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Abstract

We present measurements of dijet angular distributions for events with two
or more jets produced in pp collisions at the Fermilab Tevatron Collider at /s
= 1.8 TeV. The distribution of the scattering angle of a parton in the center-of-
mass reflects the dynamics of the interaction of two partons. This distribution
was measured for different fixed regions of the dijet invariant mass, in particular:
260 < M;; < 425, 475 < M;; < 635, M;; > 550, and M;; > 635 GeV/c.
Because the dijet angular distribution is expected to be relatively insensitive to
the parton distribution within a proton, we can measure the properties of parton-
parton interactions without being concerned with the inability to calculate quanti-
tative aspects of the substructure of the proton. We find that the next-to-leading-
order predictions of perturbative Quantum Chromodynamics (QCD) show good
agreement with the observed dijet angular distributions for all four mass ranges.

At dijet invariant masses of greater than ~ 500 GeV/c?, the dijet angular
distribution becomes sensitive to any new contact interactions originating from
possible quark compositeness. In order to search for evidence that quarks are not
point-like objects, but are rather bound states of more fundamental particles, we
compared the predicted angular distribution with that measured in data for the
mass range of M;; > 550 GeV/c?. There was no departure from the expectations
of next-to-leading-order perturbative QCD, and we have used that to place a limit

on the interaction scale for quark compositeness as A, > 1.8 TeV.



Contents

List of Tables
List of Figures

1 Introduction

2 Theory
2.1 The Parton Model . . . .. ... ... ... ... ... . ......
2.2 Quantum Chromodynamics . .. ... ................
2.3 Jet Definition . . . ... .. ... L. e
24 Dijet Angular Distributions . . . . ... ... ... .. .. ...,
2.4.1 Definition of Variables . ... ... .. e e
2.4.2 Theoretical Motivations . . . ... ... ...........
2.4.3 Theoretical Predictions . . . . . .. ... ...........
24.4 Compositeness . . . . . . . .. .. e e e
3 The DO Detector
3.1 The Central Detector . . . . .. .. .. ... ... ...........
3.2 The Calorimeter . . . . . . . ... . .. ... .. .. ... ...
3.3 The Muon Detector . . . . . . ... . ... ... .. .........
4 Data Selection
4.1 The DO Trigger System . . . . .. .. ... ... ... . ......
411 Level 0. . . . . . . . . e

vii

x1

12
13
13
17
22
23

28
28
30
35



4.2
4.3

4.1.2 Levell
4.1.3 Level 2

------------------------------
..............................

Trigger Requirements

..........................

Trigger Efficiencies . . . .. .. .. .. .. ... .. .. ...

Jet Reconstruction and Corrections

5.1 The DO Jet Cone Algorithm . . . . . . . ... ... .........
5.2 The Jet Energy Correction . . . . . ... ... .. ....... Ce .
5.3 The Jet Energy and Position Resolutions . . . . .. .. ... ....
5.3.1 Jet Energy Resolution . .. ..................
5.3.2 Jet Position Resolution . . . . . . ... ... . ... .....
A nalysis
6.1 Event Selection . . ... ... ... ... ... .. ... ...
6.1.1 Requirements for Jet Quality . ... .............
6.1.2 Requirements for Event Quality . . . . ... .. .. .....
6.1.3 Corrections for Event Reconstruction . . . . . ... ... ..
6.2 Acceptance: Limits on Mass, X, and fpoost - - + - - « = =« - - 0 ..
6.2.1 Limitson Massand x . ... .................
6.2.2 LAmMits ON Thoost -« + = = + = ¢ o v 4t e e e e e e e e e e e
6.3 SystematicErrors . . . . . . .. .. L Lo e
6.3.1 Determination of the Systematic Error . . . . ... ... ..
6.3.2 Systematic Errors Due to Event Selection and Corrections
6.3.3 Systematic Errors Due to Accuracy of Jet Measurement. . .
6.3.4 Systematic Error Due to a Residual n Dependence of the
Energy Scale . ... .. .. .. ... .. ... .. ...
6.4 Interpretations of a Shape Comparison . . ... ...........

