupled Vd 

is larger at small R and approaches zero as R increases, which is to be expected given that the 

interactions between the molecules are greater when R is small.  The difference between the 

minimum energy bond length for the AB molecule and the bond length for an isolated AB 

molecule, which we denote as xj = rj,min – re, is plotted in Fig. 3 for the coupled 
14

A
16

B-
14

A
16

B 

dimer case using set 1 potential parameters.  The position of the potential minimum, Rmn, and the 

value of Vd(Rmn) are compared for the coupled and uncoupled calculations, all pairs of 

isotopologues, and all parameter sets for the AB-AB alignment in table 3. 

 The results from calculations with the AB monomers in the AB-BA and BA-AB 

alignments are reported in tables 4 and 5, respectively, for parameter sets 1, 2, and 4, which are 

the sets for which there are changes in the number of bound state in the AB-AB case.  The values 

of Rrm and Vd(Rmn) for these coupled and uncoupled calculations are given in table 3.  The Vd(R) 

for two 
14

A
16

B molecules and parameter set 1 is also plotted for AB-BA and BA-BA in fig. 2a.  

In these arrangements the dipole interactions are repulsive.  At short and moderate distances the 

Lennard-Jones attractions are stronger than the dipolar repulsion, and the resulting interactions 

between the two molecules supports bound dimer states.   

 Rmn shifts to smaller R and Vd(Rmn) is more negative for AB-BA compared with the AB-

AB case.  The LJ repulsive R
-12

 dependence is steeper than the R
-3

 dipolar repulsion at small R.  

R is the distance between the center of mass of the two molecules.  It is the B-B LJ repulsion in 
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AB-BA the largely determines how small Rmn gets in this case, while it is a B-A LJ repulsion in 

AB-AB that determines Rmn.  Since B is heavier, the center of mass of the molecule is closer to 

the B atom than the A atom.  Furthermore, B has a smaller Lennard-Jones σ parameter than A. 

This is why Rmn for AB-BA is smaller than the Rmn for AB-AB.  A similar argument explains 

why Rmn for BA-AB is larger than for AB-AB.  A smaller Rmn results in stronger LJ attractions 

for three pairs of atoms that are not the closest pair, and this in turn produces a lower Vd(Rmn) for 

AB-BA and a higher Vd(Rmn) for AB-BA than for AB-AB.   

 The attractive R
-6

 LJ potential decays at large R faster than the repulsive the dipole 

interaction.  Therefore, Vd(R) crosses zero at some large R and becomes slightly positive before 

decaying to zero with the R
-3

 dipolar dependence.  Thus, the bound state Vd(R) well does not 

have the slow - 2µ(r1)µ(r2)/R
3
 dependence at large R that resulted in the AB-AB dimer having 

states very close to E = 0.  As such, it might be expected that dimers in the AB-BA and BA-AB 

arrangement will be less likely to have a change in the number of bound states when comparing 

the coupled and uncoupled calculations.  As expected, the cases that had changes in the number 

of bound states in the AB-AB alignment do not show these changes in the AB-BA and BA-AB 

alignments.  However, the number of bound states does change when comparing the coupled and 

uncoupled calculation for parameter set 2 with two 
15

A
16

B molecules.   

 Table 6 provides the partition function when the contributions of AB-AB, BA-BA, AB-

BA, BA-AB orientations of two AB molecules are summed.  (The partition function for BA-BA 

is the same as for AB-AB.)  Since the monomer partition functions are independent of the 

orientation, they are simply four times the monomer partition functions for any of the four 

alignments.  The equilibrium constants derived from these summed partition function and their 

ratio are also provided in table 6. 
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 The Vd(Rmn) for the coupled and uncoupled calculations differs by about 1.2 K for the 

AB-AB case, except when parameter set 5 is used, in which case this difference is approximately 

0.8 K.  This shift in Vmin results, for some cases, in a change in the number of dimer bound states 

when comparing the coupled and uncoupled calculations.  Even in the cases where the number of 

bound dimer states does not change, the approximately 1 K change seen in Vmin produces a 

comparable change in the energies of the lower energy bound states.  In turn, this produces the 

roughly 0.3%-0.4% change in the dimer partition function when comparing the coupled and 

uncoupled dimer partition functions in table 2 for any pair of isotopologues and potential 

parameter sets 1 through 4 for which the number of bound states is the same for the coupled and 

uncoupled calculation.  The change in qd decreases to about 0.25% for parameter set 5, for which 

the bond length dependence of the AB dipole moment is ignored and the change is Vmin is 

somewhat smaller.   

