

SANDIA REPORT

SAND2017-7492

Unlimited Release

Printed July 2017

Integration of Dakota into the NEAMS Workbench

Laura P. Swiler, Robert A. Lefebvre, Brandon R. Langley, Adam B. Thompson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: <http://www.osti.gov/bridge>

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: <http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online>

Integration of Dakota into the NEAMS Workbench

Laura Swiler
Optimization and Uncertainty Quant.
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1318
lpswile@sandia.gov

Brandon R. Langley
Reactor and Nuclear Systems Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
langleybr@ornl.gov

Robert A. Lefebvre
Reactor and Nuclear Systems Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
lefebvrera@ornl.gov

Adam B. Thompson
Reactor and Nuclear Systems Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
thompsonab@ornl.gov

Abstract

This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on integrating Dakota into the NEAMS Workbench. The NEAMS Workbench, developed at Oak Ridge National Laboratory, is a new software framework that provides a graphical user interface, input file creation, parsing, validation, job execution, workflow management, and output processing for a variety of nuclear codes. Dakota is a tool developed at Sandia National Laboratories that provides a suite of uncertainty quantification and optimization algorithms. Providing Dakota within the NEAMS Workbench allows users of nuclear simulation codes to perform uncertainty and optimization studies on their nuclear codes from within a common, integrated environment. Details of the integration and parsing are provided, along with an example of Dakota running a sampling study on the fuels performance code, BISON, from within the NEAMS Workbench.

ACKNOWLEDGMENTS

This work was funded by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program under the Advanced Modeling and Simulation Office (AMSO) in the Nuclear Energy Office in the U.S. Department of Energy. The authors specifically acknowledge the Program Manager of the Integrated Product Line, Dr. Bradley Rearden (ORNL), and Dr. Christopher Stanek, National Technical Director of NEAMS, for their support of this work. Finally, we thank the Dakota and Workbench development teams.

CONTENTS

1. Introduction.....	7
1.1 NEAMS Workbench.....	7
1.2 Dakota.....	8
1.3 BISON	8
2. DakotA Implementation into the workbench	9
3. NEAMS Workbench Demonstration with Dakota	11
4. References.....	14
Distribution	15

1. INTRODUCTION

This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused integrating Dakota into the NEAMS Workbench. The NEAMS Workbench[1], developed at Oak Ridge National Laboratory, is a new software framework that provides a graphical user interface, input file creation and parsing, input validation, job execution, workflow management, and output processing for a variety of nuclear codes. Dakota [2] is a tool developed at Sandia National Laboratories that provides a suite of uncertainty quantification and optimization algorithms. Providing Dakota within the NEAMS Workbench allows users of nuclear simulation codes to perform uncertainty and optimization studies on their nuclear codes from within a common, integrated environment. Details of the integration and parsing are provided, along with an example of Dakota running a sampling study on the fuels performance code, BISON, from within the NEAMS Workbench.

The outline of this report is as follows: the remainder of this section describes the NEAMS Workbench, Dakota, and BISON in more detail. Section 2 outlines the implementation details, and Section 3 presents results of a Dakota study performed using the NEAMS Workbench.

1.1 NEAMS Workbench

Preparing valid input files is a significant challenge with many nuclear codes. There are several reasons for this: the volume of data required is extensive (e.g., cross section libraries, chemical compositions, nuclide information), the formats of legacy codes are often strict (e.g. a material composition must start on line 7, column 18, and be in scientific notation with 3 significant digits), and the input requirements are often not documented sufficiently or are not easy to find. To address this and provide a common graphical environment from which multiple code inputs can be specified, run, and post-processed, the NEAMS Workbench was developed over the past year.

The NEAMS Workbench is an evolution of the SCALE code system's [3] Fulcrum user interface and provides the capability to create and process input files for various nuclear codes including SCALE [3], ARC [4], and BISON [5], parse the inputs into a parse tree, validate the inputs, run the code with the given input file, and process the output.

