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ABSTRACT 
 

We examine the derivatives with respect to temperature, for various deuterium-tritium (D-
T) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and 
Makaruk [1] had studied this as a means of understanding the time and temperature domain 
of reaction history measured in dynamic fusion experiments. Presently, we consider the 
temperature derivative dependence of fusion reactivity as a means of exercising and 
verifying the consistency of the various reactivity formulations. 

 
I. Introduction: Sources of D-D & D-T Reactivity 

Formulations  
 

A. Beyond the NRL Formulation 
Langenbrunner and Makaruk [1] found derivatives with respect to ion temperature (italicized T) 

for formulae of fusion reactivities given in the U.S. Naval Research Lab (NRL) [2] formulary. 

The present work expands upon the previous by using various other formulations of reactivity, f, 

where f (T)DD = <σv>DD and f (T)DT = <σv>DT.  These formulations are Hively [3], BUCKY [4], Bosch 

& Hale [5], T2 LANL [6], DRACO [7], UNC [8] and data [9].  The fusion reactivity, vσ< > , is 

averaged over a Maxwellian distribution for velocity [2], as are all of the other formulations.  The 

Maxwellian velocity distribution assumption is g(v) in Eq. (1): 

  (1) 

The NRL fusion reactivity at low energy, below 25 keV, as a function of T is expressed in the 

following form: 
2/3 1/3

0 exp( )v A T ATσ − −< > = −                          (2) 

 



 2 

with A = 19.94 for the D-T fusion reaction and A = 18.76 for the D-D fusion reaction.  The scalar 

multiplier A0 is equal to 3.68 x 10-12 for D-T fusion and 2.33 x 10-14 for D-D fusion, and reactivity 

has units of cm3 sec-1. The fusion reactivity, as a function of T(keV), is frequently expressed as 

proportional to a power law of T, [10], 

             av Tσ< > ∝  .      (3) 

 

The temperature derivative of the power law expression, Eq. (3), is found by rearranging terms 

and assigning the proportionality quantity, a(T), as everything except the ratio of reactivity to T:  

( )d vv a T
dT T

σσ < >
< > =  .   (4) 

 

B. The Hively Formulation 
A commonly cited formulation in Eq. (5) is from Hively [3]: 
 

    (5) 

 
where the D-D reaction total is the sum of the proton and neutron branches, D-Dp and D-Dn.  
 

The first derivatives with respect to temperature T of the Hively expressions are analytically 

obtainable as: 

      (6) 
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Because the focus is for temperature T < 30 keV, the absolute value insides the exponent of D-T 

derivative in Eq. (6) is replaced with a minus sign outside of the ln. All three of these first 

derivatives can be rearranged for extracting the a(T) factor apart from <σv>/T, in Eq. (4). 

 

B. The BUCKY Formulation 
MacFarlane, Moses, and Peterson in 1995 [4] and 2002 simulated inertial confinement fusion 

using 1D hydrodynamics code referred to as BUCKY, with the following formulations of D-D 

and D-T reactions: 

   (7) 

Parameter D-T D-D 
r 0.2935 0.3735 

A1 -21.377692 -15.511891 
A2 -25.20405 -35.318711 
A3 -0.071013427 -0.012904737 
A4 1.94E-04 2.68E-04 
A5 4.92E-06 -2.92E-06 
A6 -3.98E-08 1.27E-08 

 

The BUCKY formulation is interesting because it involves various T power-law formulations, 

involves an exponential function which permits analytical derivatives, and involves computation. 

 

It should be noted that the D-D A3 coefficient appears in later literature, circa 2005, without the 

minus sign. If this error is propagated through the analytical and empirical derivatives, the 

extrema temperature value in the 2nd derivative is significantly affected, while the reactivities 

themselves are not so adversely affected.  Figure 1 for the short range of 1-25 keV indicates that 

the incorrect BUCKY reactivities (as black dots) fall in the middle of those from other sources 

and the bottom < blue symbols are the verifiable values.  It is only when a longer range in 

temperature is plotted that the incorrect values deviate radically from the others. This result 

demonstrates how the nonlinearity of Eq. (7) and its derivatives in Eq. (8) can be quite sensitive 

to seemingly minor changes.   

