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Parameterized PDEs at Sandia

(Loading movie ...) (Loading movie ...)
m CFD model m High simulation costs
m 100 million cells m 6 weeks, 5000 cores
m 200,000 time steps m 6 runs maxes out Cielo
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Parameterized PDEs at Sandia

(Loading movie ...) (Loading movie ...)
m CFD model m High simulation costs
m 100 million cells m 6 weeks, 5000 cores
m 200,000 time steps m 6 runs maxes out Cielo
m Design engineers require m Uncertainty quantification

faster simulations
Objective: break barrier
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Reduced-order modeling: accuracy limitation

m Full-order model (FOM)
(x5 p)=0, k=1,...,t (1)

m residual: rk e R” m state: xK e R”
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Reduced-order modeling: accuracy limitation

m Full-order model (FOM)
(x5 p)=0, k=1,...,t (1)

m residual: rk e R” m state: xK e R”

m Reduced-order model (ROM)
Offline: construct low dimensional basis V € R™P with p < n
Online: approximate x* ~ Vxk

solve VT r5(VxK, ) =0, k=1,...,t (2)
I'p#\=0

Additional approximations needed if r nonlinear or nonaffine

Adaptive h-refinement for ROMs Kevin Carlberg 3/28



Reduced-order modeling: accuracy limitation

m Full-order model (FOM)
(x5 p)=0, k=1,...,t (1)

m residual: rk e R” m state: xK e R”

m Reduced-order model (ROM)
Offline: construct low dimensional basis V € R™P with p < n
Online: approximate x* ~ Vxk

solve VT r5(VxK, ) =0, k=1,...,t (2)
I'p#\=0

Additional approximations needed if r nonlinear or nonaffine

+ ROMs are almost always fast (p < n).
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Examp|e: CaVity—ﬂOW prOblem (collaborators: M Barone, S Arunajatesan)

m FOM: Compressible Navier—Stokes

m Nonlinear dynamical system m 3 point BDF integrator
m Re=6.3 x 10°
m M, =0.6 m 1.2 million degrees of
m DES turbulence model freedom

m ROM: GNAT p

m 179 degrees of freedom
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When a ROM works

(Loading movie ...)

m FOM: 48 cpu x 5 hours
m ROM: 2 cpu x 31 min = 229X cpu savings
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When a ROM works

(Loading movie ...)

m FOM: 48 cpu x 5 hours
m ROM: 2 cpu x 31 min = 229X cpu savings
- However, ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in V.
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Example: inviscid Burgers equation g

du(x,7) 10 (v*(x,7)) 0.02x
o S ST — 0.0z
u(0,7) =3, V7 >0

u(x,0) =1, Vx € [0, 100],

Discretization: Godunov's scheme

Simulate 7 € [0, 50]

FOM: 250 degrees of freedom

ROM: 150 degrees of freedom

V constructed via POD using snapshots in Tiyain € [0,2.5]
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ROM accuracy limited by relevance of training data

5.5
5|
4.5¢
4
3.5¢
3l
2.5t
2l

3

R it

- ROM inaccurate when outside predictive domain of V
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Existing a posteriori ROM adaptation methods

m Revert to the FOM, solve it, and add solution to the basis

[2,2,7]
+ Improves the ROM a posteriori
- Incurs large-scale operations
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Existing a posteriori ROM adaptation methods

m Revert to the FOM, solve it, and add solution to the basis

[2,2,7]
+ Improves the ROM a posteriori
- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM
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Main idea

ROM analog to mesh-adaptive h-refinement

m ‘Split’ basis vectors

AANS) AN

finite element h-refinement ROM h-refinement
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Main idea

ROM analog to mesh-adaptive h-refinement

m ‘Split’ basis vectors

AANS) AN

finite element h-refinement ROM h-refinement
m Generate hierarchical subspaces

range C range

m ROM converges to the FOM

O
I ,ﬁ > . — KR
H
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h-refinement ingredients
H Refinement: split into basis vectors with different support

AANS) AN

finite element h-refinement ROM h-refinement

Error indicators: a) dual solve (coarse), b) prolongation (fine)

IR

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Adaptive algorithm: refine vectors with large error indicators
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Ingredient 1: Refinement
H Refinement: split into basis vectors with different support

A

finite element h-refinement ROM h-refinement

Error indicators: a) dual solve (coarse), b) prolongation (fine)

g gt

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Adaptive algorithm: refine vectors with large error indicators
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Tree structure

m child function C : N(m) — P (N(m))
m element function E : N(m) — P (N(n))
m each vector v; assigned a node d}, support E (d;), splits C (d;)
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Tree structure

m child function C : N(m) — P (N(m))

m element function E : N(m) — P (N(n))

m each vector v; assigned a node d}, support E (d;), splits C (d;)
m Requirements
Root node includes all elements E (1)