In more detail: the input processing involves lexical and syntactical analysis resulting in the generation of a parse tree. The lexical analysis involves the conversion of a sequence of characters to tokens understood by a particular application. The syntactical analysis involves converting the sequence of tokens into a parse tree understood by a particular application. Once the parse tree is generated, it can be interpreted and validated. The validation step involves comparing an input schematic, a.k.a. schema, to the input file created by the user to see if the content (and the structure of the content) is correct. The NEAMS Workbench uses the hierarchical input validation engine (HIVE) to perform this check interactively while the user is making changes. For example, HIVE allows an integrated application to describe the application's input using rules such as "MinOccurs" and "MaxOccurs" which will check that particular input components have a minimum and maximum number of occurrences in an input file, respectively.

The NEAMS Workbench also allows the use of templates, which help users quickly create an input file from scratch or add new blocks of text to existing files. Finally, the NEAMS Workbench has capabilities such as context aware input auto-complete which allows a user to obtain a listing of available input parameters for a given section or context in the input.

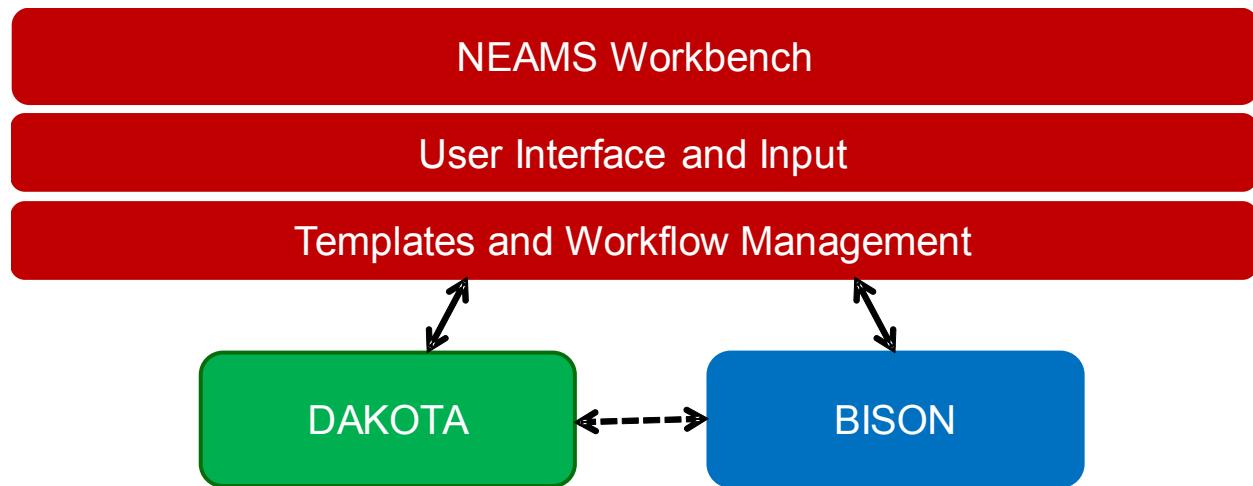
Once the steps of parsing, processing, and validating the user input file is complete, the user can then use the NEAMS Workbench capabilities to run the particular input file with the specified nuclear simulation code and analyze the results. The output processing capabilities include plotting capabilities (e.g. bar, line, scatterplots) as well as color maps. The color maps are used to display tabular or matrix information such as covariance or correlation matrices, where the value of the correlation is mapped to a particular color bin.

The capabilities of the NEAMS Workbench have been developed under the NEAMS program this past year. They allow a user to quickly create an input file and start running the nuclear simulation code. The NEAMS Workbench has been designed for interoperability across a range of codes and computing platforms, with goals of lowering the barriers to running these codes (especially legacy codes) in a common framework making for a more consistent user experience across applications accelerating results post-processing making code comparisons easier.

1.2 Dakota

Dakota is a suite of iterative mathematical and statistical methods that interface to computational simulations [1]. Dakota's goal is to make parametric explorations of simulations practical for a computational design-analyze-test cycle. Dakota is an open-source software toolkit (<https://dakota.sandia.gov>) and has algorithms for optimization, uncertainty quantification, parameter studies, and model calibration.