 

The analytical derivatives for Eq. (7) are: 
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    (8) 

 

Again, the first derivative can be transformed to factor out <σv>/T, from the remaining terms 

forming a(T) in Eq. (4). 

 

C. The Bosch & Hale Formulation 
One of the most prominently cited alternative formulations for reactivity is from Bosch & Hale 

[5]. Eq. (9) with its coefficient table contain their new, improved, parameterization: 

 

     (9) 

      

 
Parameters D+D—>3He+n D+D—>T + p D-T 

C0 6.2696 6.2696 6.661 
C1 3.57E-16 3.72E-16 6.43E-14 
C2 5.86E-03 3.41E-03 1.51E-02 
C3 7.68E-03 1.99E-03 7.52E-02 
C4 0 0 4.61E-03 
C5 -2.96E-06 1.05E-05 1.35E-02 
C6 0 0 -1.07E-04 
C7 0 0 1.37E-05 

 
Based upon the complexity in Eq. (9), one might expect a high degree of accuracy over a wide 

range of T, and that is the experience of studies by Langenbrunner and Booker [11] and of Horny’ 

et al. 2011, [12].  However, Eq. (9) is complicated for finding the analytical derivative as 

demonstrated by the first derivative in Eq. (10). For simplification, the first derivative is 

expressed in terms of reactivity, θ, ξ, dθ/dT and dξ/dT: 

 

      (10) 

where  
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. 

The form for determining a(T) is accomplished by rearranging the definition of θ in terms of a 

factor for T  

                                (11) 

and substituting Eq. (11) for θ into the denominator of the first term on the right side of Eq. (10). 

 

D. Additional Formulations 
Outputs from complex simulations and hydrodynamics codes are not conducive to an analytical 

expression for derivatives. Calculations from Los Alamos National Laboratory (T2 LANL) [6], 

the DRACO code [7] and the University of North Carolina (UNC) [8] have this issue. The same 

is true of data [9].  Sections II and III present two alternative approaches. Section IV contains the 

results of determining the extrema temperatures for the 2nd derivatives of D-D and D-T reactions 

and compares them across this variety of sources, beyond the NRL formulation.  

 

II. Empirical Fitting of D-D and D-T Reactivity Formulations  
 

Derivatives can be obtained for complex reactivity formulations, if these are first fit to a 

functional form that is conveniently differentiable.  Hoffman 1992 [13] suggests fitting such 

data/outputs to polynomials and then taking the derivatives of those polynomial formulations. 

These are the empirical derivatives, because the least squares regression procedure of fitting is 

first applied. Using the JMP software (trademark of SAS corporation), least squares regression 

fits were made for the calculated reactivities as a function of the powers of T from 1 through 7 

plus an intercept.  To check the viability of the fits, an R2 value of near 1.000000 was desired, 

with all the 7 powers of T being significant and with all the predicted values being positive.  If 

one or more powers are not significant, it may have been deleted depending upon other criteria.  

Using the polynomial prediction fit, the first, second and third derivatives were analytically 

derived from the regression fit, and the values of these empirical derivatives were found.  It was 

expected that the third derivative would have positive values for the lowest T’s and then switch to 

negative values.  If this behavior was not evident or if the crossing of the horizontal axis (where 

the 3rd derivative is zero) was not in the anticipated range of the (2nd derivative) extremum value 

of T, then the fit was not considered appropriate.  That is, it was unverified. 
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In addition to being able to exclude or include powers of T terms in the fit, adjustments to the 

range of values of T also was used to determine the best fit. The stepwise procedure in JMP was 

used for the former, and examination of the predictions and empirical derivatives was used for the 

latter.  The default for the beginning range of T was the range published by the developers of the 

reactivity formulation.  However, interest is focused on the lower values of T, where the extrema 

in the 2nd derivative are found. The smallest range of applicability is that of NRL, which runs 

from 1-25 keV.  For formulations with higher ranges, often other problems with fits emerged.  

