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Main result — CFs are probably Dirac fermions

resistivity scaling
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Outline:

e [ntroduction
e Resistivity scaling at v=1/2

e Density dependence of the CF conductivity
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Quantum Hall effects

' n=1.55x 10" /cm°
T =50 mK
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IQHE — single particle
v=1,2,3...

FQHE — many-body
v=1/3,2/5,3/7 ...
2/3,3/5,4/7 ...



similarity between IQHE and FQHE: R,,
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Composite Fermion (CF) Model

Jain, PRL 1989
Halperin, Lee, and Read (HLR), PRB 1993

one composite fermion = one electron + 2 flux quanta
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Classical transport features around v=1/2
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CFs form fermi sea
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Lots of Fractions Observed
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Unclarified aspects of CF theory

The most fundamental problem is the lack of particle-hole symmetry

(copied from Son’s presentation at the workshop on Strongly Interacting Topological Phases)

Kivelson, Lee, Krotov, and Gan, PRB (1997).
Lee, PRL (1998).

Kamburov et al. PRL (2014).

Barkeshli, Mulligan, and Fisher, PRB (2015).
Balram, Toke, and Jain, PRL (2015).

Murthy and Shankar, arXiv: 1508.06974.



Dirac composite fermions

Son, Phys. Rev. X 5, 031027 (2015); Metlitski and Vishwanath, arXiv:1505.05142;
Wang and Senthil, arxiv:1507.08290; Geraedts et al, arXiv:1508.04140; ...
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Sample: high quality quantum well
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Density: n = 1.190x10%! cm™2
Mobility: u ~ 13x10°% cm?/Vs



Magneto-transport measurements around v=1/2
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Highly uniform 2DEG
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Accurate Hall resistivity Quantization better than 0.1%
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(p,,2)lp,,~ (e’/h)
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* Finite thickness ﬂ
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* Landau level mixing k= e /ely/hm.=0.87 atv=1/2



Details ...

* Mixing of p,, and p,,

— 0
pxy - pxy t OlPy

Pyy(+B) = p,,°(B) + ap,,(B)
pxy('B) = - pxyO(B) + Oprx(B)

Puy° = (Pry(+B)—pyy(-B))/2
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The position of the 1/2 state
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DENSITY DEPENDENCE OF CF CONDUCTIVITY



HIGFET

(Heterojunction-Insulated Gate Field-Effect Transistor)

high mobility down to very low densities
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HIGFET
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2DES

Kane, Pfeiffer, West, and Harnett, APL,1993



Straight sidewall is important
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Linear |-V at very low densities

n~4x10° cm;'2
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SdH oscillations at B ~ 0.2T
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Composite fermions in HIGFET
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CF conductivity versus density

100 : | : | : | : | : | : | : —

(00)
o
T

(@)
o
T

1/2) (e°/h)

D
o
]
o

l *° .

i » o

Gop ™ 1/ pXX(V
N
o

00 02 04 06 08 10 12 14
. 11 -2
Density (107 cm”)



CF conductivity Electron conductivity
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Linear dependence in graphene
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Tan et al. PRL (2007).



CFs

* Resistivity scaling

* Linear density dependence of conductivity
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Collaborators:
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Thank you
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n (10"em™)

Very big density tunable range
~ 1x10° to ~ 7.5x10*! cm™?




