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Abstract

Increasing concerns on non-sustainable energy use and climate change spur a growing research
interest in energy efficiency potentials in various critical areas such as industrial production. This
paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector.
A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are
technically feasible and have the potential to make a significant contribution to energy saving and
CO2 emissions reduction, but fall short economically to be included. However, they may also have
the cost effective potential for significant cost reduction and/or performance improvement in the
future under learning effects such as ‘learning-by-doing’.

The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We
investigated how steel demand is balanced with/without the availability learning curve, compared to a
Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies
decline in the scenario where learning curve is applied. The analysis also addresses market penetration
of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector
with/without learning impact. Accordingly, the study helps those who use energy models better
manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better
understand the market and learning system involved, predict future achievable learning rates more
accurately, and project future savings via energy-efficiency technologies with presence of learning.

We conclude from our analysis that, most of the existing energy efficiency technologies that are
currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through
the years, even though there is no price reduction. However, demonstration technologies are not
economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast,
some of the demonstration technologies are adapted in the mid-term and their penetration levels
increase as the prices go down with learning curve. We also observe large penetration of 225kg
pulverized coal injection with the presence of learning.



Chapter 1 Introduction

The Inha-Industry Partnership of Inha University, sponsored by the Greenhouse Gas Inventory and
Research Center of Korea (GIR), commissioned with the International Energy Studies group at
Lawrence Berkeley National Laboratory (LBNL) to conduct a study that analyzes energy and
emissions reduction arising from energy efficient technologies applied with technological learning
factors in the United States (U.S.) iron and steel sector by using LBNL’s Industrial Sector Energy
Efficiency Model (ISEEM)?.

This study

derives experience curves or learning factors from the U.S. iron and steel industry,

incorporates applicable learning parameters into ISEEM,

uses the model to create multiple production/efficiency scenarios including the application of
learning curves,

forecasts potential energy savings, impacts on carbon dioxide (CO;) emissions, and overall
cost savings,

and provides insight for improvement modeling for industrial sector.

An analysis of learning curves for energy efficient technologies in the U.S. iron and steel industry is
needed for three reasons.

First, policies to facilitate the adoption of energy efficiency improvement opportunities are necessary
to correct market failures such as uncaptured economic and environmental benefits from energy
efficient technologies in the industry. Technological change, also referred to as technological progress,
plays a fundamental role in the achievement of affordable, efficient and clean production systems.
Technological change can be seen as a continuous process of replacement and improvement of new
and existing technologies in the market (Gomez, 2001). New technologies, particularly, have the
potential to make a significant contribution to reduction in energy consumption, CO, emissions, and
overall cost savings in the future. However, even though they are technically feasible, their adoption is
currently not cost effective relative to current practices. At the same time, they may have significant
potential for cost reduction and/or performance improvement as experience gained. Thus, rather than
taking current characteristics of existing and emerging technologies as a given while evaluating
technologies, technological change should be considered and incorporated into the analysis. Better
modeling of the introduction and diffusion of new technologies into the market and improvement of
existing ones are particularly important while doing future projections. Learning was proposed as a
distinct presentation of technical change in Wright (1936) and Arrow (1962) and is often termed as

' ISEEM s a bottom-up, dynamic linear programming model of industrial systems developed by Karali et al. (2012) in
LBNL.
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learning by doing. The learning effect is measured in terms of reduction in the unit cost (or price) of a
product as a function of experience gained from an increase in its cumulative capacity or output
(Jamasb and Kohler, 2007). The typical representation is through learning, or experience, curves. The
standard learning curve considers the specific cost of a given technology as a function of cumulative
capacity or cumulative production, which is used as an approximation for the experience accumulated
when the technology is deployed. The formulation reflects the fact that some technologies experience
declining costs as a result of their increasing adoption (Argote and Epple, 1990).

Second, iron and steel is one of the highest energy and emission intensive industrial sectors,
accounting for about 5% of total world CO, emissions (IEA, 2007). The U.S. is the third largest
steelmaking country in the world with a production of 86.9 Million tonnes (Mtonnes) in 2013 (WSA,
2014a). The examination of the existing and future energy efficiency potential in this sector helps us
better understand long-term energy needs and improvement opportunities.

Third, the literature focused on the role of learning curves for estimating future energy and cost
savings in the iron and steel sector is limited. Understanding how to better represent existing
technologies and emerging technologies that are not yet commercialized, in the long-term energy
mixes/forecasts through the use of learning curves, requires improved methods of modelling. Energy
optimization models are often applied for comprehensive analysis of sectoral and national energy and
emission reduction potentials, outlining the likely future structure of the system under particular
conditions and, thus providing insights into the technological paths and structural evolution (Mattson
and Wene, 1997). The manner in which technological dynamics is considered in these models has a
significant influence on the results. In linear programming models, extensively used for energy
modelling purposes, technological change is generally introduced as an exogenous factor. The cost
and efficiency of a given technology are considered either constant or as an exogenous function of
time. This structure makes analysis of learning effects on technology costs and consequent
penetrations levels almost impossible. Our investigation is designed to improve upon this simplistic
picture, in order to better understand impact of learning in penetration of energy efficient technologies
to the US iron and steel sector in the long term (e.g., from 2010 to 2050 defined in this analysis). The
investigation is carried out using ISEEM, a technology oriented, linear optimization model for the
U.S. iron and steel sector (ISEEM-USIS). In this study, the model is run in an iterative fashion in
combination with a classical learning curve function (i.e., one factor learning curve). Accordingly, the
study helps those who use energy models better manage the price barriers preventing unrealistic
diffusion of energy-efficiency technologies, better understand the market and learning system
involved, predict future achievable learning rates more accurately, and project future savings via
energy-efficiency technologies with presence of learning.



Chapter 2 Learning Curve Approach

Technological learning is a phenomenon by which production costs decrease in a specific relation to
increased cumulative production. It assumes that a technology's performance improves as experience
with the technology accumulates. Specifically, for each doubling of cumulative production, the unit
production costs decrease by a certain value known as the learning rate (Junginger et al., 2010).

21. Learning curve literature

The learning curve concept was first developed by Wright (1936), who reported that unit assembly
costs of airplanes declined significantly with accumulated experience of the workers (i.e., repetitions),
and that this cost reduction was a constant percentage with every doubling of cumulative output.

After being applied to analyze the relationship between the average unit price and cumulative output
of 24 selected industrial products by Boston Consulting Group in 1968, learning phenomena has been
adopted in empirical studies in a wide range of sectors (Arrow, 1962; Dutton and Thomas,
1984; and Yelle, 1979), including the following:

manufacturing (Argote and Epple, 1990; Nadeau, 2010),

consumer products (Bass, 1980; Teng and Thompson, 1996),

energy supply technologies (Criqui et al., 2015; Goldemberg et al., 2004; Hettinga et al., 2009;
Hong et al., 2015; OECD/IEA, 2000; Junginger et al., 2006; Li et al., 2012; McDonald and
Schrattenholzer, 2001; Neij, 1997; Neij, 1999a&b; Neij et al., 2004; Nemet, 2006; Rose and
Joskow, 1990; Rubin et al., 2006; Schoots et al., 2008; van der Zwaan and Rabl, 2003; Wene et
al., 2005; and Yeh and Rubin, 2007),

energy demand technologies (Desroches et al., 2013; Weiss et al., 2010) and

environmental control technologies (Rubin et al., 2004; Taylor et al., 2013; and Yeh et al.,
2007).

2.2. The learning curve formula

The learning curve is a well-known analytical concept that describes the cost reduction potential of a
technology as a function of experience quantified in terms of cumulative production. A typical one-
factor learning curve has the form of

C, = CX7P (2.1)
logC; = logC; — b * logX; (2.2)
PR =27 (2.3)
LR=1-PR (2.4)
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where C; is the unit cost of production at timet, C; is the first unit's production cost, X; is the
cumulative production at time t, and b is the learning parameter (i.e., experience index), PR is the
progress ratio, and LR is the learning rate. The progress ratio expresses the rate at which unit
production cost declines for every doubling of cumulative production. For example, a progress ratio of
90% equals a learning rate of 10% and thus means that unit production cost would decline 10% and
reach 90% value whenever the production doubles. When learning takes place, the values of the
progress ratios are expected to be between 0 and 1 (or 0% to 100%). As the ratio gets closer to zero,
the learning becomes more rapid while getting close to one indicates lower rates of learning. On the
other hand, PR = 1 means there is no change at unit production cost. PR > 1 indicates a cost increase
and a loss in efficiency as the total production increases (instead of cost reduction and efficiency
improvement).

The learning curve in principle defines short-run (over which a firm’s size is fixed and the only
variable resources are labor and raw materials) average variable cost (C; in Eq. 2.1) as a function of
the short-run average cost of the first unit of a commodity or service that was produced (C; in Eq.
2.1), the cumulative total number of units produced (X, in Eq. 2.1), and a parameter that measures the
rate at which average cost declines as the total production increases (-b, Eq. 2.1). As the cumulative
production used in the learning curve approach represents the total production up to a point in time,
not total units per time period, the effect of learning curves are different from the result of economies
of scale (Salvatore, 2014).

Graphically, the learning curve is conventionally represented in a logarithmic scale Figure 1 shows an
example for a linear scale and a log linear scale learning curve.

120 120
100 100
5 8 T 80
g 60 g 60
g 40 :g; 40
20 20
0 0

0 100 200 300 400 500 1 10 100 1000

a Learning (Cumulative production of units) b Learning (Cumulative production of units)

Figure 2 depicts a learning curve for wind turbines in which the unit price decreases as a function of
cumulative sales.
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Figure 2 Learning curve for Danish-produced wind turbines (The PR is 96%0)

Learning curves are used to project the future cost reduction of a technology. Assessment of future
costs are particularly important for emerging technologies that are new to the market. The cost of a
new technology must decrease to a level that can be competitive against conventional technologies to
be involved in the market. Figure 3 shows the decrease in cost of photovoltaic modules via learning
curve. The difference between actual price and break-even price, that is, the additional costs for
technology compared with the same service from technologies that are already in the market, is called
the learning investment.
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The conventional one-factor learning curve considers the specific investment cost of a given
technology only as a function of cumulative capacity or cumulative production. This representation
takes into account the effects of experience due to actual deployment of technologies, but is often
criticized for not providing a mechanism to capture explicitly the effects of public and private research
and development (R&D) efforts, which may also constitute another component of cost reductions,
particularly in the early stages of development of a technology (Barreto and Kypres, 2004).
Kouvariatakis et al. (2000a) extended the conventional learning curve formula to the so-called two-
factor learning curve to include the impact of R&D expenditures on cost reductions.