 The differences in Vd(Rmn) for the coupled and uncoupled calculations are about 0.6K, 

0.3K and 0.4K for the AB-BA arrangement and parameter sets 1, 2, and 4, respectively.  The 

corresponding differences for the BA-AB arrangement are 0.4K, 0.2K, and 0.3K.  As seen in fig. 

2a, the Vd(Rmn) values are lower and occur at shorter Rmn for the AB-BA case than for the AB-

AB arrangement, and they are higher and occur at longer Rmn for the BA-BA case.  The smaller 

differences between the coupled and uncoupled calculations in the AB-BA and BA-AB 

calculations are reflected in the small differences in the corresponding Keq values.  When the 

contributions from the four possible orientations on the monomer are summed, there are changes 

in the number of bound states when comparing the coupled and uncoupled calculations in most 

cases.  The percentage change in the partition function for the coupled and uncoupled calculation 

in cases for which there is a difference in the number of bound state for the two calculations is 

less when all four orientations are summed.  For instance, the case 1 partition function for 
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parameter set 1 is about 5.5% higher in table 2 for the uncoupled partition function compared 

with the coupled partition function, while this change is about 3% in table 6.  This 3% change is 

still very large compared with the few tenths of a percent size of relative fractionation changes 

typically observed in experimental systems. 

IV. Discussion 

 The calculations in this work show that the mass dependence in the intermolecular 

interaction, which results from the coupling of the vibrations of the two AB molecules, can have 

a significant effect on the isotopic fractionation between the dimer and the non-dimerized AB 

system.  This shift in fractionation occurs because the isotope-dependent dipole-dipole and LJ 

coupling of the vibrations of the two AB molecules results in a change in the R-dependent 

potential energy between the molecules.  This leads to a change in the energy of the dimer bound 

states, which in turn alters the dimer partition function, but not the partition function for the two 

AB monomer system.  Since the ratio of these two partition functions provides the equilibrium 

constant for the dimer-monomer equilibrium, a different equilibrium concentration of dimers is 

predicted when the dipolar coupling is included compared to when it is ignored.  The dependence 

of the dimer potential on the isotopic composition of the AB molecules can also result in a 

change in the number of AB dimer bound states when the dipole-dipole induced vibrational 

coupling is included in the calculation.  This has an even greater impact on the dimer partition 

function than the change in Vd(R) alone.   

 In cases where there is no change in the number of bound dimer states, the isotopic 

fractionation between the dimer and the monomer species changes less when going from the 

uncoupled to coupled calculations.  While the dimerization equilibrium constants from the 

coupled and uncoupled calculations differ, this difference largely cancels when the ratio of the 

14
A

16
B, 

15
A

16
B and 

15
A

16
B, 

15
A

16
B equilibrium constants is taken, resulting in nearly the same 
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isotopic monomer-dimer fractionation.  However, there is still a change in the predicted dimer 

concentration in these two systems due to the difference in the uncoupled and coupled 

equilibrium constants.  On the other hand, in the cases in which the number of bound dimer 

states changes when going from the uncoupled to the coupled calculations, the changes in the 

dimer partition functions no longer cancel.  In this case, the fractionation of the A isotopes 

between the dimers and the monomers predicted by the uncoupled calculation differs 

significantly from that predicted by the coupled calculation. 

 While these calculations have been performed for a simplified one-dimensional co-linear 

model, the results obtained show that the intermolecular coupling of vibrations in different 

molecular isotopologues can have an impact on the fractionation of various isotopes in physical 

and chemical processes.  In higher dimensional systems, one would expect that the density of 

states would increase faster with energy than in a one dimensional system.  The changes in the 

potential energy would still shift the state energies, as it did in this work.  Since these shifts 

should be largest for the lowest energy states, the resulting changes in the partition functions may 

not be as significant in a many dimensional case as they are in the simple case considered here.  