Thus, the maximum of 25-30 keV provided good fits for all formulations, code outputs and data. 

And the minimum of 1 keV or slightly below that applied as the lower range. As shown in Figure 

2, for T<1 keV, empirical derivatives do not match their analytical counterparts. Different 

curvatures and negative values can occur with empirical derivatives.   

 

Another issue is determining the ranges of T where these calculations (and even the data) are 

applicable.  Again, this is a sensitivity issue which shows up in derivatives looking suspicious and 

not something one would worry about if they were not considering derivatives for analytical 

analysis and verification.  The developers of the formulations have published what they 

determined as an operational/ applicable range for their calculation/code based on just the 

reactivities themselves (and their physics expertise).  The T ranges were sometimes altered (e.g., 

deleting T’s < 1 keV, and T’s > 25 keV) in order to obtain the derivatives (either analytical ones 

or empirical ones) to be well behaved—and verified in that sense.  

  

To test the accuracy and feasibility of this empirical derivative method (in other words, to verify), 

analytical derivatives for NRL and BUCKY were compared to the empirical derivatives from 

polynomial fits. Figure 2 displays this comparison for the Bosch & Hale derivatives and Figure 3 

for the BUCKY derivative. Note that only the first derivatives for Bosch & Hale were compared 

to the first derivative from polynomial fits because the analytical second and third derivatives 

were too complex and cumbersome. 

 

To judge the best polynomial fits using least squares regression, the R2 values approaching 

1.000000 were desired and the significance of the power terms was desired.  While fits with no 

significant terms can (statistically) produce the highest R2 values, lack of significance results in 

poor predictability from the fitted models.  Therefore, this trade-off must be balanced in 

determining the best fit.  Additional issues regarding the fits were discussed above.  
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A. NRL Empirical Fitting and Derivatives 
The following least squares polynomial fits were obtained for the NRL reactivity values, f (T)DD = 

<σv>DD and f (T)DT = <σv>DT: 

 

f (T)DD  =  2.79e-21  -5.10e-21·T2 + 3.38e-21·T3 -3.25e-22·T4 + 1.55e-23·T5  
                             -3.81e-25·T6 + 3.81e-27·T7 
           (12) 

f (T)DT  = -1.80e-20 + 4.84e-19·T -6.96e-19·T2 + 3.12e-19·T3 -2.59e-20·T4 +  
                            1.10e-21·T5 -2.42e-23·T6 + 2.21e-25·T7 
 

It should be noted that the f (T)DD fit has no linear T term because it was not significant (to even 

the 10% level).  Comparing the fits with and without that linear term indicates that the better fit is 

the one shown above with an R2=0.999999. The f (T)DT fit has all terms as highly significant with 

an R2=1.0000000. 

 

Determining empirical derivatives by fitting a polynomial of powers of T relates to some previous 

formulary studies and papers, e.g. [11]. In those studies, predictability of the NRL reactivity 

formulation was investigated over discrete ranges of T. The results indicated that higher powers 

of T (up to and including 6) were the best predictors of reactivity for the lower values of T, and 

lower powers (e.g. cubic terms) were best for the higher values of T. In light of those results, 

having a non-significant linear term for the D-D fit is not unexpected nor detrimental.   

 

As previously noted in [1], the analytical third derivative crosses the horizontal axis at 4.4 keV 

for D-D and 5.29 keV for D-T. The empirical third derivative crosses the horizontal axis at 4.6 

keV or D-D and 5.50 keV for D-T. In close examination of the polynomial fits reveals that the 

nonlinearities and lack of fit is greatest in the small values of T near to these extrema regions.  

However, those differences smooth out over the higher values of T.  