One of the primary advantages that Dakota has to offer is access to a broad range of iterative capabilities through a single, relatively simple interface between Dakota and a simulator. In this context, we interfaced Dakota to BISON. To perform different types of analyses, it is only necessary to change a few commands in the Dakota input and start a new analysis. The need to learn a completely different style of command syntax and the need to construct a new interface each time you want to use a new algorithm are eliminated. Dakota has been used for various UQ and calibration studies within the NEAMS program [7-9]. For more details on the Dakota-BISON coupling, see [10].


1.3 BISON

BISON is an implicit, parallel, fully-coupled nuclear fuel performance code under development at the Idaho National Laboratory (INL) [5]. BISON is built on the MOOSE computational framework [6] which allows for rapid development of codes involving the solution of partial differential equations using the finite element method. Nuclear fuel operates in an environment with complex multiphysics phenomena, occurring over distances ranging from inter-atomic spacing to meters, and time scales ranging from microseconds to years. This multiphysics behavior is often tightly coupled and many important aspects are inherently multidimensional.

BISON is able to simulate tightly coupled multiphysics and multiscale fuel behavior, for 1D, 2D, and 3D geometries.

2. DAKOTA IMPLEMENTATION INTO THE WORKBENCH

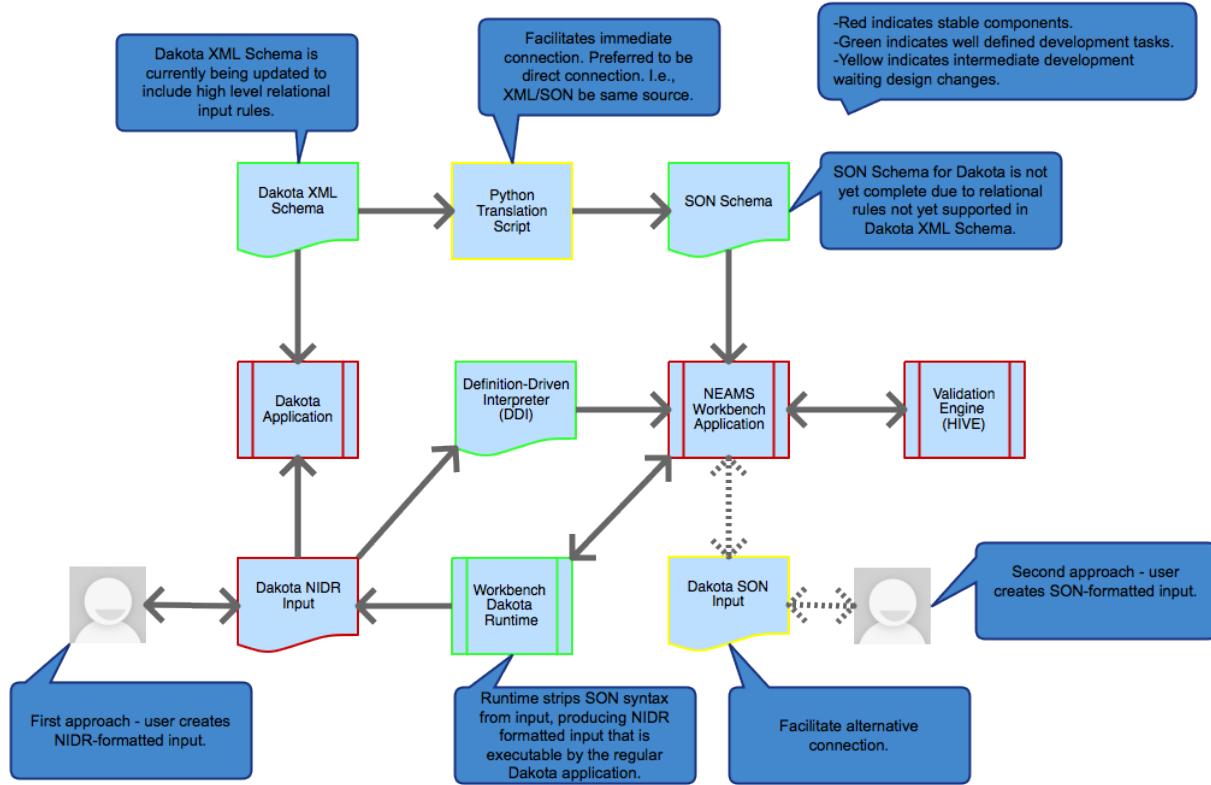

The overall software framework for the integration of both Dakota and BISON into the NEAMS Workbench is shown in Figure 1. As shown in Figure 1, the NEAMS Workbench provides a top layer with various capabilities for user input parsing, processing, and validation. The particular codes available to the user to execute are below that, with the interface depicted by the solid black lines. For Dakota to run the application code, Dakota itself needs an interface with the application code for a particular study (e.g. sampling), the coupling between Dakota and BISON is represented by the dashed line.

Figure 1. *Overall Structure of NEAMS Workbench, Dakota, and BISON.*

Dakota's input file requirements are specified in an XML-formatted file, `dakota.xml`. Currently, there are two possible approaches by which the NEAMS Workbench provides user access to Dakota input. Before the Dakota input can be parsed and processed, the input requirements must be known. This is done by translating the input requirements available in `dakota.xml` into a schema format supported by the NEAMS Workbench. This is currently accomplished with a Python script, as shown in Figure 2, which generates a Standard Object Notation (SON)-formatted schema. This is subsequently used with the Hierarchical Input Validation Engine (HIVE) to validate Dakota input. With the input requirements known, the user input can be processed using two approaches. The first uses the SON-formatted schema with the NEAMS Workbench integrated Definition-Driven Interpreter (DDI) to process all Dakota's NIDR-formatted input as depicted in Figure 2. There are 3 existing exceptions to the Dakota's NIDR input processing using DDI. Specifically, Dakota input alias, short-hand, and relaxed-order are not yet supported. The second approach is using a syntactically unambiguous SON-formatted user input. This SON-formatted input contains the same input data but with clear section delimiters which aid the user and the NEAMS Workbench in interpreting the input. These

delimiters are subsequently removed by the NEAMS Workbench Dakota runtime wrapper leaving the regular NIDR-formatted input which Dakota itself processes, as depicted in Figure 2.