While the concept of two-factor learning curve is theoretically appealing, significant problems were
noted for this approach (Holmes, 2011). For example, reliable data on R&D spending is hard to
collect and the quality of available data is often an issue. In addition, high degree of co-linearity
between two variables, R&D investments and cumulative capacity or production, (e.g., they may
influence one another), can lead to misleading conclusions. For this reason, one-factor learning curve
formula is still widely used for predicting production rate and cost in repetitive operations in the vast
majority of studies. We are also using one-factor learning curve in this study.

2.3. Learning curve criticisms

While the basic learning curve approach itself stands out due to its simplicity, using the learning curve
7



is in practice often not as straightforward as it may be seen (Junginger et al, 2010). A number of
uncertainties in the use of learning curves for forecasting or modeling future cost trends has been
identified and their impacts in the analysis of cost developments has been criticized in the literature
(Neij et al., 2004; Nemet, 2006; Alberth, 2008). Since the uncertainties can significantly influence the
results, it is important to acknowledge these critiques.

Choice of performance and learning indicators

Production cost is the ideal performance indicator in the learning curve due to its direct relation to
technical improvement. However, usually only price data is available for analysis. Using price instead
of cost may be useful when price-cost margins are constant over time. This, unfortunately, requires a
number of unlikely things to stay constant in an industry (Taylor and Fujita, 2013). Whereas cost
changes occur over time due to changes in input prices and production efficiency, price changes can
occur from several other factors (such as government subsidization, various marketing decisions,
funding allocated to R&D, and commercialization initiatives). Learning analysis based on prices may
be uninformative if price changes occur not based on production costs but based on other reasons
unrelated to cost changes Papineau (2006). However, as Junginger et al. (2010) mentioned, even
though cost data are a better measure of technical improvement, technology adaptation decisions are
based on prices that consumers face, not the costs that producers face.

Likewise, cumulative production (or cumulative output of the generating or converting technologies in
the energy context) or cumulative installed capacity is often used in learning curve analysis as a
substitute for accumulated learning. However, this assumption ignores the effect of knowledge
acquired from other sources, such as from R&D or from other industries. In addition, for some
specific cases, cumulative production or capacity is not well suited. For example, energy efficiency
technologies and measures do not provide a direct output (i.e., energy), but rather conserving it (i.e.
energy saving), which requires a clear definition of the energy saved, or alternatively, of energy
efficiency gained (Jakob and Madlener, 2004). Thus, in the case of energy efficient technologies,
learning curve reduces the cost for every doubling of cumulative energy savings.

Using a constant progress ratio (learning rate)

Whether the learning curves flatten out with increasing penetration or not, that is whether PR is
constant or not is another issue often debated in the literature. Does the progress ratio (and therefore
learning rate) remain constant over time, or does it change over the modeling period? Grubler (1998)
argues that costs are reduced relatively rapidly during the innovation and R&D phase, but that the PR
may change to a higher level (i.e., lower cost reductions) when a technology enters to the commercial
market. Nemet (2009) has looked at the stability of learning rates for photovoltaic (PV) and wind
technologies between 1975 and 2005, and also found evidence supporting the arguments of some
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slowing in learning. Also, the joint approach of EPA and NHTSA to applying learning curves in
vehicle regulatory impact assessments assumes a “steep” learning rate of 20% to reflect likely
substantial learning in the near future for newer technologies, and a “flat” learning rate (1-3%) or no
learning rate (0%) to reflect more limited learning opportunities, primarily associated with
autonomous learning, for mature technologies Others, such as McDonald and Schrattenholzer (2002)
argue that a constant PR may depend on exponential market growth. As soon as the turning point in
the S-shaped penetration curve is reached, and annual production volumes become linear or even
decrease, the learning curve will eventually flatten out and PR may reach unity (or LR may reach to
zero). On the other hand, Junginger et al. (2010) argues that cumulative doublings of unit production
are achieved with relative ease during the innovation and niche market phase of a technology, but as
the market reaches saturation, it may take much time to get another doubling of cumulative
production. Thus, the cost reduction possibilities are also limited by the market volume. Cost
reduction may then slow in time, and come to a halt when the market is saturated, which does not
necessarily require PR to change. However, Junginger et al. (2010) also mentions that products may
change over time, as will input prices, and so on. Thus, the timeframe used in the learning curve
analysis is also essential while estimating PR.

Uncertainty of progress ratio (learning rate)

Variation in progress rates, can have significant consequences, especially for exercises examining
long-term perspectives. The literature provides some evidence of PR variability among different data
sets, and sometimes within the same data set analyzing different time intervals or technology clusters.
Dutton and Thomas (1984) compiled cost based learning curves from a wide spectrum of industries
and found a peak of a distribution of PR values at 80% (see Figure 4), but with a wide distribution
(and the second largest one indicates 89%-90%). McDonald and Schrattenholzer (2001) looked at the
distribution of price-based PR values for energy technologies and reproduced Dutton and Thomas’s
peak around 80%, but observed another peak around 95%. They concluded that 80-81% median value
of progress ratios from general manufacturing firms could be a useful starting point until more
detailed studies of energy technologies become available. However, as PR estimates directly affects
cost forecasts, detailed sensitivity analysis of results to PR variability is necessary. This variability
may be driven by several factors such as technology life cycle, market pricing strategies, assumptions
about initial cumulative production and the associated start-off costs, definition of variables (cost or
price data, cumulative capacity, production, or energy savings) (Junginger et al. 2010).
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In addition, variability in progress ratios may depend on how system boundaries are defined and differ
depending on the properties of the technology. In particular, using the progress ratios based on
national learning curves in global energy models or in modeling of another country, may provide
misleading results. For different technology categories, Neij (1997) defines three different progress
ratios. He indicates that the PR for modular technologies (such as solar panels) ranges from 75-90%
(average 80%), for plant technologies (such as power plants) from 82-100% (average 90%), and for
continuous processes (such as bulk production of chemical compounds) from 64-90% (average 78%).
However, one can also argue that plant technologies are all technologies that combine several learning
components. Such uncertainties should be taken into account while evaluating model outcomes.
Figure 5 illustrates the range of learning rates (1% to 41.5%) from literature for various energy
technologies (see Appendix A for the full list of 77 technologies) and shows a wide range of learning
rates (varying - by source, country, and time period).
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Figure 5 Learning-by doing rates for selected energy technologies

Detailed reviews on the histories, applications, and uncertainties of the experience curve can be found
in the literature Yeh et al, 2007; OECD/IEA, 2000; Mattsson and Wene, 1997; Neij, 1997.

24. Using learning curves in energy models

Learning curves show the investment necessary to make an emerging technology competitive, but it
does not forecast when the technology will reach a break-even point. Incorporation of learning in
energy models helps identify the optimal timing for integrating the emerging technologies in the
market. The learning curve is widely incorporated in energy models. Table 1 provides some examples
of bottom-up, top-down, and hybrid energy models incorporating learning curves?.

2 Bottom-up models represent the energy system with a technology rich description and put the emphasis on the correct
description of energy sources and technologies at the disaggregated microeconomic level Fishbone et al., 1983, Junginger
et al., 2010, Loulou et al., 2004, Schrattenholzer, 1981). Top-down models evaluate the system from aggregate economic
variables and apply macroeconomic theory and econometric techniques to historical data on consumption, income,
investments, GDP, imports, prices and factor costs to model the final demand for goods and services (Junginger et al.,
2010, Karali, 2012). Hybrid models combine technological explicitness of bottom-up models with the economic
comprehensiveness of top-down models (Hourcade et al., 2006).
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Table 1 Technolo

ical learning in bottom-up and top-down models

Approach Model Parameter affected by Baseline
learning
Bottom-up MESSAGE Energy investment cost Messner (1997)
GENIE Energy investment cost Mattsson (1997) and Mattsson; Wene
(1997)
MESSAGE Energy investment cost Gribler and Messner (1998)
MESSAGE Energy investment cost Gritsevskyi and Nakicenovic (2000)
MARKAL Energy investment cost Seebregts et al. (2000)
POLES Energy investment cost Kouvaritakis et al.,
2000a and Kouvaritakis et al., 2000b
MERGE Energy investment cost Manne and Richels (2004)
DNE21+ Energy investment cost Sano et al. (2006)
MESSAGE- | Energy investment cost Rao et al. (2006)
MACRO
GET-LFL Energy capital cost and Hedenus et al. (2006)
energy conversion
activities.
Top-down DEMETER Energy production cost Van der Zwaan et al. (2002) and
Gerlagh and van der Zwaan (2003)
ETC-RICE Abatement activities and Buonanno et al. (2003)
knowledge stock.
RICE Energy investment cost and | Castelnuovo et al. (2005)
knowledge stock.
E3MG Energy investment cost Barker et al. (2006)
(electricity generation
technologies).
IMACLIM-R | Energy investment cost Crassous et al. (2006)
(electricity generation
technologies).
Hybrid NEMS Energy investment cost US EIA 2014 (2014)

(electricity generation
technologies)

Source: Junginger et al. 2010, US EIA 2014

In addition, Table 2 shows examples of learning parameters for new generating technology
components reflected in the NEMS Electricity Market Module.