 

B. Bosch & Hale Empirical Fitting and Derivatives 
While the published range of applicability for Bosch & Hale formulation is 0.2-100 keV, using 

that range for the polynomial fits to determine empirical derivatives produces negative predicted 

reactivities around the 0.2-2 keV range and produces a crossing of the horizontal axis of the third 

derivative at unexpectedly high (~100 keV) values of T. Restricting the upper range to the NRL 

limit of 25 or 30 keV removes this problem, and restricting the lower range to 0.9 keV smooths 
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the fluctuations to a monotone function. Figure 2 illustrates the mismatch of analytical and 

empirical first derivatives at small T values. These two problems in determining the empirical 

derivatives are not unique to Bosch & Hale and are an artifact of the nonlinear relationships of the 

power fits and the reactivity formulations. Thus, careful monitoring of all empirical derivatives is 

required.  Because of such issues it is recommended that, where possible, empirical derivatives 

should be compared to analytical ones.   

 
The following power fits for T were obtained for the Bosch & Hale reactivity values from Eq. (9), 

f (T)DD = <σv>DD and f (T)DT  =  <σv>DT: 

 
f (T)DD  = 1.08e-21+ 1.66e-21·T -6.79e-21·T2 + 4.17e-21·T3 -3.55e-22·T4 +  

                          1.53e-23·T5 -3.39e-25·T6 + 3.06e-27·T7  
     (13) 

f (T)DT  = -1.10e-18+ 2.98e-18·T -2.22e-18·T2 + 6.40e-19·T3 -4.69e-20·T4 + 
                           1.60e-21·T5 -2.67e-23·T6 + 1.72e-25·T7                                                       
 
For D-D, all 7 powers of T are included in the fit, and all powers are significant, except the T 

linear term which is significant at the 0.13 level. The fit has an impressive R2 =0.999999. For D-

T, all 7 powers are significant and are used in the fit with an excellent R2 =0.999998. 

 

The third empirical derivative crosses the horizontal axis at 5.34 keV for D-D and 5.69 keV for 

D-T.  These (2nd derivative) extrema are somewhat higher than the NRL values of 4.4 and 5.3 

keV.  These extrema are not sensitive to changes in the T ranges. The use of empirical derivatives 

does not appear to be responsible either for the shift from NRL values as evidenced by comparing 

the analytical first derivative to its empirical counterpart and by comparing all analytical 

derivatives to their empirical counterparts wherever available.  The differences in the extrema 

values are apparently due to the different formulations of reactivity—Eq. (2) versus Eq. (9).   

   
C. BUCKY Empirical Fitting and Derivatives 
The analytical derivatives for the BUCKY formulation in Eq. (7) are given in Eq. (8); however, 

the powers of T fits for empirical derivatives were also determined for comparison.  The D-D T 

range is from 0.5-30 keV without any difficulties at the small T values. The D-T range is from 

0.2-20 keV with a few negative reactivity predictions at T<1 keV.  Changing the lower range 

moves the negative values to higher temperatures.   

 

The powers of T fits have all terms significant. The D-D R2=1.000000 and the D-T R2=0.999999. 
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f (T)DD = 1.03e-21 + 9.92e-22·T -3.78e-21·T2 + 2.14e-21·T3  -1.80e-22·T4 +  
              7.60e-24·T5  -1.65e-25·T6 +1.45e-27·T7 

    (14) 
f (T)DT  = -8.173e-19 + 2.35e-18·T  -1.87e-18·T2+ 5.62e-19·T3 -4.08e-20·T4 +  

                            1.41e-21·T5 -2.46e-23·T6 + 1.74e-25·T7 
 

Figure 4 illustrates how the D-D empirical first, second and third derivatives compare to their 

analytical counterparts for T <10 keV.  The D-T plots are similar and are not shown. There is 

good matching of both derivative methods, especially in the region of T extrema (~4-6 keV). 

 

The third empirical derivative crosses the horizontal axis at 5.32 keV or D-D and 5.81 keV for D-

T.  The third analytical derivative crosses the horizontal axis at 5.03 keV or D-D and 5.87 keV for 

D-T.  As with the Bosch & Hale values, these extrema are somewhat higher than the NRL values 

of 4.4 and 5.3 keV.   

