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* motivation
« sample fabrication and characterization
« evidence of Bloch oscillations



what is Bloch oscillation? Bloch, Z. Phys, 1928

Under a DC electric field E

T = F = mxa = m x dV/dt = dp/dt
e F =eE, p = hk
/ i h dk/dt = eE

k =eEt/h

\/ L . g, ~ 1- cos (ak)
K, | K, K .
: ‘ , Vv ~ g, Jok ~ sin(aeEt/h)
mmmmoo- "Bz r ~ cos(aeEt/h) = cos(2xft)

K, = n/a, a: lattice constant f=aeE/h



» THz application — frequency tunable

f = aeE/h

why Bloch oscillations (BO) ?

BO frequency

~ THz

~ GHz

a=5A
E=0.1kV/cm
- f~1GHz

g
e

a=5A
E =100 kV/cm
f~1THz




Issues in 3D crystal
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1D vertical superlattice
Esaki and Tsu, 1975

Superlattice
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Issues in 1D vertical superlattice

» formation of high electric field domains
» electron — phonon scattering

» Impurity scattering

» surface roughness scattering



2D quantum “dot” superlattice (QDSL)

I.A. Dmitriev and R.A. Suris, Semiconductors 35, 212 (2001).

« 3D-gquantum confinement, electron-phonon scattering suppressed
« High sample quality, disorder scattering reduced
« 2D dimensionality, formation of electric field domains suppressed

 easy to fabricate, using interferometric lithography



sample fabrication
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sample characterization — magneto-transport
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R, (arb. units)
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geometric oscillations
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2R./d = N-1/4
or

N-1/4 = (2hk/ed)x1/B

N-1/4
PR S A LA

R, — cyclotron radius
ke — Fermi wavefactor

o
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d ~ 340 nm

Weiss et al, PRL 66, 2790 (1991)
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positive magneto-resistance around B =0

Modulation ~ 3% E.
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evidence of Bloch oscillations in 2D QDSL



one of the signatures for Bloch oscillations is
negative differential conductance (NDC)
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In yet another sample
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' Similar current jumps were also observed in:
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physical origin of NDC ?

e Bloch oscillations?

 thermal runaway?



thermal runaway

conductance

Temperature (T)

Temperature dependent conductance can give rise to an apparent NDC



(Suggested by Mark Lee)

!

to lock-In

e

R,=1.5 kO
Vdc = 0 to 11V —/_L

Vac =10 mV @

V

Vlock-in = RO/(RO+r) x Vac

r = dV/dI, the differential resistance of Bloch sample

»thermal runaway, r positive, V| i, > 0
»Bloch oscillations, r negative, and |r| > R,, V|...in IS Negative



true negative differential conductance
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physical origin of NDC ?

e Bloch oscillation?

et ay”?



more results on Bloch oscillations
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derivative measurement

modulation ~ 3% E,
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Cyclotron motion
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Plasmon oscillations

, nge

wf=-
| am*2(€0+€1)



In an infinitely large sample, o, Is very small,
no coupling between the cyclotron mode and
plasmon mode.

In a sample of finite size, ~ um, there is strong

coupling between the two. This results in a new
resonance mode, edge magnetoplasmon

mode. i ¢
i ‘Wj

® = 02 + [(0/2)2 + ©,2]42 o 1/B at high B fields



edge magnetoplasmon resonance
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time-domain THz magneto-spectroscopy
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coherent cyclotron resonance in Bloch oscillator
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FFT Amplitude (arb. units)
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2D sample without patterning

| | ﬂ | | | |
1ox10° F 2.5Tesla @3K ov _

—_ 3.5V

Intensity

Frequency (THz)




Ve (V)

T=15K
Aoz

0000
o000
0000
HH
pVos 258
0000

T g
Elecec

T I ' q 7.3V
|
i | 7.35V
|
i | :
! LA A

Work in progress ...

16V

AE (arbitary units)

Time (ps)

E-Field-Induced THz Phase Flip!



collaborators

S.K. Lyo, M. Thalakulam, J.L. Reno, and J.A. Simmons, J.F. Klem,
J.K. Jin, M.J. Cich
Sandia National Labs

D. Li and S.R.J. Brueck
Center for High Tech Materials, University of New Mexico

A. Kunold
Universidad Autonoma Metropolitana-Azcapotzalco, México

J. Kono
Rice University



Thank you!



theoretical work on Bloch oscillations

Ken Lyo
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Bolometer Signal (arb. units)
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dI/dV (arb. units)

iInversed BO measurements

— dI/dV without radiation |
—— dI/dV under 136 GHz radiation




Theoretical model: 1D Modulation
DEG

Inelastic scattering rate is
- - enhanced by F-induced
emission of phonons.

Exact relaxation-time solution

Inelastic relax rate Fermi function elastic scattering
eF (k) \ “ 27 ol
_f_;trz_Vm[fﬁ(k)_ﬂm(sn.k)]_?iﬁlUl [f“(k)_ﬁf'(kl)]ﬂ(gn,k_sn',k')
T j J‘E'. | ‘. N
T r }erband scattering
Esaki-Tsu (1970) modified version of

1D gas Gerhardts (1993-3D gas)



solid state, electrically biased THz emitter

DC THz
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Bloch
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THz source

e THz emission

THz amplifier
 THz amplification P



weak v=1 integer quantum Hall state
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electron-electron interaction = quantum Hall ferromagnetic state

g-factor enhanced

Yarlagadda and Giuliani, Phys. Rev. B (1988)
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Disorder and interactions in quantum Hall ferromagnets near v=1
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Effects of disorder on the y=1 quantum Hall state
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Activation energy in a quantum Hall ferromagnet and non-Hartree-Fock skyrmions
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VOLUME 88, NUMBER 3 PHYSICAL REVIEW LETTERS 21 JANUARY 2002

Spin Textures, Screening, and Excitations in Dirty Quantum Hall Ferromagnets

S. Rapsch,! J. T. Chalker,! and D.K. K. Lee?

YTheoretical Physics, Oxford University, Oxford OX1 3NP, United Kingdom
2Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom
(Received 18 September 2001: published 2 January 2002)

We study quantum Hall ferromagnets in the presence of a random electrostatic impurity potential.
Describing these systems with a classical nonlinear sigma model and using analytical estimates supported
by results from numerical simulations, we examine the nature of the ground state as a function of disorder
strength, A, and deviation, d», of the average Landau level filling factor from unity. Screening of an
impurity potential requires distortions of the spin configuration, and in the absence of Zeeman coupling
there is a disorder-driven, zero-temperature phase transition from a ferromagnet at small A and |dv] to
a spin glass at larger A or |6 »|. We examine ground-state response functions and excitations.
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effective disorder - AV/E;
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FFT Amplitude (arb. units)
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periodic density modulation
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position



weak v=1 integer quantum Hall state
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