12


http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib33
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib32
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib83
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib57
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib81
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib78
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib38
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib13
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib15
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib4
http://www.sciencedirect.com/science/article/pii/S0301421507003813%23bib20

Table 2 Learning parameters for new generating technology components

Minimum

Technology Component Period 1 | Period 2 | Period 3 | Period _1 Period .2 Total _
(LR 1Y) (LR 2) (LR 3) (Doublings) | (Doublings) | Learning by

2035
Pulverized Coal - - 1% - - 5%
Combugtion Turbine - ) ) 1% ) ) 506
conventional
Combustion Turbine - - 10% 1% - 5 10%
Heat Recovery Steam - - 1% - - 5%
Gasifier - 10% 1% - 5 10%
Carbon Capture/Sequestration | 20% 10% 1% 3 5 20%
Balance of Plant - IGCC - - 1% - - 5%
Balance of Plant - Turbine - - 1% - - 5%
Balance of Plant - Combined - - 1% - - 5%
Fuel Cell 20% 10% 1% 3 5 20%
Advanced Nuclear 5% 3% 1% 3 5 10%
Fuel prep - Biomass - 10% 1% - 5 10%
Distributed Generation - Base - 5% 1% - 5 10%
Distributed Generation - Peak - 5% 1% - 5 10%
Geothermal - 8% 1% - 5 10%
Municipal Solid Waste - - 1% - - 5%
Hydropower - - 1% - - 5%
Wind - - 1% - - 5%
Wind Offshore 20% 10% 1% 3 5 20%
Solar Thermal 20% 10% 1% 3 5 10%
Solar PV - Module - 10% 1% - 5 10%
Balance of Plant - Solar PV - 10% 1% - 5 10%

Source: US EIA 2014 (U.S. Energy Information Administration, Office of Electricity, Coal, Nuclear and
Renewables Analysis)

Since bottom-up models can capture technologies with a very detailed level of technical and economic
characteristics, they are more suitable to implementing learning curves for specific technologies,
compared to top-down models. In top-down models, technological learning is generally incorporated
to analyze the impact of learning on abatement costs. Bottom-up models, on the other hand generally
model investment costs of a technology as a function of cumulative installed capacity or production
(Junginger et al. 2010). Introduction of learning curves in bottom-up energy system models as
endogenous variable, however, results in non-convex and non-linear mathematical problems. This
topic is discussed more detailed in Chapter 3.

13



2.5. Using learning Curves for the U.S. Iron and Steel Sector

Existing literature shows that learning curves provide a rational and systematic approach to estimate
future cost trends based on historical observations and performance of technologies.

Data and Methodology

In this study, we analyze the learning effect on cost developments and technological progress of
energy efficient (EE) technologies in the U.S. iron and steel sector. We first develop a set of learning
curves characterizing historical cost trends for 75 EE technologies (43 in the Basic Oxygen Furnace
(BOF) production route and 32 in the Electric Arc Furnace (EAF) production route) currently in use in
the U.S. iron and steel sector (Karali et al., 2013; Worrell et al., 1999; See Table B1 in Appendix B for
the entire list). The cost associated with EE technologies represents the expense of retrofitting the
existing production structure with an EE technology.

For those 75 technologies, we have obtained cost and energy savings data from the literature for two
specific years; 1994 and 2002. In an energy context, learning curves typically describe the relation
between specific costs of energy generated (or converted) and the cumulative output of the generating
or converting technologies studied (measured in capacity units such as kW, or number of units
produced such as kWh, and the like) (Jakob and Madlener, 2004). In contrast, energy efficiency
technologies and measures do not provide energy, but rather help to conserve it (i.e. to bring energy
saving), which calls for the definition of a Baseline (or baseline) for the measurement of the amount
of energy conserved (i.e., energy saving), or energy efficiency gained, respectively (Jakob and
Madlener, 2004; see Section 2.3.). In addition, our historical data only provides energy saving
associated with each energy efficient technology.

Accordingly, our independent variable in the one-factor learning curve formula is cumulative energy
saving, while retrofit cost of an EE technology is the dependent variable. We assume the cost of a unit
energy saving (1 GJ in this specific case) in 1994 as our initial cost (i.e., start-off cost). The cost in
2002, then, is the product of the cumulative energy saving (in GJ) between 1994 and
2002.Accordingly, the learning curve formula that we use to derive learning rates is in the following
form:

C2002 = C1994(X2002 — X1994 + 1)7° (2.5)
PR=1—LR (2.6)
LR=1-2" (2.7)

where Cy0 1S the unit retrofit cost at 2002, Cjq94 IS the unit retrofit cost at 1994 (i.e., our start-off
cost), X2002 — X1994 1S the cumulative energy saving between 1994 and 2002 (‘1’ in the formula,
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X5002 — X1904 + 1, represents the initial unit energy saving), b is the learning parameter, PR is the
progress ratio, and LR is the learning rate. Retrofit cost decreases according to PR in each doubling of

energy savings (in GJ).

The investment cost learning curves for four sample technologies are shown graphically in both linear
and log-linear (on X-axis) scales in Figure 6 - 9. These sample technologies have different penetration
levels in 2002, representing the variety of penetrations in existing EE technologies in the U.S. iron and
steel sector. Figure 6-9 illustrates how learning acquired through cumulative energy saving reduces
the costs between 1994 and 2002. Table B 2 in Appendix B summarizes the learning rates for retrofit
cost for the 75 technologies examined in this study. All learning rates derived in this study fall within
the range of 1%-41.5% reported in the literature for an array of energy-related technologies studied

by Kahouli-Brahmi (2008).
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Figure 9 Linear scale learning curve for Bottom Stirring, (b) Log-linear scale learning
curve for Bottom Stirring (CES between 1994 and 2002 = 4.2 PJ, Penetration in 2002 =
11%, LR = 0.101)

Figure 6 shows the learning curve for sinter plant heat recovery technology, which has penetration
level of 100% in 2002 on the U.S. market. This is an example of a technology which has reached
maturity. The learning curve for sinter plant heat recovery shows a modest progress ratio of 98.8%,
corresponding to a learning rate of 1.2%. Hot blast stove automation, which has penetration level of
60% in 2002, is similar to sinter plant heat recovery. This technology in Figure 7 shows progress ratio
of 97.4%, corresponding to a learning rate of 2.6%.

On the other hand, learning curves for hot charging technology in Figure 8 and bottom stirring
technology in Figure 9 indicate a decrease in prices through cumulative energy saving. They have
6.7% and 10.1% learning rates, respectively. Both of those technologies have relatively low
penetrations; 21% for hot charging technology and 11% for bottom stirring technology. This also
corresponds to the literature review we did earlier by indicating higher learning rates for technologies
that have low penetration levels (i.e., assuming those are the technologies at the beginning of
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deployment to the market). In addition, almost the same absolute increase in cumulative energy saving
in Figure 6 for sinter plant heat recovery and in Figure 8 for hot charging shows that the learning
effect is more dramatic for technologies with lower penetration.

Based on our findings on learning rates, we have calculated average learning rates by technology
penetration level. Table 3 summarizes the average learning rates calculated for EE technologies with
different penetration levels. 50 technologies (67% of existing EE technologies considered in this
study) have a learning rate of 3% or lower. The technologies that are in the lowest penetration interval
have the highest learning rate of 10%. This rate drops down to 2% in the highest penetration interval.
These results show that learning slows down with the increasing penetration (maturity) of the
technology in the U.S. iron and steel sector.

Penetration

# of Energy
Efficient

# of EE Techs in

# of EE Techs in

Average Learning
Rate

Technologies BOF Route EAF Route
[80-100%] 27 (36%) 20 (47%) 7 (22%) 2%
[60-80%) 8 (11%) 3 (7%) 5 (16%) 3%
[40-60%) 15 (20%) 9 (21%) 6 (19%) 3%
[20-40%) 19 (25%) 9 (21%) 10 (31%) 6%
[0-20%) 6 (8%) 2 (5%) 4 (13%) 10%
Total 75 (100%) 43 (100%) 32 (100%)

(Note: Penetration of energy efficient technology in this analysis is defined as follows: for technologies in
BOF production route, share of total U.S. integrated steel production to which measure is applied; and for
technologies in EAF, share of total U.S. secondary production to which measure is applied. See Appendix

B for the entire list.)
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Chapter 3 Technological learning in ISEEM

This chapter describes the methodological approach used to endogenize the learning curves in
ISEEM. ISEEM is a technology-oriented model. It uses a rich representation of supply and demand
technologies to identify future cost effective technological options and assess their role in the energy
system under different conditions. This model in standard form can assume exogenous technological
change, i.e., the unit cost and efficiency of technologies can improve by constant rates over time and
are independent of each other.

Incorporating learning curves as endogenous variables in bottom-up energy system models causes
computational problems due to the non-convexity and non-linearity of the learning curve (Berglund
and Soderholm, 2006). Most of the time there are multiple local optima which creates difficulty in
identifying the global optimum. The most common way of solving this problem in linear
programming models is so-called mixed integer programming (MIP), as reported in the literature for
MESSAGE (Messner, 1997) and GENIE energy models (Mattsson, 1997). Such an approach consists
of a piece-wise approximation of the total cumulative cost curve, using integer variables to control the
sequence of segments along the curve, which enables the models to find a global optimum. However,
it is very computer intensive and increases the computational complexity compared to the
conventional Linear Programming (LP) models without endogenous learning. The solution time and
the success to find optimal solutions depend on specific solver options. In addition, the accuracy
depends on segmentation of step-wise linearization of the cumulative cost curve (Seebregts et al.,
1999).