Each element has a single leaf node

Disjoint support of children E (j) N E (k) =0, Vj # k € C(i)
Ujec(iy E () = E (i)

?7?7-77 ensure the ROM converges to the FOM

?7? ensures hierarchical refined subspaces
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Tree example: n =06

d =2 d =3
C(2) = {4,5,6} C(3) = {7,8}
E(2) = {1,3,4} E(3) = {2,5,6}
d =4 d=25 d =26 d=17 d =8
c@) =0 c() =10 c@® =0 | cry=0 C(8) = {9,10}
E@) =11} E(®) = {3} E®) = {4} JIEM = {2} E(8) = {5,6}
x X
d=29 d =10
cO) =0 c(10) = 0
L‘@){S}] E(10) = {6}}
[ v1 ] [vi 0 0 0]
V2 0 o 0 O
V(O) _ V3 _ vV = V3 0 0 0
va vy 0 0 O
Vs 0 0 w O
L V6 | L0 0 0 w |
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Tree construction

State variables that are strongly correlated or
anticorrelated should reside in the same tree node.
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Tree construction

State variables that are strongly correlated or
anticorrelated should reside in the same tree node.

Normalize state-variable observation history
If first observation is negative, flip over origin
Recursively apply k-means clustering

35 4
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-5 -0.3

2 o e

—10Q, —0.4
—-30 =25 —-20 —15 —10. 751 0 5 10 0.15 0.16 0.17 0.18 0.19. 0.2 0.21 0.22
observation observation 1

(a) before modification (b) after modification

Figure: State-variable observation history (variable index labeled).
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Refinement machinery

vH = v}

—

m coarse basis V' € R™P v(9)

m fine basis V' € R™9 with g = "7, card (C (d;))
m prolongation operator I} € {0,1}9%P

m prolongated generalized coordinates )?,’_’, = I,f’,)?H

m restriction operator I = (I/_’,)Jr

Adaptive h-refinement for ROMs Kevin Carlberg 15 / 28



Ingredient 2: Error indicators

m Main idea: ROM analog to mesh-adaptive h-refinement
H Refinement: split into basis vectors with different support

AT\

finite element h-refinement ROM h-refinement
Error indicators: a) dual solve (coarse), b) prolongation (fine)

i B

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
Adaptive algorithm: refine vectors with large error indicators
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Dual-weighted residual error indicators

m Goal-oriented: reduce the error in output z(x)
m Analogous to duality-based error control for

m differential equations 7, 7]

m finite elements 7,2,72,7. 7, 7],

m finite volumes p2, 2, 7, 7]

m discontinuous Galerkin methods 7, 7]
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Dual-weighted residual error indicators

m Approximate fine output:

2(Vxh) ~ 2(VHEM) + %(V”f(”)vh(ﬁ” — 155" (3)
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Dual-weighted residual error indicators

m Approximate fine output:
2(Vxh) ~ 2(VHEM) + %(V”ﬁ”)vh(ﬁ” — 155" (3)

m Approximate the fine residual:

Tor

X(VH)?H)Vh()?h B

0= (VMTr(v'z") ~ (V)T r(vHzH)+(vh)
m Solve for the error:

(R~ 153" = (V") 5

o VIRV VI Tr(VIRT) - (4)
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Dual-weighted residual error indicators

m Approximate fine output:

0

(VIR ~ 2(VISH) + 2 (VIR VIR — 1figt)  (3)

m Approximate the fine residual:

0=(VHTr(vhizh ~ (vh)Tr(va(H)+(vh)Tg

X(VH)?H)Vh()?h

m Solve for the error:
(R"— 12"y ~ —[(v")
m Substitute (?7) in (?7?):

2(V"®") — 2(VIRM) ~ (") (V") T r(V727) |

ror

o VIRV VI Tr(VIRT) - (4)

with the fine adjoint solution " € R satisfying

(thaa;(vH H)th ~h VthZ(VH H)T.
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Dual-weighted residual error indicators

2(VIR") — 2(V72) =~ —(3") (V") Tr(VHR")

ox

0z

z
Ox

(Vh) (VH)?H)TVhyh:(Vh)T (VH)?H)T

= We want to avoid fine solve (??), so approximate y" as

oh hoH
yo=1ny",

where y" is the coarse adjoint solution to

0z

ork
H\T HoH\T\HoH _ (yH\T
(VT (VIR TV (vH)T 2
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Dual-weighted residual error indicators

