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Parameterized PDEs at Sandia

(Loading movie ...) (Loading movie ...)

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Design engineers require
faster simulations

Uncertainty quantification

Objective: break barrier

Adaptive h-refinement for ROMs Kevin Carlberg 2 / 28


495K_store_panim.mov
Media File (video/quicktime)


Cav_M0_8_D1_5_gradrho.mov
Media File (video/quicktime)



Parameterized PDEs at Sandia

(Loading movie ...) (Loading movie ...)

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Design engineers require
faster simulations

Uncertainty quantification

Objective: break barrier

Adaptive h-refinement for ROMs Kevin Carlberg 2 / 28


495K_store_panim.mov
Media File (video/quicktime)


Cav_M0_8_D1_5_gradrho.mov
Media File (video/quicktime)



Parameterized PDEs at Sandia

(Loading movie ...) (Loading movie ...)

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Design engineers require
faster simulations

Uncertainty quantification

Objective: break barrier

Adaptive h-refinement for ROMs Kevin Carlberg 2 / 28


495K_store_panim.mov
Media File (video/quicktime)


Cav_M0_8_D1_5_gradrho.mov
Media File (video/quicktime)



Reduced-order modeling: accuracy limitation

Full-order model (FOM)

rk(xk ;µ) = 0, k = 1, . . . , t (1)

residual: r k ∈ Rn state: xk ∈ Rn

Reduced-order model (ROM)
1 Offline: construct low dimensional basis V ∈ Rn×p with p � n
2 Online: approximate xk ≈ V x̂k

solve V T r k(V x̂k ;µ) = 0, k = 1, . . . , t (2)

Additional approximations needed if r nonlinear or nonaffine

+ ROMs are almost always fast (p � n).
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Example: Cavity-flow problem (collaborators: M Barone, S Arunajatesan)

FOM: Compressible Navier–Stokes

Nonlinear dynamical system
Re = 6.3× 106

M∞ = 0.6
DES turbulence model

3 point BDF integrator

1.2 million degrees of
freedom

ROM: GNAT [?]

179 degrees of freedom
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When a ROM works

(Loading movie ...)

FOM: 48 cpu x 5 hours

ROM: 2 cpu x 31 min = 229X cpu savings

- However, ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in V .
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Example: inviscid Burgers equation [?]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)
∂x

= 0.02e0.02x

u(0, τ) = 3, ∀τ > 0

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

Simulate τ ∈ [0, 50]

FOM: 250 degrees of freedom

ROM: 150 degrees of freedom

V constructed via POD using snapshots in τtrain ∈ [0, 2.5]
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ROM accuracy limited by relevance of training data

 

 

ROM

FOM

u

x
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- ROM inaccurate when outside predictive domain of V
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Existing a posteriori ROM adaptation methods

Revert to the FOM, solve it, and add solution to the basis
[?, ?, ?]

+ Improves the ROM a posteriori

- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM
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Main idea

ROM analog to mesh-adaptive h-refinement

‘Split’ basis vectors

finite element h-refinement ROM h-refinement

Generate hierarchical subspaces

ROM converges to the FOM
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h-refinement ingredients

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement

2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

3 Adaptive algorithm: refine vectors with large error indicators
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Ingredient 1: Refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement

2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

3 Adaptive algorithm: refine vectors with large error indicators
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Tree structure
d = 1

C (1) = {2, 3}
E (1) = {1, . . . , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}Tree data structure with m nodes

child function C : N (m)→ P (N (m))
element function E : N (m)→ P (N (n))
each vector vi assigned a node di , support E (di ), splits C (di )

Requirements

1 Root node includes all elements E (1)

2 Each element has a single leaf node
3 Disjoint support of children E (j) ∩ E (k) = ∅, ∀j 6= k ∈ C (i)

4 ∪j∈C(i) E (j) = E (i)

+ ??–?? ensure the ROM converges to the FOM
+ ?? ensures hierarchical refined subspaces
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Tree example: n = 6

d = 1
C (1) = {2, 3}

E (1) = {1, . . . , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}

V (0) =



v1

v2

v3

v4

v5

v6

 → V =



v1 0 0 0
0 v2 0 0
v3 0 0 0
v4 0 0 0
0 0 v5 0
0 0 0 v6

 .
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Tree construction

State variables that are strongly correlated or
anticorrelated should reside in the same tree node.

1 Normalize state-variable observation history
2 If first observation is negative, flip over origin
3 Recursively apply k-means clustering
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(b) after modification

Figure: State-variable observation history (variable index labeled).
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Refinement machinery

VH = V hI hH

coarse basis VH ∈ Rn×p V (0))

fine basis V h ∈ Rn×q with q =
∑p

i=1 card (C (di ))

prolongation operator I hH ∈ {0, 1}q×p

prolongated generalized coordinates x̂h
H = I hH x̂H

restriction operator IHh =
(
I hH
)+
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Ingredient 2: Error indicators

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine vectors with large error indicators
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Dual-weighted residual error indicators

Goal-oriented: reduce the error in output z(x)

Analogous to duality-based error control for

differential equations [?, ?]

finite elements [?, ?, ?, ?, ?, ?],
finite volumes [?, ?, ?, ?]