To overcome difficulties in computation in MIP, we use an iterative solution algorithm between
ISEEM and the learning curve formula (see Figure 10). This approach integrates learning curves
outside the actual optimization, hence it does not cause the mathematical difficulties mentioned above.
ISEEM optimization is executed on periodic basis. Based on the optimum solution of ISEEM,
cumulative activity (i.e., production) of each EE technology at the beginning of period t (excluding
period t) is passed to the learning curve formula. With this information, learning curve-adjusted costs
of the technologies at t are calculated. The ISEEM model simultaneously uses the costs transferred
from the learning curve formula to calculate the cumulative activity of the following period (t+1).
This iteration continues until the end of the planning horizon. The iteration process is half-
automatized. Learning curve formula is embedded into the parameter definition module of ISEEM,
and cumulative activity from ISEEM optimization is internally passed to that module. New cost
information from learning curves (output of learning curve formula), however, needs to be manually
transferred to the ISEEM input database.
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Figure 10 Iteration between ISEEM and learning curve

The iterative solution algorithm requires the following input parameters for each EE technology:

o Retrofit cost at the start period (C;)
e Penetration rate at the start period
e Learning rate

The penetration rate enables ISEEM to calculate initial cumulative activity of the associated
technology. For each EE technology, a pseudo technology is created (Figure 11). Pseudo technology is
a duplicate of EE technology with no associated cost and efficiency (i.e., input/output (1/O) ratio
equals to 1/1). If there is no activity on EE technology, pseudo technology would work 100% (i.e.,
there will be no efficiency measure implementation). If there is an activity on EE technology, the
output will be shared with the pseudo technology. The share of each EE technology is fixed to
penetration rate at the start year.
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ISEEM begins accumulating production (i.e., activity) of the EE technologies starting from the start
period of the model. The cumulative production of the existing EE technologies before the beginning
of the planning horizon is not taken into account. Since the cost at the start period of the planning
horizon is the initial cost of the learning curve formula, this approach would not disturb the accuracy
of the calculations. The learning curve formula we use is as follows:

Cumulative activity (t) = Y251 Annual activity (i) (3.1)
Cost (t) = Cost (0) * Cumulative activity (t)? (3.2)
PR=27b (3.3)

where the cumulative activity of an EE technology at period t (Cumulative activity (t) in GJ) is the
sum of annual activity of the technology until the period t (i.e., between the start period (t=0) and the
period t-1 (excluding period t)). Cost (t) is the unit retrofit cost (in $/GJ) of the technology at
period t, Cost (0) is the unit retrofit cost (in $/GJ) of the technology at the start period, b is the
learning parameter, and PR is the progress ratio.

For demonstration technologies, on the other hand, there is no observed penetration, thus, no
associated cumulative activity, in the start period, since they’ve never been used before. They may or
may not be adopted through the modeling periods depending on the cost minimization objective.
However, as discussed in Section 2, to decrease the cost via learning curve formula a doubling of
cumulative activity is needed. From this point of view, in the implementation of technological
learning for a demonstration technology, ISEEM assumes a doubling of cumulative activity in the first
period that the technology is available. This way, the retrofit cost of a demonstration technology
decreases based on the learning rate in the following period, which is an exogenous stimuli to the
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ISEEM. However, from this point onward, the system is free and the optimization procedure decides
on whether further investment on the demonstration technology is needed for the cost minimization
objective. If there is investment, cost continues to decrease via learning curve. If there is no
investment, technology is abandoned at the end of its lifetime.
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Chapter 4 ISEEM-U.S. iron and steel sector (ISEEM-USIS) model

4.1. Calibration and General Assumptions

In this study, the analyses is concentrated on the U.S. iron and steel sector. ISEEM is calibrated for the
U.S. iron and steel sector for the base year 2010. 2010 is chosen as the calibration year because
reliable data is available for 2010 and there were no extraordinary political, economic or social events
in 2010. The planning horizon is developed in 5-year time intervals extending from 2010 to 2050. The
model includes 126 process technologies, which are composed of current production technologies (18
technologies) and advanced production technologies (108 technologies). Current production
technologies represent the process technologies that are currently used for iron and steel production in
the U.S., such as BOF and EAF production route technologies. Advanced production technologies
(i.e., newer/updated versions of current production technologies) are assumed to represent the
autonomously improved versions of current iron and steel production technologies. It is assumed that
those technologies would be available in the model in each year with no additional cost. We adopted
an annual energy efficiency improvement rate of 0.75%, which was applied in the ISEEM model of
the U.S. iron and steel sector (Karali et al., 2013). EE technologies represent the existing and
emerging (i.e. in demonstration phase) energy efficiency measures in the U.S. iron and steel sector.
There are 75 existing and 11 demonstration EE technologies in the model. The majority of those
measures are not competing among themselves. Instead, each of them is a candidate to be adopted if
cost effective (i.e., reducing the cost minimization objective of ISEEM-USIS). The only competing
measures that are currently effective in the U.S. are different fuel injections to blast furnaces; (1)
injection of 130kg pulverized coal per tonne of hot metal, (2) injection of 225kg pulverized coal per
tonne of hot metal, (3) injection of 140kg natural gas per tonne of hot metal, and (4) injection of
130kg oil per tonne of hot metal.

Table B 2 in Appendix B provides the basic parameters of the EE technologies considered in this
study.
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Figure 12 Production flow representations of the U.S. iron and steel sector in ISEEM-USIS

For the annual projections of the steel production in the U.S. and more details on assumptions (such as
energy and raw material prices, exogenous demand growth, production constraints, and so on) and
calibration included in ISEEM modeling we refer the reader to Karali (2013). A discount rate of 10%
is used and a lower bound on annual production from BOF route is set to 10% of the U.S. steel
production capacity. Because the total cost of steel production via BOF production route is higher
than those via EAF production route, the ISEEM-USIS model’s optimization process would tend to
reduce the share of BOF production when seeking alternative processes with the least costs, such as
EAF. However, in reality, it would be inappropriate to totally abandon BOF production route, because
BOF is necessary for producing high-quality steel that EAF process just would not be able to achieve
(Grobler and Minnit, 1999).

Future prices of the raw materials and energy sources used in the analysis are listed in Table 4 — 6.

Table 4 Iron ore and scrap prices used in the ISEEM-USIS model (2005 $/tonne material)

20100 2015 20200 2025 2030] 2035 20400 2045 2050
Domestic Iron Ore 88 115 128 140, 139 133 129 132 126
Import Iron Ore 97 118 136 150, 149 141 136 141 133
Domestic Scrap 284 373 423 466 461 439 425 416 404
Import Scrap 334 434 489 535 530 506 490 505 479

Source: Karali et al. (2013)
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2010 2015 2020 2025 2030 2035 2040 2045 2050
Steam Coal 2.3 2.7 2.8 2.8 2.9 3.1 3.2 3.4 3.6
Electricity 16.7 15.5 15.5 15.9 15.9 16.9 16.9 16.9 17.0
Miscellaneous QOil 11.0 14.4 18.3 21.7 25.0 27.9 31.6 35.8 40.5
Natural Gas 45 5.0 5.4 6.3 6.7 7.3 8.1 8.9 9.8

Source: Karali et al. (2013) (Note: The gray shaded cells represent the prices in EIA’s Annual Energy Outlook,
2011)

20100 2015 2020 2025  2030] 2035 2040 2045 2050
Coking Coal 163 178 201 220 218 208 202 208 197
Source: Karali et al. (2013)

Retrofit costs of EE technologies decrease with the learning rates that we calculated in Chapter 2 and
listed in Table B 2 in Appendix B). We assume that reduction of cost via learning slows down in time
with increasing penetration. Thus, progress ratios (or learning rates) of EE technologies change to a
higher level (or a lower level) with time. It is assumed that progress ratios (or learning rates) increase
(decrease) 10% per year starting from the first year in which the learning is applied. In addition, the
average LR rate of 0.1 calculated for the penetration interval [0-20%) (see Table 3 in Chapter 2) is
used for demonstration technologies as the initial learning rate in the first year that the technology
becomes available. Then, LR rate is changed to a lower level (listed in Table 3 in Chapter 2) as
technology penetrates. For the other technologies (i.e., current and advanced production technologies)
investment costs are assumed constant along the horizon (i.e., PR is considered equal to one). We
didn’t use any maximum growth constraints to control the penetration of the technologies.

As discussed in Chapter 2, there is uncertainty concerning learning rates and technology
characteristics. Therefore, the analysis and the results conducted in this study should be regarded
much more as what could happen if progress could be sustained at such pace. In addition, some
technologies that have high penetration rates in the U.S. might have lower penetration rates in other
countries, especially in developing countries such as China and India. Thus, from the global
perspective, average learning rates could be higher than the ones that we obtained for the U.S. iron
and steel sector.

4.2. Scenarios

Total of three scenarios are analyzed within the scope of this study. The Frozen scenario describes the
development of the iron and steel sector where no additional production or energy policies are
implemented. In addition, it is implicitly assumed that penetration levels of existing EE technologies
are static at current levels until 2050, and there is no learning curve application. Production shares of
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BOF and EAF, on the other hand, are not fixed and may change as a result of cost minimization
objective. There is a 10% lower limit on the share of BOF production through the periods. In the
Baseline scenario, limitations on penetration of EE technologies are eliminated. Thus, the model has
the flexibility to invest in efficiency without any limitation. The other characteristics of this scenario
are the same with the frozen scenario, such as no learning curve application. Learning is applied in the
Learning scenario with flexible penetration of EE technologies. Table 7 summarizes the basic
characteristics of the scenarios considered in this study.

e Penetration of existing efficiency measures/technologies is constant at 2010 levels
Frozen ¢ No demonstration technologies (that are not commercialized yet but technically
feasible)

e No learning

¢ No limits on penetration of existing efficiency measures/technologies starting from
2015

Baseline e Demonstration technologies (that are not commercialized yet but technically
feasible) available starting from 2020
e No learning
¢ No limits on penetration of existing efficiency measures/technologies starting from
_ 2015
Learning e Demonstration technologies (that are not commercialized yet but technically

feasible) available starting from 2020
e Cost reductions over time according to learning curves

4.3. Results

The results from the ISEEM-USIS model presented in this section illustrate the impact of
technological learning on the structure of the U.S. iron and steel sector.

Penetration (Adoption of energy efficient technologies)

Table 8 summarizes the levels of existing EE technologies in the U.S. iron and steel sector in all
scenarios according to their penetration levels®, as modeled by ISEEM-USIS. Penetrations of the EE
technologies at 2015 are calibrated based on the penetration levels in 2002 (Worrell et al., 1999;
Karali et al., 2013) because of limited data, and do not differentiate among scenarios in that particular
year. In the Frozen scenario, the penetration levels are kept constant at 2015 levels until the end of the
planning horizon (i.e., 2015-2050), thus, the number of technologies in each penetration level, listed
in Table 9, does not change.