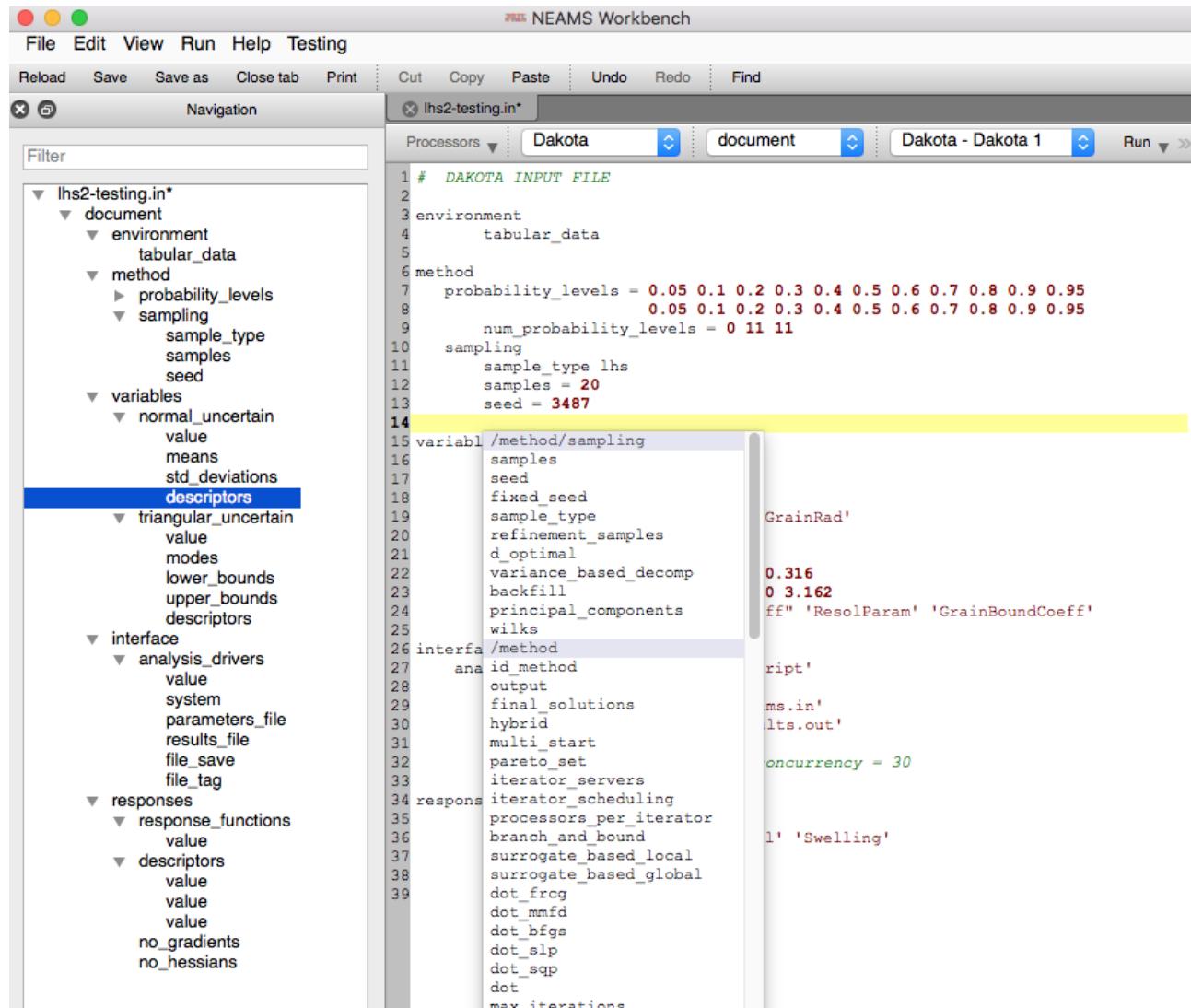


Figure 2. Input flow, parsing, and schema handling for Dakota