2(VIR") — 2(VIRM) =~ (") T (V") Tr(VHRT) | (5)

ox Ox

= We want to avoid fine solve (??), so approximate y" as

(Vh) (VH)?H)TVhyh:(Vh)T (VH)?H)T (6)

yh=1h9",

where y" is the coarse adjoint solution to
0z
0x
m Substituting f//ﬁ, for y/ in (??) yields cheaply computable

(V&M — 2(vHRH) = —(f) T (VI T r(vH2H).
m The RHS can be bounded by cheaply computable error

indicators

ork . . .
(VH)Taix(VHXH)TVHyH:(VH)T (VHXH)T.

q
(H TV Tr(VHRM < ST AR Al = [ph], (v (VHRH) |,

—1
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Ingredient 3: Adaptive algorithm

m Main idea: ROM analog to mesh-adaptive h-refinement
H Refinement: split into basis vectors with different support

AT\

finite element h-refinement RO/\/I h-refinement
Error indicators: a) dual solve (coarse), b) prolongation (fine)

W

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
Adaptive algorithm: refine vectors with large error indicators
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Adaptive algorithm

Algorithm 1 Outer loop

Input: timestep k, basis V
Output: updated basis V, generalized state X*
. Compute ROM solution %¥ satisfying VT rk(V£k; ) = 0.
if estimate of output error is ‘too large’ then
Refine basis via Algorithm ??: V < Refine (V,)?k).
Return to Step ?77.
end if
if mod (k, Nyeset) = 0 then
Reset basis V « V(0.
end if

N g hwh
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Adaptive algorithm

Algorithm 2 Refine

Input: initial basis V, reduced solution X
Output: refined basis V
1: Compute prolongation operator 1}, and fine basis V"
2: Solve: Compute coarse adjoint solution y/’ and prolongation f/,ﬁ
3: Estimate: Compute fine error indicators Af, i=1,...,q
4: Mark: ldentify basis vectors to refine /
5. for i € | do
6 Refine: Split v; into card (C (d;)) vectors
7: end for
8: Compute QR factorization with column pivoting V = QR, RII = QR
9: Ensure full-rank matrix V «+ V [7; -+ 7/]
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Previous example

5.5
5L
4.5+
4
3.5¢
3L
2.5+
2l
1.5+

3

m Generated by V € R?50X1%0 ysing 7,00 € [0, 2.5]
m Now try h-adaptivity with V(0) ¢ R250x10 7 . [0,2.5].
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Previous example with h-adaptivity (FOM tolerance ¢ = 0.05)

9.5
51
4.5¢
4
3.5
3
2.5¢

2l
1.5¢
1

3

0 50 100 150 200 250
s dimVv(©® =10
m mean(dim V) = 44.3

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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h-adaptivity enables uncertainty/error control

50 100 " 150 200 250 50 100 . 150 200

(a) tolerance ¢ = 0.35  (b) tolerance ¢ = 0.05

250

50 100 v 150

200

€e=035|e€=0.05| e=0.01
average basis dimension 336 449507 539
per Newton iteration ' ’ '
relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64

Adaptive h-refinement for ROMs

Kevin Carlberg

(c) tolerance ¢ = 0.01
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Conclusions

m Adaptive h-refinement via splitting
+ Incrementally improves ROM
+ Does not require large-scale operations
+ Enables uncertainty/error control
-+ Extends utility of ROMs to hyperbolic PDEs
m Future work
m Production implementation
m Adaptive coarsening
m Adaptive p-refinement: add basis vectors from a library
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Questions?

m K. Carlberg. “Adaptive h-refinement for reduced-order models,”
International Journal for Numerical Methods in Engineering, in press
(2014). doi:10.1002/nme.4800

R

0 50 100 . 150 200 250 0 50 100 . 150 200 250

(d) no adaptivity (e) h-adaptivity
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Inviscid Burgers equation: results

typical ROM h-adaptive ROM
dim v© 10 | 45 [ 150 | 5 10 | 20 10 10
basis-reset 50 | 50 | 50 | 100 | 25
frequency

mean(dim V) 10 45 150 | 41.4 | 443 | 58 73 37
Avg splits 0.20 | 0.19 | 0.14 | 0.13 | 0.28
error (%) 458 439 | 85 | 03 | 05 | 02 | 02 | 03

online time (s) || 1.4 | 2.14 | 5.77 | 5.53 | 4.63 | 7.27 | 6.90 | 7.46

+ Low errors achievable only with h-adaptivity
m Smaller initial basis: smaller basis dimension, but more splits

m More frequent basis resetting: smaller basis dimension, but
more splits
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