¥ As noted in Table 3, penetration of energy efficient technology in this analysis is defined as follows: for technologies in
BOF (i.e., integrated steel) production route, share of total U.S. integrated steel production to which measure is applied;
and for technologies in EAF (i.e., secondary steel, production), share of total U.S. secondary production to which measure
is applied. See Appendix B for the entire list.)
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In the Baseline scenario, where there is no learning, 57% and 89% of the EE technologies have more
than 80% of penetration in 2025 and 2050, respectively (up from 36% in 2015). These results indicate
that most of the existing EE technologies that are currently used in the U.S. iron and steel sector are
cost effective. Penetration levels increases through the years, even though there is no technology cost
reduction. In addition, none of the demonstration technologies, which are not commercialized yet but
technically feasible, are adopted in this scenario. This indicates that those technologies are not
economically feasible in the ISEEM-USIS model with the current cost structure, as assumed at the
beginning.

In the Learning scenario, where price reduction of existing EE technologies are observed, 57% and
93% of the efficiency measures have more than 80% of penetration in 2025 and 2050, respectively.
Since most of the existing EE technologies are cost effective and progressively adapted through the
years as observed in the Baseline scenario, decreasing costs via the learning curve does not
significantly alter results between the two scenarios (i.e., Baseline and Learning scenarios). The share
of technologies that have penetration level of more than 80% in 2050 increases from 89% in the
Baseline scenario to 93% in the Learning scenario. However, the results indicate that some of the
demonstration technologies are adapted in the mid-term and their penetration levels increase as the
prices go down in the Learning scenario (see Table 9). Furthermore, even though Blast Furnace Heat
Recuperation* (BF-HR) is listed as a demonstration technology, it becomes economically feasible in a
very short period of time and gets 100% penetration in 5 years from its initial availability in 2020).

Frozen Baseline Learning

Penetration
level 2010-2050 2015 2025 2050 2015 2025 2050
[80-100%] 36% 36% 57% 89% 36% 57% 93%
[60-80%) 11% 11% 16% 1% 11% 16% 4%
[40-60%) 20% 20% 19% 4% 20% 21% 3%
[20-40%) 25% 25% 8% 5% 25% 5% 0%
[0-20%) 8% 8% 0% 0% 8% 0% 0%

100% 100% 100% 100% 100% 100% 100%

* The heat of hot blast stove flue gases, with an exit temperature of approximately 480°F (250°C), can be recovered to
preheat the combustion air of the stoves to reduce energy consumption.
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2020 2025 2030 2035 2040 2045 2050
SIN-SWGR - - - - - - -
COK-APCS - - - - - - -
COK-NRCO - - - - - - -
SCOPE21 - - 50% 56% 61% 62% 62%
BF-HR - 100% 100% 100% 100% 100% 100%
BF-SHR - - - - 68% 100% 100%
BF-AUCOG - - 2% - - - -
BOF-ABA - - 7% 43% 89% 100% 100%
EAF-ABA - 4% 52% 76% 97% 100% 100%
BOF-ISRT - - 100% 100% 100% 100% 100%
EAF-ISRT - - 34% 98% 100% 100% 100%

(Note: See Table B3 in Appendix B for full names of technologies)

One of the other major difference between the Baseline and Learning scenarios is the increasing
penetration of 225kg pulverized coal injection (PCI225) in the Learning scenario. Currently, in the
U.S. iron and steel sector, there are four competitive injection methodologies that are used in iron
making (i.e., blast furnaces) to decrease the amount of coke needed®; (1) injection of 130kg pulverized
coal per tonne of hot metal, (2) injection of 225kg pulverized coal per tonne of hot metal, (3) injection
of 140kg natural gas per tonne of hot metal, and (4) injection of 130kg oil per tonne of hot metal.
Those technologies have penetration levels of 21%, 26%, 21%, and 21%, respectively, in the base
year. Since they are competing with each other, an increase in one’s penetration results in a decrease
in another’s penetration. Injected fuel is replaced with coke in blast furnaces.

In the Baseline scenario, penetration levels of those injection technologies do not significantly change.
In the Learning scenario, on the other hand, with decreasing prices under the impact of learning,
injection of 225kg pulverized coal technology displaces with other injection technologies and reaches
100% penetration starting from 2030.

Energy Consumption

Figure 13 shows the annual steel production in the U.S. forecasted by the ISEEM-USIS model in all
scenarios. The use of EAF as a low-cost steel production process dominates the U.S. steel production.
Because of high production costs, the share of BOF steel production gradually decreases until the

> One of the main energy and cost saving measures for blast furnaces is replacing some of the coke input by injecting other
hydrocarbon sources (IPPC, 2011). Coal and oil are the most commonly used injectants, while other hydrocarbons include
natural gas, coke oven gas, basic oxygen furnace gas, oil and plastics (IPPC, 2011 and Worrell et al., 2010).
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lower limits set in the model assumptions are reached (in 2035). This result does not differ in between
scenarios.
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Figure 13 BOF and EAF productions in all scenarios (Mtonnes)

EAF production process requires only about one-third of the primary energy needed in the BOF
production route, since the most energy intensive steps in the steel sector has been carried out in the
BOF route. As a consequence of decreasing BOF share, consumptions of final and primary energy
decrease in all scenarios through the years (Figure 14 - 15). In addition, lower levels of energy
consumption are observed in the Baseline and Learning scenarios between 2020 and 2050, compared
to the Frozen scenario (Table 10 - 11), as a consequence of an increasing penetration of EE
technologies in both scenarios. As mentioned earlier, 89% and 93% of the existing EE technologies
have more than 80% penetration in 2050 in the Baseline and Learning scenarios, respectively
(compared to 36% in Frozen scenario). Higher penetration of existing EE technologies, particularly
PCI225, in the Learning scenario further reduces the energy consumption compared to the Baseline
scenario. In addition, penetration of some of the demonstration technologies (see Table 9),
particularly after 2040, also contributes to the lower energy consumption in the Learning scenario.
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Figure 14 Annual total final energy consumption in the U.S. iron and steel sector in all scenarios
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Table 10 Reduction in annual total final energy consumption in the U.S. iron and steel sector in
the Baseline and Learning scenarios (compared to Frozen scenario)

2020 2025 2030 2035 2040 2045 2050

Baseline 2.6% 3.7% 4.6% 5.5% 5.8% 6.3% 6.6%
Learning 5.5% 7.2% 10.8% 9.8% 11.6% 12.0% 12.2%
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Figure 15 Annual total primary energy consumption in the U.S. iron and steel sector in all
scenarios (PJ)
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2020 2025 2030 2035 2040 2045 2050
Baseline 2.9% 4.0% 5.1% 6.2% 6.8% 7.4% 7.5%
Learning 4.9% 6.5% 9.2% 8.9% 10.5% 11.1% 11.3%

In all scenarios, the consumption of coking coal (which is the main energy source of BOF production
route) drops significantly as a consequence of the declining BOF production (Figure 16). In the
Learning scenario, with increasing penetration of PCI225 and implementation of demonstration
technologies, coking coal consumption decreases even more, reaching 80.1PJ in 2050, compared to
the 139.4PJ in the Frozen scenario and 138.1PJ in the Baseline scenario. But in return, coal
consumption increases in the Learning scenario. However, burning coal instead of burning coke in
blast furnaces is more environmentally friendly than burning coking coal to make coke and then
burning that coke in blast furnaces®.

Oil injection in blast furnaces (to replace coke) is abandoned in both the Baseline and Learning
scenarios, since it is not economic compared to injection of pulverized coal. This explains the decline
in oil usage in scenarios. Increasing overall efficiency also contributes declining oil usage. Natural gas
consumption, on the other hand, is pretty similar in all scenarios through the years. Even though there
is a reduction in natural gas usage due to increasing overall efficiency and the elimination of natural
gas injection in blast furnaces, some of the EE technologies that decrease electricity consumption
requires additional usage of natural gas. This situation causes slightly larger natural gas consumption
in the Baseline scenario compared to the Frozen scenario. In the Learning scenario, there is slightly
lower natural gas consumption, while electricity consumption drops in each scenario, increasing
overall efficiency (compared to the Frozen scenario).

® Emission factors — burning steam coal: 92.2 KgCO,/GJ coal; burning coking coal: 94.6kgCO,/GJ coking coal; burning
coke: 107kgCO,/GJ coke, coke production process emission: 20kgCO,/GJ coke
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Figure 16 Breakdown of the U.S. iron and steel sector's annual final energy consumption in all
scenarios (PJ)

Table 12 lists in detail where the energy savings in the Learning scenario comes from. As can be seen,
increased penetration of PCI225 has a large impact. 35% and 26% of the total energy saving in 2030
and 2050 is from PCI225, and approximately 8% of the savings come from demonstration
technologies after 2030. In addition, compared to the Baseline scenario, energy saving from existing
EE technologies increases 34% (from 28.83PJ to 38.77PJ) in 2030 and 23% (from 39.65PJ to
48.72PJ) in 2050 in the Learning scenario.
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2010 2020 2030 2040 2050
Frozen 858.07 722.20 632.84 593.17 606.78
Baseline 858.07 703.38 603.61 558.51 566.79
Total Energy Saving in Baseline Sce. - 18.82 29.23 34.67 39.99
Savings from PCI225 - 0.43 0.40 0.33 0.34
Savings from existing energy - 18.40 28.83 34.34 39.65
efficient tech (excluding PCI225)
Learning 858.07 682.59 564.65 524.47 532.83
Total Energy Saving in Learning Sce. - 39.61 68.19 68.71 73.95
Savings from PCI225 - - 23.90 19.05 19.49
Savings from SCOPE21 - - 1.31 1.30 1.33
Savings from BF_HR - - 0.86 0.68 0.70
Savings from BF_AUCOG - - - - -
Savings from BOF_SHR - - - 0.18 0.19
Savings from BOF_ABA - - - 0.07 0.07
Savings from BOF_ISRT - - 0.41 0.28 0.28
Savings from EAF_ABA - - 0.65 0.70 0.72
Savings from EAF_ISRT - - 2.28 2.47 2.53
Savings from existing energy - 39.61 38.77 44.04 48.72
efficient tech (excluding PCI225)

Figure 17 - 18 show total energy consumptions in BOF and EAF routes separately. As seen from
Figure 18, the difference of EAF route energy consumption in the Baseline and Learning scenario is
very little. This result indicates that almost all of the EE technologies in the EAF production route are
already cost effective, and are invested through the years without any reduction in prices. The minor
difference between the two scenarios’ energy consumption (i.e., Baseline and Learning scenarios) is
due to implementation of two demonstration technologies (EAF-ABA and EAF-ISRT). Compared to
this, learning effect on BOF production route is more straightforward. Figure 17 shows the additional
energy savings in the BOF route in the Learning scenario due to reducing prices. In the Baseline
scenario, there is not much difference in energy consumption compared to the Learning scenario. In
contrast, in the Learning scenario, energy consumption is 15% lower than the Baseline scenario in
2050 (down from 251 PJ in the Baseline scenario to 213PJ in the Learning scenario). As mentioned
above, BOF production gradually decreases until the lower limits set in the model assumptions are
reached because of its high production costs. As a consequence, contribution of energy efficiency
improvement in the BOF route does not make a large impact in the overall energy consumption of the
iron and steel sector. A sensitivity run indicates that if BOF production has the current share in 2050
in all scenarios, energy saving via learning in the U.S. iron and steel sector would be 80% higher.
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Figure 18 Annual primary energy consumption in the EAF production route in all scenarios

Table 13 - 14 illustrate the developments of the final and primary energy intensities. The Learning
scenario provides the lowest energy intensity levels in all periods. Final energy intensity of the U.S.
iron and steel sector decreases from10.7 GJ/tonne steel in 2010 to 6.4 GJ/tonne steel in the Baseline
scenario and 6 GJ/tonne steel in the Learning scenario in 2050.