Nonetheless, a change in the potential near its minimum of around 1 K, as seen in this work, 

should have a non-negligible effect on the partition function for systems at room temperature and 

below.  Furthermore, if the density of states increases faster with increasing energy for higher 

dimensional systems, as expected, then a higher fraction of the bound states would have energies 

very close to E = 0, and the changes in the potential could more easily produce changes in the 

number of bound states.  If this is the case, the inclusion of the dipolar induced intermolecular 

vibrational coupling should have a significant impact on isotope fractionation predictions.   
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Table 1. The potential energy parameters employed in the calculations.  Energies are in Kelvin, 

and lengths are in angstroms (10
-10

m).  The dipole parameters are in debye and angstroms.   

Calculations are performed for five sets of potential parameters.   

 

 Set 1:  εB= 1.181x10
2
, εA = 0.950x10

2
 , σB = 3.46, σA = 3.70  (Gas solubility data)[48],

 

  µ0 = -0.1681, µ1 = 2.345, µ2 = -1.26[37], De = 9.257x10
4
, α = 0.6995, 

  re = 1.172[50]. 

            Set 2:  εB= 1.058x10
2
  εA = 0.856x10

2
 , σB = 2.96, σA = 3.25  (DNA bases in water  

  data)[49]  All other parameters are the same as set 1. 

            Set 3: µ0 is 1.2 times the µ0 for set 1.  All other parameters are the same as set 1. 

            Set 4: µ1 is 1.2 times the µ1 for set 1.  All other parameters are the same as set 1. 

 Set 5: µ1 = 0 and µ2 = 0.  All other parameters are the same as set 1. 
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Table 2.  Result from AB-AB calculations with different isotopic compositions at T = 150K.  

Case 1 has two 
14

A
16

B molecules.  Case 2 has one 
14

A
16

B molecule and one 
15

A
16

B molecule.  

Case 3 has two 
15

A
16

B molecules.  The nbnd values given in each line are the number of bound 

dimer states for the two cases, labelled i and j, compared in that line.  The molecular calculation 

is either coupled (cpl) or uncoupled (unc) as indicated.  The partition function for the monomer 

systems, Eq. (14), is 9.227x10
9
 for case 1, 9.379x10

9
 for case 2, and 9.534x10

9
 for case 3.  The 

Keq are in angstroms (10
-10

 m). 

Potential parameter set 1: 

 case i  case j  nbnd,i   nbnd,j    type       qdi      qdj          Keq,i     Keq,j   Keq,i/Keq,j 

     1       2        13      14      cpl   2.652x10
6
   2.819x10

6
    3.802   3.976    0.9563 

     1       2        14      14      unc  2.798x10
6
   2.829x10

6
    4.011   3.990    1.0053 

     3       2        14      14      cpl   2.849x10
6
   2.819x10

6
    3.953   3.976    0.9944 

     3       2        14      14      unc  2.859x10
6
   2.829x10

6
    3.968   3.990    0.9944 

 

Potential parameter set 2: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       11     12       cpl   2.019x10
6
   2.177x10

6
    2.894   3.071    0.9425 

    1        2       12     12       unc  2.162x10
6
   2.185x10

6
    3.100   3.081    1.0059 

    3        2       12     12       cpl   2.199x10
6
   2.177x10

6
    3.052   3.071    0.9937 

    3        2       12     12       unc  2.207x10
6
   2.185x10

6
    3.062   3.081    0.9937 

 

Potential parameter set 3: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       14     14       cpl   2.801x10
6
   

 
2.833x10

6
   4.017   3.996    1.0052 

    1        2       14     14       unc  2.812x10
6
    2.844x10

6
   4.032   4.011    1.0053 

    3        2       14     14       cpl   2.863x10
6
    2.833x10

6
   3.973   3.996    0.9943 

    3        2       14     14       unc  2.874x10
6
    2.844x10

6
   3.989   4.011    0.9943 

 

Potential parameter set 4: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       13     14       cpl   2.651x10
6
    2.818x10