 

D. Hively Empirical Fitting and Derivatives 
The Hively formulation is given in Eq. (5) and the analytical first derivative is given in Eq. (6).  

The D-D T range is from 0.5-30 keV without any difficulties at the small T values.  The D-T 

range is from 0.2-20 keV with a few negative reactivity predictions at T<1 keV.  Changing the 

lower range moves the negative values to higher temperatures.   

 

The powers of T fits have all terms significant for both D-D and D-T fits. Both fits have a perfect 

R2=1.000000: 

f (T)DD = -1.18e-21 + 7.12e-21·T -1.01e-20 ·T2+ 4.78e-21·T3 -3.96e-22·T4 + 
                           1.66e-23·T5 -3.57e-25·T6 + 3.12e-27·T7 

     (15) 
f (T)DT  = -7.31e-19 + 2.23e-18·T  -1.88e-18·T2 + 5.95e-19·T3 -4.72e-20·T4 +  

                             1.82e-21·T5  -3.61e-23·T6 + 2.91e-25·T7  
 

The third empirical derivative crosses the horizontal axis at 5.48 keV or D-D and 5.48 keV for D-

T.  This is the only formulation with the D-D and D-T extrema T’s so close together.  As with the 

Bosch & Hale formulation, the higher derivatives are too complicated for analytical evaluation.    

 

E. Data Empirical Fitting and Derivatives 

The <σv> data source comes from the Brookhaven National Laboratory Nuclear Data Center—

Experimental Nuclear Reaction Data, available online at: 

http://www.nndc.bnl.gov/exfor/exfor.htm.  

http://www.nndc.bnl.gov/exfor/exfor.htm
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Unfortunately, the various sources from available reports and publications do not consistently use 

the term “data” as that which is not from a calculation, computation/simulation or formula. Three 

screening methods were used to determine if values listed as “data” were likely experimentally 

obtained values or from calculations.   

1) The reactivity values at posted values of [keV] were all not identical to another set of 

values known to be calculations.  

2) Plots of the reactivity values with T did not precisely fall on a smooth curve; that is, 

some variability expected in experimental science is detectible. 

3) The values of [keV] were listed with decimal places and not integer values.  This was 

only rarely used because it is a less reliable experimental signature. 

 

These so-determined data fell into the range of less than 1 keV up to 1000 keV.  There were 60 

such values found.  The range from 1-30 keV was selected to avoid problems with the shapes of 

the third derivatives for higher T’s. There were only 28 values in that range.   

 

Because there are no formulations, only empirical derivatives can be used on these 28 data 

reactivity values.  With so few data points, it is not surprising that the fits are not as impressive 

and the polynomial terms are not all significant.  With an R2 =0.991975 and no significant terms, 

the D-D fit is: 

 

f (T)DD  = 4.29e-19  -6.27e-19·T +2.87e-19·T2  -5.65e-20·T3 +5.93e-21·T4 -  

             3.22e-22 ·T5 +8.61e-24·T6 -8.95e-26·T7                             (16) 

 

With a better R2 =0.999988, but with only the third and fourth powers significant1, the D-T fit is: 

 

f (T)DT  = -1.76e-18 + 3.376e-18·T -2.24e-18·T2 + 6.19e-19·T3 -4.45e-20·T4  

                        + 1.49e-21·T5 -2.41e-23·T6 + 1.48e-25·T7                                                                       (17) 

 

In spite of these issues less than ideal fits, the third empirical derivative crosses the horizontal 

axis at reasonable values of 4.66 keV for D-D and 5.81 keV for D-T. 

 

F. T2 LANL and DRACO Empirical Fitting and Derivatives 
                                                           
1 The T squared term is significant at the 8% level. 



 11 

The calculations from the DRACO code include only 3 points in range of interest, 1-30 keV. 