Table 13 Final energy intensity of the U.S. iron and steel sector projected in the scenarios
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(GJ/tonne steel)

2010 2015 2020 2025 2030 2035 2040 2045 2050
Frozen 10.66 9.32 8.70 8.07 7.45 6.83 6.83 6.83 6.83
Baseline 10.66 9.22 8.47 7.78 7.11 6.45 6.43 6.40 6.38
Learning 10.66 9.03 8.22 7.49 6.65 6.16 6.04 6.01 5.99

Table 14 Primary energy intensity of the U.S. iron and steel sector projected in the scenarios
(GJ/tonne steel)

2010 2015 2020 2025 2030 2035 2040 2045 | 2050
Frozen 14.85 12.77 12.22 11.66 11.10 10.55 10.55 10.55 | 10.55
Baseline 14.85 12.67 11.87 11.19 10.54 9.90 9.83 9.77 9.75
Learning 14.85 12.48 11.61 10.90 10.08 9.61 9.44 9.38 9.35
Costs

Table 15 summarizes the costs of average steel production through the years in each scenario. As
mentioned above, most of the existing EE technologies are cost effective under the cost minimization
objective of the ISEEM-USIS model. Increasing penetration of those cost effective technologies in the
Baseline scenario decreases the total production cost of steel 2005 $0.7B in 2030 and 2005 $1.4B in
2050, compared to the Frozen scenario, even though there is no learning impact on prices associated
with efficient technologies. In the Learning scenario, total steel production cost decreases even more
(e.g., 2005 $1.4B in 2030 and 2005 $2.1B in 2050) due the effect of learning on technology prices.
Table 1 provides the development of average steel production cost (i.e., $ per tonne steel) between
2010 and 2050 in all scenarios.

Table 15 Average steel production cost in the U.S. iron and steel sector in scenarios (2005 $/tonne
steel)

2010 2015 2020 2025 2030 2035 2040 2045 2050
Frozen 509.5 607.5 658.0 699.8 692.5 657.5 623.5 624.6 618.2
Baseline 509.5 614.0 654.9 694.2 684.4 647.1 612.1 611.2 603.0
Learning 509.5 611.6 651.3 689.6 676.4 642.4 604.4 603.0 595.0
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CO, Emissions

In the Frozen scenario, CO, emissions decrease until 2035, in which BOF production reaches to
the lower bound set in the model assumptions. After that year onward, emissions pretty much
stabilize and reach a level of approx. 56.3 billion tonnes of CO, (Figure 19). BOF production route
is highly emission intensive compared to the EAF production route.

In the Baseline and Learning scenarios, CO, emissions are 5.7% and 27.4% lower in 2050,
compared to the Reference scenario. The major reason for this drastic reduction in the LR scenario
is the lower demand for coking coal and coke, and so for coke production. A large share of coke
used in the blast furnaces is replaced with pulverized coal. In addition, implementation of more
efficient coke production technology (SCOPE21), compared to the old technology, after 2030
significantly decreases the coking coal consumption.
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Figure 19 Annual total CO, emission in the U.S. iron and steel sector
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Chapter 5 Conclusions and Discussions

The overall goal of this study was to analyze the learning effect on cost developments and
technological progress of EE technologies in the U.S. iron and steel sector in the long term. Based
on our findings on learning rates by analyzing historical data, we calculated average learning rates
by technology penetration level.

The investigation was carried out using ISEEM, a technology oriented, linear optimization model
for the U.S. iron and steel sector. In this study, the ISEEM model was run in an iterative fashion in
combination with a learning curve function. The model, as a consequence of its structure, produces
results favoring low-cost production processes, unless there are constraints limiting their activities.
We conclude from our analysis that, most of the existing EE technologies that are currently in use
in the U.S. iron and steel sector are cost effective for the cost minimization objective (i.e., reducing
the cost minimization objective) and, thus, the model has a tendency towards increasing
penetration of them, even in the absence of price reductions. However, demonstration (or
emerging) technologies, which represent the technologies without a significant production history,
are generally not yet economically feasible in the U.S. iron and steel sector. In contrast, adoption is
forecast for some of these in the long term and their penetration levels increase as prices go down
with experience. We also observe a large penetration of 225 kg pulverized coal injection, which is
one of the most expensive existing EE injection methodology to blast furnaces, with the presence
of learning.

The model results indicate that the energy consumption and CO, emissions will decline with
technology learning. For example, primary energy consumption of the U.S. iron and steel sector
decreases from 1195PJ in 2010 to 867PJ in the Baseline scenario (with no learning) and 831PJ in
the Learning scenario (where learning is adopted) in 2050 (compared to 938PJ in Frozen scenario,
in which penetration of EE technologies are constant with no learning). In addition, an increasing
penetration of cost effective EE technologies in the Baseline scenario results lowers average steel
production cost by $15/tonne steel compared to the Frozen scenario in 2050. With technology
learning in the Learning scenario, average steel production cost decreases by an additional of
$8/tonne steel (total of $23/tonne steel compared to Frozen scenario) in 2050.

Implementation of technology learning in the ISEEM modeling shows how early introduction of
some demonstration technologies can accelerate their adoption as costs decline, compared to the
exogenous cost projections (constant cost over time in this case).

Although the integration of learning curve with ISEEM show improvement in the results, it is
important to be aware of limitations with the model to be considered in future research,

e Under the learning conditions specified here, by the end of the time horizon (i.e., 2050) the
retrofit costs of some of the technologies have reached fairly low values. For example,
PCI225 in this scenario have reached US$1.6/GJ tech. activity (from US$9.4/GJ tech.
activity in 2010) (see Figure 21) with a constant LR of 0.06. This behavior may raise the
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Unit retrofit cost (USS (2005)/G)J

activity)

question of whether the cost reduction of some learning technologies should be limited, for
instance providing a lower bound (i.e., floor-cost) for the unit retrofit cost, in order to avoid
excessive cost reductions. In the literature, different criteria have been applied to handle
this situation. Messner (1997) and Seebregts et al. (1999) imposed a lower bound for the
specific cost of the learning technologies, while Mattsson (1997) decided to let the natural
saturation of the learning curve to control the cost reduction without imposing any lower
bounds. The lower bound, where possible, should be supported by studies of the cost
structure and specific potential for cost reductions in the different components, since it is
tied to the expectations of the modeler as to what constitutes a "reasonable™ limit value.
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Similarly, some studies in the literature (e.g., Seebregts et al. 1999) limit the penetration of
technologies under learning with a maximum installed capacity parameter. Due to the
nature of cost minimization objective, penetration of a specific technology may jump to
full penetration from a very low penetration level in a very short period of time (See Table
9 for examples).

The data that we used to calculate technology specific learning rates is subject to
uncertainty. Not only the learning rate itself is uncertain, it is also uncertain if it will retain
the same level over the entire planning horizon considered or if they might decline. In this
study, as mentioned before we assume that reduction of cost via learning slows down in
time with 1% decrease of LR every year starting from the first year in which the learning is
applied.
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(2005 $/GJ technology activity)

Constant LR
(0.05) 201.0 | 43.0| 943 | 272 | 252 | 241 | 230 | 226 | 222 | 219 | 2.16

Slowing LR
(1% per year) | 201.0| 43.0| 9.43| 2.72| 2.70| 2.67| 2.66| 263 | 2.62| 2.61| 2.61

e Technology learning is restricted to retrofit cost only; other technology attributes like
O&M costs and efficiency remain exogenous (constant in this case).
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Appendix A. Learning rates from literature

Table A1 Learning rates for some energy technologies (Source:

Kahouli-Brahmi, 2008)

