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what is Bloch oscillation? 
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Under a DC electric field E 
 

F = ma = m  dV/dt = dp/dt 

F = eE, p = ħk  
 

ħ dk/dt = eE 

k = eEt/ħ 
 

ek ~ 1- cos (ak) 
 

v ~ ek/k ~ sin(aeEt/ħ) 
 

   r ~ cos(aeEt/ħ) = cos(2pft) 
 

f = aeE/h 

Bloch, Z. Phys. 1928 

K0 = p/a, a: lattice constant  



• THz application – frequency tunable 
 

f  = aeE/h  

 

E 

BO frequency 

~ GHz 

~ THz 
a = 5 Å 

E = 100 kV/cm 

f ~ 1 THz 

why Bloch oscillations (BO) ? 

a = 5 Å 

E = 0.1 kV/cm 

f ~ 1 GHz 



issues in 3D crystal 
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• Very high electric field   

• Electron is scattered before it 

can complete a full oscillation  ~1eV 



1D vertical superlattice 

K0=p/a~108 cm-1 

~1eV 

a=5Å 
3D crystal 

K0=p/d~106 cm-1 

~ 0.1  eV 
 

Energy 

 

Energy 

Esaki and Tsu, 1975 



issues in 1D vertical superlattice 
 

  formation of high electric field domains 

  electron – phonon scattering 

 impurity scattering 

 surface roughness scattering  

…. 



2D quantum “dot” superlattice (QDSL) 

I.A. Dmitriev and R.A. Suris, Semiconductors 35, 212 (2001). 

K0=p/d~105 cm-1 

~ 0.01  eV 

 

Energy 

• 3D-quantum confinement, electron-phonon scattering suppressed 

 

• High sample quality, disorder scattering reduced 

  

• 2D dimensionality, formation of electric field domains suppressed 

  

• easy to fabricate, using interferometric lithography 
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sample fabrication 
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transport coefficients:  

 

Rxx = Vxx/I 

  



sample characterization – magneto-transport 
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T = 0.3 K 
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SdH oscillations 

n=2.41011 cm-2 
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geometric oscillations 

Weiss et al, PRL 66, 2790 (1991) 
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2Rc/d = N-1/4 

 or 
 

N-1/4 = (2ħkF/ed)1/B 

 

Rc – cyclotron radius 

kF – Fermi wavefactor 

 
From slope,  

d ~ 340 nm 

Weiss et al, PRL 66, 2790 (1991) 
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MAGNETIC FIELD [T]

positive magneto-resistance around B = 0 

Beton, et al, PRB 42, 9229 (1990) 

Modulation ~ 3% EF 

EF 

modulation 



evidence of Bloch oscillations in 2D QDSL 



one of the signatures for Bloch oscillations is     

negative differential conductance (NDC) 

Vc 
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I – V measurement in 2D QDSL 
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T=4K 

modulation ~ 3% EF 

NDC observed  

Vdc 
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modulation ~ 15% EF 

T=4K 



in yet another sample 

Similar current jumps were also observed in: 

  

• GaAs/AlAs 1D superlattices (Renk et al, 2005) 

 

• InGaAs/InAlAs 1D superlattices (Electron. 

Lett. 35, 1491 1999) 

 

• InAs/AlSb resonant-tunneling diodes (Appl. 

Phys. Lett. 58, 2291 1991) 
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physical origin of NDC ? 

•  Bloch oscillations?  

•  thermal runaway? 

• …. 



thermal runaway 
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Temperature dependent conductance can give rise to an apparent NDC  

conductance 

Temperature (T) 
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R0=1.5 kW 

Vdc = 0 to 11V  

Vac = 10 mV 

to lock-in 

Vlock-in = R0/(R0+r)  Vac 
 

r = dV/dI, the differential resistance of Bloch sample 

 

thermal runaway, r positive, Vlock-in > 0 

Bloch oscillations, r negative, and |r| > R0, Vlock-in is negative 

(Suggested by Mark Lee) 



true negative differential conductance 



physical origin of NDC ? 

•  Bloch oscillation?  

•  thermal runaway? 

• …. 



more results on Bloch oscillations 
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magneto transport at high electric fields 
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derivative measurement 
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DC bias 

1mV AC 
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 MAGNETIC FIELD [T]

modulation ~ 3% EF 
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 MAGNETIC FIELD [T]

T = 4K 
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Vdc  1/B 
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frequency  1/B 



B = 0 

Cyclotron motion 

B ≠ 0 

wc = eB/m* 



Plasmon oscillations 

+ - 



in an infinitely large sample, w0 is very small, 

no coupling between the cyclotron mode and 

plasmon mode.  

 

In a sample of finite size, ~ mm, there is strong 

coupling between the two. This results in a new 

resonance mode, edge magnetoplasmon 

mode.    

w = -wc/2 + [(wc/2)2 + w0
2]1/2  1/B at high B fields  



edge magnetoplasmon resonance 

w = -wc/2 + [(wc/2)2 + w0
2]1/2  1/B at high B fields  

S.J. Allen et al, PRB (1983) 
far-infrared radiation 
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time-domain THz magneto-spectroscopy 

Ti:Sapphire 
1 kHz, 800 nm, 150 fs 

B 
ZnTe 

Transmitter ZnTe 
Receiver 

Current Amplifier 

A/D converter & DSP 

1/4 
WP 

B < 10 T 
T > 1.5 K 

Bloch oscillation device 

Frequency: 0.1-2.5 THz 

in collaboration with Jun Kono at Rice Univ. 



coherent cyclotron resonance in Bloch oscillator 
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2D sample without patterning 



BES/Materials SNL On-Site Review, March 23 – 25, 2010 
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E-Field-Induced THz Phase Flip! 

Work in progress … 
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Thank you! 



theoretical work on Bloch oscillations 

Ken Lyo 
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inversed BO measurements 



Exact relaxation-time solution 

Theoretical model: 1D Modulation  
Modulated 2DEG 

ax 

Vo 

Inelastic relax rate 
elastic scattering 

Inelastic scattering rate is  

enhanced by F-induced 

emission of phonons. 
F

ky

kx



solid state, electrically biased THz  emitter 

Bloch  

oscillator input 

DC THz 

output 



 

 

 

• THz emission 

 
• THz amplification 

 

 

THz source 

THz amplifier 



weak n=1 integer quantum Hall state 
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N=0 

N=0 

n=1 

n=1 

electron-electron interaction  quantum Hall ferromagnetic state 

g-factor enhanced 

Yarlagadda and Giuliani, Phys. Rev. B (1988)  



ħwc 

n=1=ħwc=ħeBn=1/m* 

g*mBB 
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EF 

EF 

effective disorder  V/EF 

Low disorder 

High disorder 

V 
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THz amplification? 
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periodic density modulation 

density 

position 
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T = 4.2 K

n=2

antidot array sample 

weak n=1 integer quantum Hall state 
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Beton et al, PRB 42, 9229 (1990) 

Bp 
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w wMP  wc
2+wp

2 

Conventional 2DEG – wc  B 

Dirac 2DEG – wc  B1/2 
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