Therefore, it was combined with another source. By examining plots of these values and by using 

ANOVA, it was determined that these 3 values were in line with those from the LANL T2 

calculations.  The LANL T2 plus DRACO calculations fit has an R2 =0.999924, but with no 

significant terms: 

 

f (T)DD  = 2.97e-20  -3.43e-20·T +7.52e-21·T2+ 1.69e-21·T3 -1.40e-22·T4 +  

                  5.50e-24·T5-1.17e-25·T6 + 1.07e-27·T7                                (18) 

This fit was the best possible having attempted range changes and elimination of terms. However, 

reactivity predictions from this fit still produce negative values in the T=1-2 keV range. 

 

Similarly, the best D-T fit has some of the same negative predictions for f (T)DT  in the T<0.5 keV 

range. However the R2=0.999971, and all power terms except T7 are significant.  T7 was 

significant at the 8% level and was included in the fit: 

 

f (T)DT  = -7.65e-19 + 2.51e-18·T -2.04e-18·T2 + 6.08e-19·T3 -4.41e-20·T4 + 

1.47e-21·T5 -2.36e-23·T6 + 1.44e-25·T7                    (19) 

The quality of the above fits was unchanged by eliminating the DRACO 3 points.  

 

The third empirical derivative crosses the horizontal axis at 5.03 keV for D-D and 5.69 keV for 

D-T—within the range of values from other formulations. 

 

G. UNC Empirical Fitting and Derivatives 
The calculations from UNC form a relatively small data set of 37 values, with 10 of those at T<1 

keV.  Those low values were included without adversely affecting the results even though such 

low values were not included in other fits.  The range used is T=0.09 -25.86 keV. The following 

D-D fit has R2 = 1.000000, and all terms are significant: 

 

f (T)DD  = -1.16e-21 + 6.81e-21 T  -9.94e-21·T2 + 4.97e-21·T3 -4.52e-22·T4 +  

                   2.15e-23·T5 -5.37e-25·T6 + 5.50e-27·T7      (20) 

 

The following D-T fit has R2 =0.999998, and T5 and T6 are not significant but are included: 

 

f (T)DT  = -3.92e-19 + 1.54e-18·T  -1.47e-18·T2 + 4.64e-19·T3  -2.69e-20·T4 +  
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                  3.98e-22·T5  +9.74e-24·T6 -2.61e-25·T7           (21) 

 

The third empirical derivative crosses the horizontal axis at 5.22 keV for D-D and 5.84 keV for 

D-T—within the range of values from other formulations. 

 

III. Derivatives Using the Delta (Finite Differencing) Method 
 

The empirical derivatives, from least squares polynomial fits, were good by statistical modeling 

criteria and by visual inspection, compared to their analytical derivatives. Figure 3 shows how 

well the second derivatives matched using the BUCKY formulation. However, as noted 

previously, there were some discrepancies at the small T values, as shown in Figure 2 for the 

Bosch & Hale first derivatives. In addition, the unusual result of identical T extrema for D-D and 

D-T from the Hively empirical derivatives, warranted another approach.  A third derivative 

method was implemented, especially to address the difficulty in determining the extrema values 

from analytical derivatives for Bosch & Hale and Hively. This is called the delta method and 

utilizes a finite differencing method in place of the analytical or empirical derivative.  

 

Using the first analytical derivative of any formulation, the second derivative is obtained by 

taking the difference between the first derivative values divided by the difference between their T 

values—∆{d<σv>/dT}/∆T.  For convenience, the denominator is fixed as ∆T=0.1 keV for values 

from T=1-10- keV. Then the numerator is the difference in adjacent reactivities separated by 

∆T=0.1 keV.  