within the Workbench.

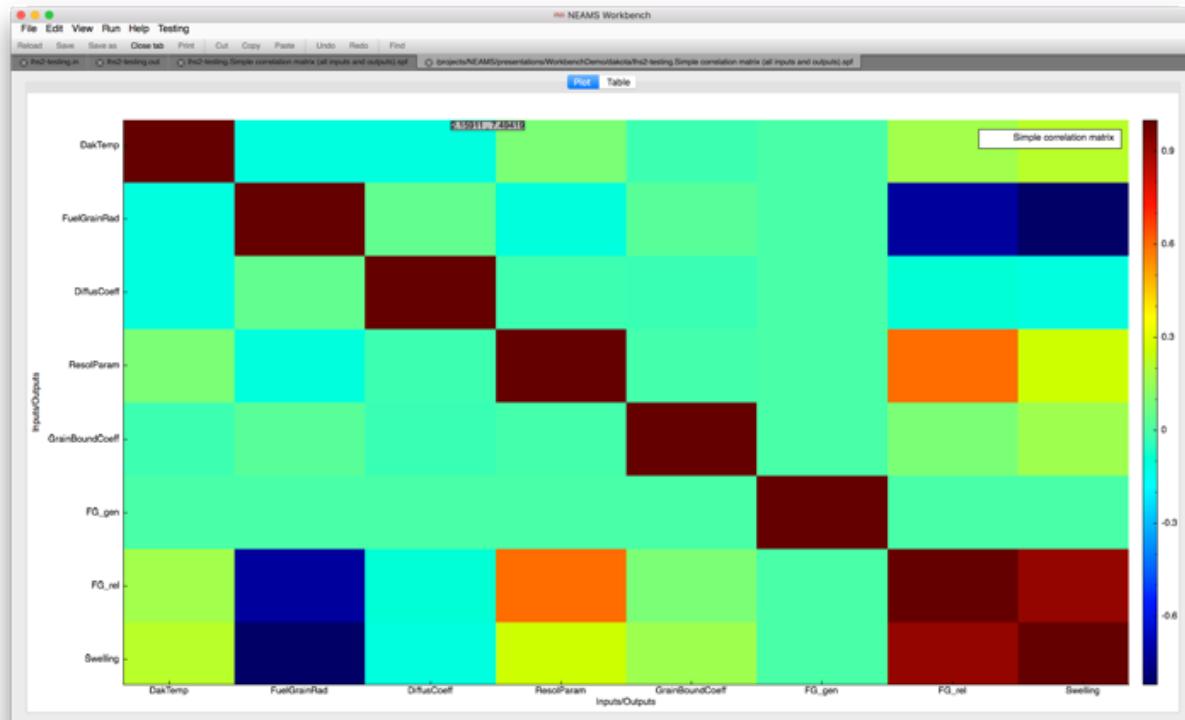
3. NEAMS WORKBENCH DEMONSTRATION WITH DAKOTA