Baselines Energy Dependent Independent Country Time Estimated
technology variable variable period | learning
rate (%)
Fisher (1974) Electric power Sale price Cumulative us 1926- 25
production ($/kwh) production 1970
($/kWh)
Fisher (1974) Coal for electric | Sale price to Cumulative us 1948 25
utilities utility ($/ton) | production ($/ton) 1969
Fisher (1974) Crude oil Sale price Cumulative us 1869— 5
($/bbl) production ($/bbl) 1971
Fisher (1974) Retail gasoline Production Cumulative us 1919- 20
processing cost ($/bbl) production ($/bbl) 1969
Maycock and Solar Sale price Cumulative us 1959- 22
Wakefield (1975) Photovoltaic ($/kW peak) installed capacity 1974
panels (MW)
Jaskow and Rose Coal power Investment Cumulative us 1960- 1-6.4
(1985) plants cost ($/kwW) installed capacity 1980
(units)
Jaskow and Rose Superecritical Production Cumulative us N/A 3
(1985) coal cost ($/kwh) | production (TWh)
MacGregor et al. Gas turbines Investment Cumulative N/A 1958- 22
(1991) cost ($/kwW) installed capacity 1963
(MW)
MacGregor et al. Gas turbines Investment Cumulative N/A 1963- 9.9
(1991) cost ($/kW) installed capacity 1980
(MW)
MacGregor et al. Gas turbines Investment Cumulative N/A 1958- 13
(1991) cost ($/kw) installed capacity 1980
(MW)
Williams and Solar Sale price Cumulative sales | Global 1976~ 18
Terzian (1993) Photovoltaic ($/Wpeak) (MW) 1992
modules
Lund (1995) Wind Investment Cumulative Denmark N/A 15
cost (E/kW) installed capacity
(kw)
Dannemand Wind Sale price Cumulative Denmark 1981~ 20
Andersen and (E/kWh) installed capacity 1995
Fuglsang (1996) (kW)
Goldemberg (1996) | Ethanol Sale price Cumulative Brazil 1979- 20
($/bbl) production 1995
(million m3)
Loiter and Wind electricity | Production Cumulative California 1980~ 20
Norberg-Bohm cost ($/kw) production (TWh) 1994
(1999) CEC (1997)
Neij (1997) Solar List prices Cumulative sales | Denmark 1982- 20
photovoltaic ($/kwh) (MW) 1997
modules
Neij (1997) Wind turbines List prices Cumulative sales | Denmark 1982- 4
($/kwh) (MW) 1995
Mackay and Wind turbines Capital cost Cumulative sales | US 1981- 14.3
Probert (1998) (US$/kwh) (MW) 1996
Mackay and Solar Prices Cumulative uUs 1976~ 18
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Probert (1998) photovoltaic (US$/Wp) installed capacity 1995
modules (MWp)
Nitsch/ EU-ATLAS | Solar Sale price Cumulative EU 1976~ 21
project (1998) photovoltaic ($/Wpeak) production (MW) 1996
modules
Nakicenovic et al. Gas turbines Investment Cumulative N/A 1958- 13
(1998) cost ($/kW) installed capacity 1980
(MW)
Neij (1999) Wind turbines List prices Cumulative sales | Denmark 1982- 6 and 4
($/kW) (MW) 1997
Durstewitz and Wind Prices ($/kW) | Cumulative Germany 1990- 8
Hoppe-Kilpper installed capacity 1998
(1999) (MW)
Zhao (1999) Gas pipelines Price ($/mile- | Cumulative us 1984- 3.7
onshore inch2) installed capacity 1997
(mile-inch2)
Zhao (1999) Gas pipelines Price ($/mile- | Cumulative us 1984- 24
offshore inch2) installed capacity 1997
(mile-inch2)
Rabitsch (1999) DC converters Conversion Cumulative Global 1976~ 37
losses (%) installed capacity 1994
(installed units)
Claeson (1999) GTCC power Prices ($/kW) | Cumulative Global 1981- -11
plants installed capacity 1991
(MW)
Claeson (1999) GTCC power Prices ($/kW) | Cumulative Global 1991~ 26
plants installed capacity 1997
(MW)
Claeson (1999) GTCC power Production Cumulative EU N/A 4
plants cost ($/kWh) | production (TWh)
Harmon (2000) Solar Prices Cumulative Global 1968- 20.2
photovoltaic ($/kWpeak) installed capacity 1998
modules (MW)
Kouvaritakis et al. | Wind power Investment Cumulative OECD 1981~ 17
2000a and plants cost ($/kW) installed capacity 1995
Kouvaritakis et al. (MW)
2000b
Kouvaritakis et al. Nuclear power Investment Cumulative OECD 1975- 5.8
2000a and plants cost ($/kW) installed capacity 1993
Kouvaritakis et al. (MW)
2000b
Kouvaritakis et al. Hydropower Investment Cumulative OECD 1975~ 1.4
2000a and plants cost ($/kw) installed capacity 1993
Kouvaritakis et al. (MW)
2000b
Kouvaritakis et al. | Coal power Investment Cumulative OECD 1975~ 7.6
2000a and plants cost ($/kw) installed capacity 1993
Kouvaritakis et al. (MW)
2000b
Kouvaritakis et al. Lignite power Investment Cumulative OECD 1975~ 8.6
2000a and plants cost ($/kW) installed capacity 1992
Kouvaritakis et al. (MW)
2000b
Kouvaritakisetal. | GTCC power Investment Cumulative OECD 1984- 34
2000a and plants cost ($/kW) installed capacity 1994

Kouvaritakis et al.

(MW)
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2000b

Wene (2000) Wind power Production Cumulative uUs 1985- 32
cost ($/kwWh) | production (TWh) 1994
Wene (2000) Wind power Production Cumulative EU 1980~ 18
cost production (TWh) 1995
(ECU/KWh)
Wene (2000) Photovoltaic Production Cumulative EU 1985- 35
cost production (TWh) 1995
(ECU/KWh)
Wene (2000) Electricity from | Production Cumulative EU 1980~ 15
biomass cost ($/kWh) | production (TWh) 1995
Wene (2000) Superecritical Production Cumulative uUs N/A 3
coal cost ($/kWh) | production (TWh)
Wene (2000) GTCC Production Cumulative EU N/A 4
cost ($/kWh) | production (TWh)
Wene (2000) Ethanol Sale price Cumulative Brazil 1978- 22
($/bbl) production 1995
(million/m3)
Isoard and Soria Solar Capital cost Cumulative EU 1976~ 27.8
(2001) photovoltaic ($/kW) installed capacity 1994
modules (MW)
Isoard and Soria Wind Capital cost Cumulative EU 1981~ 17.06
(2001) ($/kw) installed capacity 1995
(MW)
Milborrow (2002) Wind Investment Cumulative Denmark N/A 15.3
cost (E/kW) installed capacity
(kW)
Ibenholt (2002) Wind electricity | Production Cumulative Germany 1991- (-3)-8
cost installed capacity 1999
(Euro/kWh) (MW)
Ibenholt (2002) Wind electricity | Production Cumulative Denmark 1988- 7
cost installed capacity 1999
(Euro/kWh) (MW)
Ibenholt (2002) Wind electricity | Production Cumulative Denmark 1984- 12
cost installed capacity 1988
(Euro/kWh) (MW)
Ibenholt (2002) Wind electricity | Production Cumulative UK 1991- 15
cost installed capacity 1999
(Euro/kWh) (MW)
Neij et al (2003) Wind turbines Price of wind | Cumulative Denmark 1981~ 6-8
turbines produced capacity | Germany 2000
(EUR/KWHh) (MW) Spain and
Sweden
Neij et al (2003) Wind turbines Total Cumulative Denmark 1981~ 4-11
installation installed capacity | Germany 2000
costs (MW) Spain and
(EUR/KWh) Sweden
Neij et al (2003) Wind electricity | Production Cumulative Denmark 1981- 12-14
cost (MW) produced capacity | Germany 2000
(MW) Spain and
Sweden
Neij et al (2003) Wind electricity | Production Cumulative Denmark 1981- 17
cost produced capacity | Germany 2000
(EUR/KWHh) (MW) Spain and
Sweden
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Neij et al (2003) Wind turbines Price of wind | Cumulative Denmark 1981- (-17)-11
turbines installed capacity | Germany 2000
(EUR/KWHh) (MW) Spain and
Sweden
Klaassen et al. Wind turbines Investment Cumulative Denmark 1986- 54
(2005) cost ($/kW) installed capacity | Germany and | 2000
(MW) UK
Junginger et al. Wind turbines Investment Cumulative Spanish 1990- 15
(2005) cost (E/kW) installed capacity 2001
(MW)
Junginger et al. Wind turbines Investment Cumulative UK 1992- 19
(2005) cost (E/kW) installed capacity 2001
(MW)
Kobos et al. (2006) | Wind Capital cost Cumulative uUs 1981~ 14.2
($/kw) installed capacity 1997
(Mw)
Kobos et al. (2006) | Solar Capital cost Cumulative us 1975- 18.4
photovoltaic ($/kW) installed capacity 2000
(MW)
Coulomb and Wind turbines German Global cumulative | Global 1991~ 12.7
Neuhoff (2006) prices (€/kW) | installed capacity 2003
(MW)
Jamash (2006) Pulverized fuel Investment Cumulative Global 1990- 3.75
supercritical coal | cost ($99/kW) | installed capacity 1998
(MW)
Jamasb (2006) Coal Investment Cumulative Global 1980~ 12.39
conventional cost ($99/kW) | installed capacity 1998
technology (MW)
Jamasb (2006) Lignite Investment Cumulative Global 1980- 5.67
conventional cost ($99/kW) | installed capacity 2001
technology (MW)
Jamasb (2006) Combined cycle | Investment Cumulative Global 1980- 0.65
gas turbine cost ($99/kW) | installed capacity 1989
(Mw)
Jamash (2006) Combined cycle | Investment Cumulative Global 1990- 2.2
gas turbine cost ($99/kW) | installed capacity 1998
(Mw)
Jamash (2006) Large Investment Cumulative Global 1980- 1.96
hydropower cost ($99/kW) | installed capacity 2001
(MW)
Jamasb (2006) Combined heat Investment Cumulative Global 1980~ 0.23
and power cost ($99/kW) | installed capacity 1998
(MW)
Jamasb (2006) Small Investment Cumulative Global 1988- 0.48
hydropower cost ($99/kW) | installed capacity 2001
(MW)
Jamasb (2006) Nuclear power Investment Cumulative Global 1989- 36.3
(light water cost ($99/kW) | installed capacity 1998
reactor) (MW)
Jamash (2006) Waste to Investment Cumulative Global 1990- 41.5
electricity cost ($99/kW) | installed capacity 1998
(Mw)
Jamash (2006) Wind energy— Investment Cumulative Global 1994- 13.1
one shore cost ($99/kW) | installed capacity 2001
(Mw)
Jamash (2006) Solar power— Investment Cumulative Global 1985- 2.2
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thermal cost ($99/kW) | installed capacity 2001
(Mw)
Jamash (2006) Wind energy— Investment Cumulative Global 1994- 1
off shore cost ($99/kW) | installed capacity 2001
(Mw)
Séderholm and Wind power Investment Cumulative Denmark 1986- 3.1
Klaassen (2007) cost ($98/kW) | installed capacity | Germany UK | 2000
(MW) and Spain
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Appendix B. Existing Energy Efficient Technologies Analyzed in the Study