discontinuous Galerkin methods [?, ?]
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Dual-weighted residual error indicators

Approximate fine output:

z(V hx̂h) ≈ z(VH x̂H) +
∂z

∂x
(VH x̂H)V h(x̂h − I hH x̂H) (3)

Approximate the fine residual:

0 = (V h)T r(V hx̂h) ≈ (V h)T r(VH x̂H)+(V h)T
∂r
∂x

(VH x̂H)V h(x̂h − I hH x̂H)

Solve for the error:

(x̂h − I hH x̂H) ≈ −[(V h)T
∂r
∂x

(V H x̂H)V h]−1(V h)T r(V H x̂H) (4)

Substitute (??) in (??):

z(V hx̂h)− z(VH x̂H) ≈ −(ŷh)T (V h)T r(VH x̂H) ,

with the fine adjoint solution ŷh ∈ Rq satisfying

(V hT ∂rk

∂x
(VH x̂H)TV hŷh = V hT ∂z

∂x
(VH x̂H)T .
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Dual-weighted residual error indicators

z(V hx̂h)− z(VH x̂H) ≈ −(ŷh)T (V h)T r(VH x̂H) (5)

(V h)T
∂rk

∂x
(VH x̂H)TV hŷh = (V h)T

∂z

∂x
(VH x̂H)T (6)

We want to avoid fine solve (??), so approximate ŷh as

ŷh
H = I hH ŷH ,

where ŷH is the coarse adjoint solution to

(VH)T
∂rk

∂x
(VH x̂H)TVH ŷH = (VH)T

∂z

∂x
(VH x̂H)T .

Substituting ŷh
H for ŷh in (??) yields cheaply computable

z(V hx̂h)− z(VH x̂H) ≈ −(ŷh
H)T (V h)T r(VH x̂H).

The RHS can be bounded by cheaply computable error
indicators

|(ŷh
H)T (V h)T r(VH x̂H)| ≤

q∑
i=1

∆h
i , ∆h

i = |
[
ŷh
H

]
i

(
vh
i

)T
r
(
V H x̂H

)
|.
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Ingredient 3: Adaptive algorithm

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine vectors with large error indicators
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Adaptive algorithm

Algorithm 1 Outer loop

Input: timestep k, basis V
Output: updated basis V , generalized state x̂k

1: Compute ROM solution x̂k satisfying V T r k(V x̂k ;µ) = 0.
2: if estimate of output error is ‘too large’ then
3: Refine basis via Algorithm ??: V ← Refine

(
V , x̂k

)
.

4: Return to Step ??.
5: end if
6: if mod (k , nreset) = 0 then

7: Reset basis V ← V (0).
8: end if
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Adaptive algorithm

Algorithm 2 Refine

Input: initial basis V , reduced solution x̂
Output: refined basis V
1: Compute prolongation operator I hH and fine basis V h

2: Solve: Compute coarse adjoint solution ŷH and prolongation ŷh
H

3: Estimate: Compute fine error indicators ∆h
i , i = 1, . . . , q

4: Mark: Identify basis vectors to refine I
5: for i ∈ I do
6: Refine: Split vi into card (C (di )) vectors
7: end for
8: Compute QR factorization with column pivoting V = QR, RΠ̄ = Q̄R̄
9: Ensure full-rank matrix V ← V [π̄1 · · · π̄r ]
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Previous example

 

 

ROM

FOM

u

x

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Generated by V ∈ R250×150 using τtrain ∈ [0, 2.5]

Now try h-adaptivity with V (0) ∈ R250×10, τtrain ∈ [0, 2.5].
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Previous example with h-adaptivity (FOM tolerance ε = 0.05)

 

 

ROM

FOM

u

x
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1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

dim V (0) = 10

mean(dim V ) = 44.3

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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h-adaptivity enables uncertainty/error control
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(a) tolerance ε = 0.35
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(b) tolerance ε = 0.05
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(c) tolerance ε = 0.01

ε = 0.35 ε = 0.05 ε = 0.01
average basis dimension

33.6 44.2507 53.9
per Newton iteration

relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64
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Conclusions

Adaptive h-refinement via splitting

+ Incrementally improves ROM
+ Does not require large-scale operations
+ Enables uncertainty/error control
+ Extends utility of ROMs to hyperbolic PDEs

Future work

Production implementation
Adaptive coarsening
Adaptive p-refinement: add basis vectors from a library
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Questions?

K. Carlberg. “Adaptive h-refinement for reduced-order models,”
International Journal for Numerical Methods in Engineering, in press
(2014). doi:10.1002/nme.4800
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(e) h-adaptivity
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Inviscid Burgers equation: results

typical ROM h-adaptive ROM

dim V (0) 10 45 150 5 10 20 10 10
basis-reset

50 50 50 100 25
frequency

mean(dim V ) 10 45 150 41.4 44.3 58 73 37
Avg splits 0.20 0.19 0.14 0.13 0.28
error (%) 45.8 43.9 8.5 0.3 0.5 0.2 0.2 0.3

online time (s) 1.4 2.14 5.77 5.53 4.63 7.27 6.90 7.46

+ Low errors achievable only with h-adaptivity

Smaller initial basis: smaller basis dimension, but more splits

More frequent basis resetting: smaller basis dimension, but
more splits
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