We present the use of the NEAMS Workbench to create a BISON input file and a Dakota input file, and then to run a UQ study with Dakota on BISON within the NEAMS Workbench. Figure 3 shows a Dakota input file displayed in the NEAMS Workbench. This particular file is running a Latin Hypercube Sampling study on various fuel performance parameters for BISON.

Figure 4 shows some of the context dependent help that the NEAMS Workbench can provide once the schema for a particular code is provided. For this example, the user may want to decide amongst several types of random variables to choose the most appropriate one to represent a particular input. This is a way for the user to quickly and easily see what options are available and how to specify them in the input to Dakota.

The screenshot shows the NEAMS Workbench interface. The menu bar includes File, Edit, View, Run, Help, and Testing. The toolbar includes Reload, Save, Save as, Close tab, Print, Cut, Copy, Paste, Undo, Redo, and Find. The main window has a navigation pane on the left showing the file structure of 'lhs2-testing.in*'. The right pane displays the Dakota input file content. A context menu is open over the word 'method' in line 14, listing various Dakota options like 'value', 'means', 'std_deviations', 'descriptors', 'triangular_uncertain', 'value', 'modes', 'lower_bounds', 'upper_bounds', 'descriptors', 'interface', 'analysis_drivers', 'value', 'system', 'parameters_file', 'results_file', 'file_save', 'file_tag', 'responses', 'response_functions', 'value', 'descriptors', 'value', 'value', 'value', 'no_gradients', and 'no_hessians'. The input file content is as follows:

```
1 # DAKOTA INPUT FILE
2
3 environment
4   tabular_data
5
6 method
7   probability_levels = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
8   0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
9   num_probability_levels = 0 11 11
10
11 sampling
12   sample_type lhs
13   samples = 20
14   seed = 3487
15 variable /method/sampling
16   samples
17   seed
18   fixed_seed
19   sample_type
20   refinement_samples
21   d_optimal
22   variance_based_decomp
23   backfill
24   principal_components
25   wilks
26 interface /method
27   ana id_method
28   output
29   final_solutions
30   hybrid
31   multi_start
32   pareto_set
33   iterator_servers
34   response iterator_scheduling
35   processors_per_iterator
36   branch_and_bound
37   surrogate_based_local
38   surrogate_based_global
39   dot_frcg
   dot_mffd
   dot_bfgs
   dot_slp
   dot_sqp
   dot
   max_iterations
```


Figure 3. Dakota Input file created in the NEAMS Workbench, showing some of the Dakota options in the dropdown menu.

```

/variables
id_variables
active
mixed
relaxed
continuous_design
discrete_design_range
discrete_design_set
normal_uncertain
lognormal_uncertain
uniform_uncertain
loguniform_uncertain
triangular_uncertain
exponential_uncertain
beta_uncertain
gamma_uncertain
gumbel_uncertain
frechet_uncertain
weibull_uncertain
histogram_bin_uncertain
poisson_uncertain
binomial_uncertain
negative_binomial_uncertain
geometric_uncertain
hypergeometric_uncertain
histogram_point_uncertain
uncertain_correlation_matrix
continuous_interval_uncertain
discrete_interval_uncertain
discrete_uncertain_set
continuous_state
discrete_state_range
discrete_state_set
linear_inequality_constraint_matrix
linear_inequality_lower_bounds
linear_inequality_upper_bounds
linear_inequality_scale_types
linear_inequality_scale

```

Figure 4. Dropdown menu showing the syntax of variable input specification in Dakota.

