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Abstract

Thermoelectrics (TE) describe materials that either change temperature from an electric potential or generate elec-

trical current from a temperature difference. They have potential applications for power generation, refrigeration,
and generating electricity from processes with waste heat. However, TE materials suffer from stability issues at high
temperatures and long time periods. This project analyzes the transport properties of Bi,Tes alloys that have been

aged for varying time periods. The thermoelectric figure of merit (ZT), which describes the efhciency of a TE sys-

tem, was found by measuring the seebeck coefhcient, thermal conductivity, and resistivity of the samples. The con-
tact resistance was also measured to determine the materials™ resistances. The relationship between ZT and aging

time was determined. This relationship provides information on how these materials can maintain their transport
properties over time and reveal if these formulations are fit for long-term use at elevated temperatures.
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and measuring the voltage generated. Re-
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Gold, a good electrical conductor, was electroplated to reduce || sistivity is measured by applying a voltage
contact resistance and improve the efhiciency. However, the gold
tends to diffuse into the Bi, Tes alloys and the transport property
effect has been investigated. This effect is seen at elevated tem-

peratures and extended time periods, leading to a loss in stability
in TE devices.

and recording the current.

Figure of Merit (Z): S is the Seebeck Coeth-

cient, K is thermal conductivity, and p is elec-
trical resistivity. The thermoelectric figure of

Thermoelectric fundamental

Seebeck Coefficient
S2 "+ Determined by band structure

Z =— and carrier density (doping level)
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Thermal Conductivity

* Via phonon and electrical carriers
* Scattering affected by structural features

merit can then be solved using the right eqn.
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Z evaluates material’s efhiciency. Changes in
these transport properties and the ZT were

national

Well bonded and full Au coverage [
' ™ Electrical Resistivity
* Via electrons and holes
* Depends on carrier density and mobility
+ Affected by structural features and composition

s compared across different aging periods.
The transport properties after aging will be studied to determine

how gold diffusion affects the efficiency of TE devices. The re-
sults of this investigation will be used to determine the design
and material specifications needed to create TE modules that
will function at elevated temperatures for long periods of time.
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Contact Resistance: current is injected O
through the metalized ends and the volt- i |

age is measured along several points on ( ™
the top of the sample.

Measurement Schematic

EXPLANATION OF LEGEND
“Au/N-2wk new-poly”

Au = what element is diffusion barrier
N = what type of alloy is it (P or N)

2wk = how long it was aged

Results

AR = as received (no aging)
old/new = un/modified with diffusion barrier
poly = polymer b/twn P and N legs
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No significant changes in thermal conduc-

7% reduction in ZT after 2 weeks of aging

tance of samples. Verifies the resistivity values determined from custom instrumentation.
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