6
   3.801    3.975    0.9563 

    1        2       14     14       unc  2.798x10
6
   

 
2.829x10

6
    4.011   3.990    1.0053 

    3        2       14     14       cpl   2.848x10
6
    2.818x10

6
    3.952   3.975    0.9944 

    3        2       14     14       unc  2.859x10
6
    2.829x10

6
    3.968   3.990    0.9944 

 

Potential parameter set 5: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       14     14       cpl   2.791x10
6
    2.822x10

6
   4.002   3.981    1.0053 

    1        2       14     14       unc  2.798x10
6
    2.829x10

6
   4.011   3.990    1.0053 

    3        2       14     14       cpl   2.852x10
6
    2.822x10

6
   3.958   3.981    0.9943 

    3        2       14     14       unc  2.859x10
6
    2.829x10

6
   3.968   3.990    0.9944
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Table 3.  The minimum in Vd(r) and its position, Rmn.  Case 1 has two 
14

A
16

B molecules.  Case 2 

has one 
14

A
16

B molecule and one 
15

A
16

B molecule. Case 3 has two 
15

A
16

B molecules.  The 

calculation type is either coupled (cpl) or uncoupled (unc).  The potential parameters for the five 

sets are given in table 1.  Vd is given in Kelvin and Rmn is in angstroms (10
-10

m). 

 

 

  AB-AB           Set 1            Set 2              Set 3              Set 4        Set 5 
Case   Type       Rmn    Vd(Rmn)     Rmn  Vd(Rmn)      Rmn  Vd(Rmn) Rmn  Vd(Rmn)   Rmn  Vd(Rmn)  

    1      cpl         5.02  -213.08      4.52  -175.00      5.02  -214.44      5.02  -213.00     5.02  -213.42  

    1     unc         5.01  -214.25      4.52  -176.21      5.01  -215.68      5.01  -214.25     5.01  -214.25 

    2      cpl         5.00  -213.14      4.50  -175.08      5.00  -214.51      5.00  -213.06     5.00  -213.47 

    2      unc        4.99  -214.29      4.50  -176.27      4.99  -215.74      4.99  -214.29     4.99  -214.29 

    3      cpl         5.02  -213.10      4.52  -175.03      5.02  -214.46      5.02  -213.02     5.02  -213.43 

    3      unc        5.01  -214.25      4.52  -176.21      5.01  -215.68      5.01  -214.25     5.01  -214.25  

 

  AB-BA           Set 1            Set 2              Set 4   

Case   Type       Rmn    Vd(Rmn)     Rmn  Vd(Rmn)      Rmn  Vd(Rmn) 

    1      cpl         4.81  -235.61      4.29  -194.69      4.81  -235.70 

    1     unc         4.81  -236.12      4.28  -194.99      4.81  -236.12   

    2      cpl         4.83  -235.64      4.31  -194.75      4.83  -235.73 

    2     unc         4.83  -236.17      4.30  -195.06      4.83  -236.17   

    3      cpl         4.85  -235.68      4.33  -194.80      4.85  -235.76 

    3     unc         4.85  -236.21      4.32  -195.13      4.85  -236.21   

 

  BA-AB           Set 1            Set 2              Set 4   

Case   Type       Rmn    Vd(Rmn)     Rmn  Vd(Rmn)      Rmn  Vd(Rmn) 

    1      cpl         5.23  -183.04      4.77  -143.94      5.23  -181.84 

    1     unc         5.22  -183.46      4.76  -144.14      5.22  -182.19   

    2      cpl         5.21  -183.02      4.75  -143.91      5.21  -181.81 

    2     unc         5.29  -183.43      4.74  -144.09      5.20  -182.15   

    3      cpl         5.19  -183.01      4.73  -143.88      5.19  -181.78 

    3     unc         5.18  -183.39      4.72  -144.05      5.18  -182.10   
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Table 4.  Results from AB-BA calculations with different isotopic compositions at T = 150K.  

Case 1 has two 
14

A
16

B molecules.  Case 2 has one 
14

A
16

B molecule and one 
15

A
16

B molecule.  