 

Figure 3 shows that the delta method is a better match to the analytical derivative than the 

empirical derivative for the BUCKY formulation.  This same result holds for NRL and Bosch & 

Hale, not shown.  It should be noted that determining the extrema using a second derivative can 

be done by determining the maximum value when there is assurance that the third derivative will 

cross the horizontal axis.  This short-cut was implemented for the Bosch & Hale formulation to 

verify the extrema T to avoid the complicated analytical higher order derivatives and avoid the 

less accurate empirical derivatives. It was implemented for the Hively formulation to determine if 

the T extrema for D-D was at a lower temperature than for D-T, as was seen with the other 

formulations but not with the Hively empirical derivative. For Bosch & Hale, the delta method 

derivative resulted in a lower T extremum for D-D, at 5.05 keV, than for the empirical derivative, 
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at 5.34 keV, and resulted in a higher T extremum for D-D, at 6.00 keV, than for the empirical 

derivative, at 5.69 keV.  The same was true for the Hively delta derivative method, with T 

extremum for D-D lowered to 5.25 keV and raised to 5.55 keV for D-T. This D-D D-T separation 

is more inconsistent with other extrema, as seen in Table 1 below. This separation from the delta 

method over the empirical derivative method demonstrates the utility of the delta method, where 

possible.   

 

IV. Extrema of Reactivity-derivative Formulations 
 
Table 1 contains the extrema T (keV) values in the 2nd derivatives, and reactivities (cm3/sec) at 

those temperatures for D-D and D-T reactions. These are found using various methods for the 

derivatives and over the different sources and formulations, including data.  The last two columns 

contain the predicted <σv> values from the polynomial fits using the empirical derivatives, and 

the calculated <σv> values using analytical and delta-method derivatives.  

 

Table 1.  Extrema Temperatures & Reactivities (cm3/sec) for D-D and D-T 

Source Method 
 

T (keV) 
D-D 

T (keV) 
D-T 

<σv>DD <σv>DT 

BUCKY Empirical Derivative 5.32 5.81 1.07E-19 2.19E-17 
BUCKY  Delta on 1st analytical 5.01 5.90 9.33E-20 2.30E-17 
BUCKY Analytical Derivative 5.03 5.87 8.93E-20 2.25E-17 
NRL Empirical Derivative 4.60 5.50 1.06E-19 1.47E-17 
NRL Analytical Derivative 4.40 5.29 9.25E-20 1.30E-17 
NRL  Delta on 1st analytical 4.45 5.35 9.55E-20 1.34E-17 
Bosch & Hale Empirical Derivative 5.34 5.69 2.22E-19 2.15E-17 
Bosch & Hale Delta on 1st analytical 5.05 6.00 1.85E-19 2.55E-17 
Hively Empirical Derivative 5.48 5.48 2.38E-19 1.88E-17 
Hively Delta on 1st analytical 5.25 5.55 2.06E-19 1.93E-17 
UNC Empirical Derivative 5.22 5.84 2.07E-19 2.28E-17 
T2 LANL + 
Draco Empirical Derivative 5.03 5.69 1.89E-19 2.14E-17 
Data Empirical Derivative 4.66 5.81 1.86E-19 2.20E-17 

 

Table 2 provides some statistics for the above 2nd derivative extrema temperatures and their 

corresponding reactivities.  

 
Table 2.  2nd derivative Extrema Temperature & Reactivity Statistics 

Statistic T (keV) D-D T (keV) D-T <σv>DD <σv>DT 
Mean 4.99 5.69 1.55E-19 2.00E-17 
Standard deviation 0.355 0.223 5.77E-20   3.96E-18 
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There are no significant differences in the extrema T values for D-D or for D-T based upon the 

method used for their determination.  However, there are significant differences due to the source, 

that is, the formulation used.  For D-D, the Hively, UNC, Bosch & Hale and BUCKY-T 2nd 

derivative extrema are significantly larger than the corresponding NRL formulation values.  For 

D-T, the BUCKY and B&H 2nd derivative T extrema are significantly larger than the NRL 2nd 

derivative T extrema.   