Figure 5: Colormap showing Dakota results of the correlations between BISON inputs and outputs based on the sampling study.

Figure 5 shows a resulting colormap from a correlation result from the Dakota study. The colormap shows the correlation between the five inputs (including temperature and fuel grain radius) and the 3 responses (fission gas generated, fission gas released, and swelling).

The NEAMS Workbench is a new initiative which will facilitate the transition from conventional tools to high-fidelity tools by providing a common user interface and common user input. This paper demonstrates the use of an analysis code, Dakota, to a fuels performance code, BISON, to perform uncertainty quantification within the NEAMS Workbench environment. These types of studies are greatly enabled by the NEAMS Workbench capabilities, including input processing and validation, autocomplete and context-specific menu dropdowns, helpful error messages, access to a runtime environment, and output processing. The integration of multiple nuclear codes under the Workbench will broaden the NEAMS tools user community and will facilitate system analysis and design.

4. REFERENCES

1. B. T. Rearden, R. A. Lefebvre et al., “Introduction to the Nuclear Energy Advanced Modeling and Simulation Workbench”, *International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering* (M&C 2017), April 2017.
2. B.M. Adams, W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Ebeida, M.S. Eldred, P.D. Hough, K.T. Hu, J.D. Jakeman, K.A. Maupin, J.A. Monschke, E.M. Ridgway, A. Rushdi, L.P. Swiler, J.A. Stephens, D.M. Vigil, And T.M. Wildey, “Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.4 User’s Manual,” SAND2014-4633, Sandia National Laboratories (2016).
3. B. T. Rearden And M. A. Jessee, Eds., SCALE Code System, ORNL/TM-2005/39, Version 6.2, UT-Battelle, LLC, Oak Ridge National Laboratory (2016). Available from Radiation Safety Information Computational Center as CCC-834.
4. *ARC 11.0: Code System for Analysis of Nuclear Reactors*, Argonne National Laboratory (2014). Available from Available from Radiation Safety Information Computational Center as CCC-824.
5. R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann, D. Anders, And R. C. Martineau, “Multidimensional multiphysics simulation of nuclear fuel behavior,” *Journal of Nuclear Materials*, 423 149–163 (2012).
6. D. Gaston, C. Newman, G. Hansen, And D. Lebrun- Grandie , “MOOSE: A parallel computational framework for coupled systems of nonlinear equations, *Nucl. Eng. Des.*, 239, 1768–1778 (2009).
7. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, And R.L. Williamson, “Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling.” *Journal of Nuclear Materials* 456 (2015) 398–408.
8. Swiler, L.P., Williamson, R. L. And D. M. Perez. “Calibration of a Fuel Relocation Model in BISON”, *American Nuclear Society Mathematics and Computational Methods (M&C) meeting*, May 2013.
9. Gamble, K. And L. Swiler. “Uncertainty Quantification and Sensitivity Analysis Applications to Fuel Performance Modeling.” *TOPFUEL American Nuclear Society Conference*, Sept. 2016.
10. Swiler, L.P., Gamble, K.A., Schmidt, R.C., and R.L. Williamson. “Sensitivity Analysis of OECD Benchmark Tests in BISON.” SAND2015-8088.

DISTRIBUTION

1 Christopher Stanek
National Technical Directory NEAMS
Materials Science and Technology Division
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

1 Bradley T. Rearden
Leader, NEAMS Integration Product Line
Reactor and Nuclear Systems Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831

1	MS 1318	J.R. Stewart	01441
1	MS 1318	B.M. Adams	01441
1	MS 1318	V.A. Mousseau	01444
1	MS 0748	R.O. Gauntt	06232
1	MS 0899	RIM - Reports Management, 9532	(electronic copy)

Sandia National Laboratories