Case 3 has two 
15

A
16

B molecules.  The nbnd values given in each line are the number of bound 

dimer states for the two cases, labelled i and j, compared in that line.  The molecular calculation 

is either coupled (cpl) or uncoupled (unc) as indicated.  The partition function for the monomer 

systems, Eq. (14), is is 9.227x10
9
 for case 1, 9.379x10

9
 for case 2, and 9.534x10

9
 for case 3. The 

Keq are in angstroms (10
-10 

m). 

Potential parameter set 1: 

 case i  case j  nbnd,i   nbnd,j    type       qdi      qdj          Keq,i     Keq,j   Keq,i/Keq,j 

     1       2        11      11      cpl   2.541x10
6
   2.572x10

6
    3.644   3.627    1.0046 

     1       2        11      11      unc  2.545x10
6
   2.575x10

6
    3.649   3.633    1.0045 

     3       2        11      11      cpl   2.602x10
6
   2.572x10

6
    3.611   3.627    0.9954 

     3       2        11      11      unc  2.606x10
6
   2.576x10

6
    3.616   3.633    0.9954 

 

Potential parameter set 2: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2        8       8        cpl    1.694x10
6
   1.713x10

6
    2.428   2.416    1.0049 

    1        2        8       8        unc   1.695x10
6
   1.714x10

6
    2.430   2.418    1.0048 

    3        2        9       8        cpl    1.871x10
6
   1.713x10

6
    2.596   2.416    1.0744 

    3        2        8       8        unc   1.734x10
6
   1.714x10

6
    2.406   2.418    0.9951 

 

Potential parameter set 4: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       11     11       cpl    2.542x10
6
   

 
2.573x10

6
   3.645   3.629    1.0046 

    1        2       11     11       unc   2.545x10
6
    2.576x10

6
   3.649   3.633    1.0045 

    3        2       11     11       cpl    2.603x10
6
    2.573x10

6
   3.612   3.629    0.9954 

    3        2       11     11       unc   2.606x10
6
    2.576x10

6
   3.616   3.633    0.9954 
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Table 5.  Results from BA-AB calculations with different isotopic compositions at T = 150K.  

Case 1 has two 
14

A
16

B molecules.  Case 2 has one 
14

A
16

B molecule and one 
15

A
16

B molecule.  

Case 3 has two 
15

A
16

B molecules.  The nbnd values given in each line are the number of bound 

dimer states for the two cases, labelled i and j, compared in that line.  The molecular calculation 

is either coupled (cpl) or uncoupled (unc) as indicated.  The partition function for the monomer 

systems, Eq. (14), is 9.227x10
9
 for case 1, 9.379x10

9
 for case 2, and 9.534x10

9
 for case 3.  The 

Keq are in angstroms (10
-10 

m). 

Potential parameter set 1: 

 case i  case j  nbnd,i   nbnd,j    type       qdi      qdj          Keq,i     Keq,j   Keq,i/Keq,j 

     1       2        10      10      cpl   2.025x10
6
   2.047x10

6
    2.903   2.888    1.0055 

     1       2        10      10      unc  2.027x10
6
   2.049x10

6
    2.907   2.891    1.0055 

     3       2        10      10      cpl   2.069x10
6
   2.047x10

6
    2.872   2.888    0.9945 

     3       2        10      10      unc  2.072x10
6
   2.049x10

6
    2.875   2.891    0.9944 

 

Potential parameter set 2: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2        8       8        cpl    1.457x10
6
   1.472x10

6
    2.089   2.077    1.0061 

    1        2        8       8        unc   1.458x10
6
   1.472x10

6
    2.090   2.077    1.0062 

    3        2        8       8        cpl    1.487x10
6
   1.472x10

6
    2.064   2.077    0.9938 

    3        2        8       8        unc   1.487x10
6
   1.472x10

6
    2.064   2.077    0.9938 

 

Potential parameter set 4: 

case i  case j  nbnd,i   nbnd,j   type       qdi                  qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       10     10       cpl    2.026x10
6
   