 

The extrema reactivities in Table 1 are also significantly different depending upon the source but 

not depending on the derivative method. On average, the D-D BUCKY and NRL reactivities are 

significantly smaller than all the other formulations analyzed.  For D-T, the NRL extrema 

reactivities stand out as significantly smaller than all others. This result partially explains why so 

much effort has been invested to find tractable, accurate expressions for (1), improving upon the 

historical NRL formulation.    

 

The 28 data points fall in line with the other sources for both D-D and D-T.  We wish to explore 

the details under which the data were reduced. We wish to explore if the velocity-distribution 

choice affects the values for the 2nd derivative T extrema. Horny’ et al., [12] found some 

differences in reactivities with a few non-Maxwellian distributions.  A future study would be to 

determine if there are any differences in the extrema T’s due to the choice of g(v) in Eq. (1). 

 

Figure 5 shows that there is a very weak (at 6% level of significance) correlation between the 2nd 

derivative T extrema and the reactivity for D-D; however, there is a highly significant correlation 

(<0.01%) between 2nd derivative T extrema and the reactivity for D-T.  For D-D, the three values 

at the bottom right are BUCKY, and the single value in the upper left is the data.   

 

A measure of uncertainty for the D-D and D-T T extrema can be determined from their standard 

deviations in Table 2 or from the root mean square errors (RMSE) in the linear fits of the T’s to 

their reactivity as shown in Table 3. From Table 2, the D-T 2nd derivative T extrema percent error 

is 4%, while that for D-D is nearly twice at 7%. The last row shows the RMSE values using <σv> 

and the source as predictors, producing a much-reduced uncertainty for D-D because the source 

explains much of the variability in the extrema for D-D.  In that last row, which accounts for 

variability due to reactivity and source, the percent error for D-T is reduced to 0.4% but that of D-

D is only down to 1%.  
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Table 3.  2nd derivative Extrema Temperature Uncertainties 

Statistic T (keV) D-D T (keV) D-T 
Standard deviation 0.355 0.223 
RMSE using <σv> 0.299 0.072 
RMSE using <σv> & source 0.055 0.025 

 

V. Conclusions 
 
The temperature derivative dependence of fusion cross-section reactivity is considered as a means 

of exercising and verifying the consistency of the various sources of reactivity expressions. This 

work also enhances the scope of Langenbrunner and Makaruk [1], which focused on the NRL 

formulation but introduced the <σv> derivatives for determining the T at the extremum of the 2nd 

derivative. 

 

In detail, we have found that there are no significant differences in temperature T at the extremum 

for D-D and for D-T fusion, based upon the three methods used for their derivative determination.  

However, there are significant differences due to the source, that is, the formulation used to 

conveniently represent Eq. (1).  Three derivative methods were used to determine temperature at 

the 2nd derivative extrema—analytical, empirical and delta methods.  While the delta method 

derivatives match analytical ones slightly better than empirical, there is no significant difference 

due to the choice of method for taking temperature derivatives. 

 

Source (meaning formulation choice) affects extrema T’s, especially for the D-D reaction.  The 

NRL formulation produces significantly smaller extrema for D-D and D-T than other methods.   

 

A distance metric for verification and validation, Dn [11], can be used to make additional 

comparisons between the T extrema, including determinations of formulations matching to data.  

This is the topic of another paper.   
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Figure 1. D-D reactivities from all sources including incorrect coefficient A3 values as black dots, 
with corrected values as blue < at the bottom. 
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Figure 2. Bosch & Hale empirical first derivatives (red circles) with analytical first derivatives 
(blue pluses); D-D (top) and D-T (bottom) 
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Figure 3. BUCKY D-D (top) and D-T (bottom) second derivatives using three methods: 
analytical (red circles), empirical (green pluses) and finite differences (blue diamonds). The finite 
difference method more closely tracks the analytical derivatives. 
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Figure 4. BUCKY DD empirical derivatives (red circles) with analytical derivatives (blue 
pluses); first derivatives (top), second (middle), and third (bottom). 
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Figure 5. 2nd derivative extrema T with reactivity, <σv>,for DD (top) and DT (bottom)  
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