Table B 1 Characteristics of 75 Energy Efficient Technologies Analyzed in the Study

Share of total

Apolied Euel Applied Total Applied Total Applied Annual U.S. Production
Szf\ﬁn s Retrofit Costs Retrofit Costs Operating Cost Lifetime of to which
(G /tc?nne in 1994 (2005 in 2002 (2005 Change (2005 Measure Measure is
crude steel) US$/tonne US$/tonne US$/tonne crude Applied/
crude steel) crude steel) steel) Broken by
BOF/EAF
Secondary Steelmaking
Steelmaking Electric Arc Furnace
Improved process control (neural network) 0 1.25 0.73 -0.552 10 90%
Fluegas Monitoring and Control 0.003 2.64 1.09 -0.524 15 51%
Transformer efficiency - UHP transformers 0 3.62 1.19 0 15 34%
Bottom Stirring / Stirring gas injection 0 0.79 0.08 -0.135 05 11%
Foamy slag 0 13.18 4.34 -0.221 10 20%
Oxy-fuel burners -0.05 6.32 1.45 -0.342 10 31%
Eccentric Bottom Tapping (EBT) on existing furnace 0 4.22 1.42 0 20 5%
DC-Arc furnace 0 5.14 0.42 -0.306 30 20%
FUCHS Shaft furnace -0.086 791 2.28 -0.858 30 34%
Twin Shell w/ scrap preheating 0 7.91 0.98 -0.067 30 10%

o1




1.05 (available

Siemens EAF Quantum with scrap preheating -0.064 in 2010) -0.536 30 34%

Recover heat from waste gas 0.025 0.78 (a_vallable -0.098 10 80%
in 2010)

. 0.92 (available
Post combustion of CO gas 0 in 2010) -0.441 10 80%
0.41 (available 0

Increased usage of hot metal 0 in 2010) -0.092 10 10%

Secondary Casting

Efficient ladle preheating 0.005 0.07 0.04 0 10 100%

Proper sealing on ladle furnace preheating 0.021 0.05 (a_vallable 0 10 51%
in 2010)

Near net shape casting/thin slab casting (TSC) 0.51 54.6 29.02 -5.574 20 26%

Use dry rolls in tunnel ovens for TSC 0.076 0.71 (qvallable -0.002 20 26%
in 2010)

Secondary Hot Rolling

Process control in hot strip mill 0.106 0.8 0.49 0 10 64%

Recuperative burners 0.247 2.87 1.23 0 10 64%

Insulation of furnaces 0.033 11.5 2.93 0 10 29%
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0.63 (available

Ceramic wall in reheating furnace 0.106 in 2010) 0 10 64%
Reduce losses from furnace door opening 0.005 0.06 (ai\r/]aélgf(l)t; 0 10 64%
]E;(r)]gtrollmg oxygen levels and VSDs on combustion air 0.008 0.58 0.95 0 15 5106
Energy-efficient drives in the rolling mill 0 0.22 0.1 0 20 90%
Waste heat recovery from cooling water 0.014 0.92 0.56 0.025 15 64%
General Technologies
Preventative Maintenance 0.129 0.01 0.01 0.012 20 100%
o 0.55 (available 0
Optimizing the steam system 0.086 in 2010) 0 20 51%
- . 0.09 (available 0
Increase efficiency of boilers 0.006 in 2010) 0 20 51%
o . 0.09 (available
Optimizing the air system 0 in 2010) 0 20 100%
Variable speed drive: flue gas control, pumps, fans 0 1.71 0.18 (ai\éaggfg; 0 5 51%
Energy monitoring and management system 0.023 0.2 0.15 0 5 90%

Integrated Steelmaking

Iron Ore Preparation (Sintering)
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Sinter plant heat recovery 0.035 0.87 0.64 0 10 101%
Reduction of air leakages 0 0.03 0.02 -0.006 10 101%
Increasing bed depth 0.005 0 0 0 10 90%
Improved process control (sinter plant) 0.002 0.04 0.03 -0.013 10 90%
Use of waste fuels in the sinter plant 0.001 0.05 0.03 0 10 10%
Improved charging method 0.005 0.055 (?r/]agggg; -0.006 10 90%
Coke Making

Coal moisture control 0.021 19.35 12.12 0 10 90%
Programmed heating - coke plant 0.018 0.09 0.05 0 10 90%
Variable speed drive coke oven gas compressors 0.001 0.12 0.08 0 15 90%
Coke dry quenching 0.152 27.65 17.31 -0.724 18 90%
Iron Making (Blast Furnace)

Pulverized coal injection to 130 kg/thm 0.054 8.22 2.67 -0.14 20 21%
Pulverized coal injection to 225 kg/thm 0.049 6.11 4.62 -0.073 20 26%
Injection of natural gas to 140 kg/thm 0.06 5.88 2.35 -0.153 20 21%
Injection of oil up to 130 kg/thm 0.057 6.41 (ai\r/]aillgagslg 2.3 -0.133 20 21%
Top pressure recovery turbines (wet type) 0 23.5 14.31 0 15 80%
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Recovery of blast furnace gas 0.007 0.36 0.09 0 15 31%
Hot blast stove automation 0.074 0.36 0.17 0 5 59%
Recuperator hot blast stove 0.027 1.65 1.35 0 10 101%
Improved blast furnace control systems 0.111 0.42 0.28 0 5 83%
Source: Karali et al., 2013; Worrell et al., 1999
Learning Learning
Rate Rate
Secondary Steelmaking Integrated Steelmaking
Steelmaking Electric Arc Furnace Iron Ore Preparation (Sintering)
Improved process control (neural network) 0.02 | Sinter plant heat recovery 0.01
Fluegas Monitoring and Control 0.04 | Reduction of air leakages 0.01
Transformer efficiency - UHP transformers 0.05 | Increasing bed depth
Bottom Stirring / Stirring gas injection 0.1 | Improved process control (sinter plant) 0.01
Foamy slag 0.05 | Use of waste fuels in the sinter plant 0.02
Oxy-fuel burners 0.06 | Improved charging method 0.02
Eccentric Bottom Tapping (EBT) on existing furnace 0.1 | Coke Making
DC-Arc furnace 0.1 | Coal moisture control 0.02
FUCHS Shaft furnace 0.05 | Programmed heating - coke plant 0.02
Twin Shell w/ scrap preheating 0.09 | Variable speed drive coke oven gas compressors 0.02
Siemens EAF Quantum with scrap preheating 0.06 | Coke dry quenching 0.02
Recover heat from waste gas 0.02 | Iron Making (Blast Furnace)
Post combustion of CO gas 0.02 | Pulverized coal injection to 130 kg/thm 0.06
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Increased usage of hot metal 0.1 | Pulverized coal injection to 225 kg/thm 0.06
Secondary Casting Injection of natural gas to 140 kg/thm 0.06
Efficient ladle preheating 0.02 | Injection of oil up to 130 kg/thm 0.06
Proper sealing on ladle furnace preheating 0.03 | Top pressure recovery turbines (wet type) 0.06
Near net shape casting/thin slab casting (TSC) 0.06 | Recovery of blast furnace gas 0.06
Use dry rolls in tunnel ovens for TSC 0.06 | Hot blast stove automation 0.03
Secondary Hot Rolling Recuperator hot blast stove 0.01
Process control in hot strip mill 0.03 | Improved blast furnace control systems 0.02
Recuperative burners 0.03 | Steelmaking
Insulation of furnaces 0.05 | Basic Oxygen Furnace
Ceramic wall in reheating furnace 0.03 | BOF gas + sensible heat recovery 0.01
Reduce losses from furnace door opening 0.03 | Variable speed drive on ventilation fans 0.01
Controlling oxygen levels and VSDs on combustion air fans 0.03 | Integrated Casting
Energy-efficient drives in the rolling mill 0.02 | Efficient ladle preheating 0.03
Waste heat recovery from cooling water 0.02 | Proper sealing on ladle furnace preheating 0.03
General Technologies Thin slab casting 0.06
Preventative Maintenance 0.01 | Use dry rolls in tunnel ovens for TSC 0.06
Optimizing the steam system 0.03 | Integrated Hot Rolling
Increase efficiency of boilers 0.03 | Hot charging 0.05
Optimizing the air system 0.02 | Process control in hot strip mill 0.03
Variable speed drive: flue gas control, pumps, fans 0.03 | Recuperative burners 0.05
Energy monitoring and management system 0.01 | Insulation of furnaces 0.05
Ceramic wall in reheating furnace 0.03
Reduce losses from furnace door opening 0.03
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Controlling oxygen levels and VVSDs on

combustion air fans 0.03
Energy-efficient drives in the rolling mill 0.04
Waste heat recovery from cooling water 0.03
Integrated Cold Rolling and Finishing

Heat recovery on the annealing line 0.02
Reduced steam use in the pickling line 0.01
Automated monitoring and targeting system 0.03
General

Preventative Maintenance 0.01
Optimizing the steam system 0.02
Increase efficiency of boilers 0.02
Optimizing the air system 0.02
Energy monitoring and management system 0.02
Variable speed drive: flue gas control, pumps, fans 0.03
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Table B 3 Demonstration technologies considered in this study

Sintering Selective Waste Gas Recycling - EPOSINT Process (SIN-SWGR)
Automation and Process Control System (COK-APCS)
Coke making Non-Recovery Coke Ovens (COK-NRCQO)
Advanced coke oven (SCOPE21)
BE Additional Use of Coke Oven Gas (BF-AUCOG)
Blast Furnace Heat Recuperation (BF-HR)
Aluminum Bronze Alloy to Improve Hood, Roof and Sidewall Life (BOF-ABA)
BOF Blast Furnace Slag Heat Recovery (BOF-SHR)
In-Situ Real-Time Measurement of Melt Constituents -BOF (BOF-ISRT)
EAF Aluminum Bronze Alloy to Improve Hood, Roof and Sidewall Life (EAF-ABA)

In-Situ Real-Time Measurement of Melt Constituents -EAF (EAF-ISRT)

Source: Hasanbeigi et al., 2013; Worrell et al., 2010; IPPC, 2011
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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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