 
2.048x10

6
   2.904   2.888    1.0055 

    1        2       10     10       unc   2.027x10
6
    2.049x10

6
   2.907   2.891    1.0055 

    3        2       10     10       cpl    2.070x10
6
    2.048x10

6
   2.873   2.888    0.9945 

    3        2       10     10       unc   2.072x10
6
    2.049x10

6
   2.875   2.891    0.9944 
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Table 6.  Results from dimer calculations with different isotopic compositions at T = 150K. The 

partitions functions are the sum of all four orientations of the two dimers, i.e., AB or BA for each 

dimer.  Case 1 has two 
14

A
16

B molecules.  Case 2 has one 
14

A
16

B molecule and one 
15

A
16

B 

molecule.  Case 3 has two 
15

A
16

B molecules.  The nbnd values given in each line are the number 

of bound dimer states for the two cases, labelled i and j, compared in that line.  The molecular 

calculation is either coupled (cpl) or uncoupled (unc) as indicated.  The partition function for the 

monomer systems, Eq. (14), is 3.691x10
10

 for case 1, 3.752x10
10

 for case 2, and 3.813x10
10

 for 

case 3.  The Keq are in angstroms (10
10

m). 

Potential parameter set 1: 

case i  case j  nbnd,i   nbnd,j   type       qdi           qdj          Keq,i     Keq,j   Keq,i/Keq,j 

     1       2        47      49      cpl   1.974x10
7
   2.051x10

7
    3.538   3.617    0.9782 

     1       2        49      49      unc  2.034x10
7
   2.057x10

7
    3.645   3.626    1.0052 

     3       2        49      49      cpl   2.074x10
7
   2.051x10

7
    3.597   3.617    0.9946 

     3       2        49      49      unc  2.079x10
7
   2.057x10

7
    3.607   3.626    0.9946 

 

Potential parameter set 2: 

case i  case j  nbnd,i   nbnd,j   type       qdi                 qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       38     40       cpl   1.438x10
7
   1.508x10

7
    2.576   2.659    0.9691 

    1        2       40     40       unc  1.495x10
7
   1.511x10

7
    2.680   2.664    1.0057 

    3        2       42     40       cpl   1.512x10
7
   1.508x10

7
    2.691   2.659    1.0121 

    3        2       40     40       unc  1.527x10
7
   1.511x10

7
    2.649   2.664    0.9940 

 

Potential parameter set 4: 

case i  case j  nbnd,i   nbnd,j   type       qdi                 qdj         Keq,i     Keq,j   Keq,i/Keq,j 

    1        2       49     49       cpl   1.974x10
7
   

 
2.051x10

7
   3.538   3.617    0.9782 

    1        2       49     49       unc  2.034x10
7
    2.057x10

7
   3.645   3.626    1.0052 

    3        2       49     49       cpl   2.074x10
7
    2.051x10

7
   3.597   3.617    0.9946 

    3        2       49     49       unc  2.079x10
7
    2.057x10

7
   3.607   3.626    0.9946 
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Figure 1.  Co-linear AB-AB system.  The left circle for each molecule is the A 

atom and the right circle are the B atoms.  R is the distance between the center of 

mass of AB1 and the center of mass of AB2.   The bond lengths for the two 

molecules are r1 and r2.  The ajrj is the distance of the A atom from the center of 

mass for molecule j (j = 1, 2), and bjrj is the distance of the B atom from the center 

of mass of the molecule. 
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Figure 2.  (a) Vd(R) from coupled calculations for AB-AB (solid curve), AB-BA 

(dashed curve), and BA-AB (dot-dash curve).  (b) Vd(R) near minimum for 

coupled (solid curve) and uncoupled (dotted curve) calculations.  Calculations are 

for the 
14

A
16

B-
14

A
16

B system with parameters from set 1.  Vd is in Kelvin and R is 

in angstroms. 
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Figure 3.  Plot of x1 = r1,min - re (solid curve) and x2 = r2,min - re (dashed curve) as 

functions of R for the 
14

A
16

B-
14

A
16

B case using parameter set 1 for the potential.  

The dotted line is at R = 5.01, which is the position of the minimum for the 

coupled Vd(R).  The R, x1, and x2 values are in angstroms.  Since the center of 

mass of AB is closer to the heavier element (i.e., B), a change in r2 at fixed R 

produces a larger change in the short distance between atom B from molecule 1 

and atom A from molecule 2 than the same size change in r1.  This asymmetry 

results in the difference in two curves in the figure. 