38
39
39
40

43
43
46
51
51
57

59
60
60
61
62
63
64
66
68
69
70
74



9

ix

Results 94
7.1 Comparison to Theoretical Predictions . ... ... .. ....... 94
Quark Compositeness 104

8.1 Comparison to Predictions of QCD Including Quark Compositeness 104
8.2 Calculationof aLimiton A, . . . . . . . . . . . . . ... 105

Conclusions 112

Bibliography | 113



List of Tables

4.1
4.2

5.1

6.1
6.2

8.1

8.2

On-line trigger requirements . . . . . . ... .. ... ... ..... 39
Off-line Jet E; Requirements . . . ... ... ............ 42
Jet energy resolution parameterization. . . . . ... .. ... .... 57
Mass, x, and fpoose imits . . . . . . . ..o L oL 64
Experimental factors and their associated systematic error. . . . . . 69
Theoretical predictions of the ratio of Ni((slé%)j as a function of A,

forp=FEr . .. . . . e e e e e e e e e 108
Theoretical predictions of the ratio of Ni((slé%)j as a function of A,



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10

2.11

2.12

2.13

Parton-parton scattering in the Center-of-Mass . . .. .. .. ...

The substructureof aproton . . . . . . .. ... ... ... ... ..
The parton distribution functions . . . . . .. ... . ... .....
A Feynman diagram of quark and an antiquark exchanging a gluon
Examples of leading-order Feynman diagrams . . ... .. ... ..
Examples of next-to-leading-order Feynman diagrams . . . . . . . .
Example of Feynman diagram showing gluon radiation . . ... ..
The relationship of *, qy,and 5, . . . . . . . . . oo
The Mandelstam variables . . . . . .. .. ... .. ... .....
Different subprocesses of jet production produce similar dijet angu-

lar distributions . . . . . .. ... Lo Lo
The insensitivity of the dijet angular distribution to the choice of

parton distribution functions . . . . .. ... .. ...,
A comparison of the angular distribution predicted by leading-order

QCD to that of Rutherford scattering . . . . . .. ... .......
The dependence of the LO dijet angular distribution on the choice

of renormalization scale . . . . . . . ... ... ..o,
The dependence of the NLO dijet angular distribution on the choice

of renormalization scale . . . . . . . . . ... ... ... ... . ...



2.14 The effect of a contact term for quark compositeness on the shape

of the angular distribution . . . . . .. ... ... ... ....... 27
3.1 The D@ detector . . .. .. ... .. ... ... uiieniie.. 29
3.2 The Central Detector . . . . ... ... ... ... eueun... 31
3.3 The DO calorimeter . . . ... .. .. ... .0 eeuueneneon 32
3.4 The DO calorimeter 7, ¢ segmentation . .. .. ........... 33
3.5 A D@ calorimeter unit readout cell . . ... ... ... .... ... 34
4.1 The DO trigger system . . . . . . . . . .. . e 37
4.2 The inter-cryostat region . . . . . . . . . ... ... .00 41

5.1 The response of the D@ calorimeter to jetsin the CC and EC cryostats. 52

5.2 The average uncorrected jet energy as a functionof E/. . . . . . .. 53
5.3 The energy correction factor for the CC cryostat (|| < 0.5 ). . . . . 54
6.1 The kinematic relationship between mass, x,and Er . .. ... .. 65

6.2 The relationship between the 7,005, 7*, and the 5’s of the two leading
jetsin Ep . . . . L L e e e e e e e e e 67
6.3 The ratio of two distributions used to determine the systematic error 71

6.4 The ratio of two parameterized curves used to determine the sys-

tematicerror . . . . . .. . L L e e e e e 72
6.5 Ratios of effects of systematic variables related to event require-

ments and corrections . . . . . .. ... L. ...l 75
6.6 Ratios of effects of systematic variables related to jet measurement

BCCUTACY  « + 4 v o v e v e e e e e e e e e e e e e e e e e 7
6.7 The photon-jet response factor . . . . . . ... ... . ... ... .. 82

6.8 The dijet response factor . . . . . . .. ... ... ... ... 83



6.9 Comparison of the photon-jet response factor to the dijet response
factor . . . . . L e e e e e e

6.10 Effect of smearing on the dijet asymmetry . .. . ... .. ... ..

6.11 The dijet response factor versusn . . . . .. .. ... ... .. ..

6.12 Comparison of dijet response factor with and without mass cut

6.13 Ratio of photon-jet corrected angular distributions over nominal
distributions . . . .. . .. ... L e e

6.14 The affect of an introduced error on a normalized distribution

6.15 The shift of a normalized distribution due to an introduced error . .

7.1 A comparison of LO and NLO QCD to data for 260 < M, < 425
GeV/c? . . e e
7.2 A comparison of LO and NLO QCD to data for 475 < M;; < 635
GeV /et o e e
7.3 A comparison of LO and NLO QCD to data for M;; > 550 GeV/c?
7.4 A comparison of LO and NLO QCD to data for M;; > 635 GeV/c?
7.5 A comparison of NLO QCD for p = Er and p = —E—ZI to data for
260 < Mj; <425 GeV/c? . .. L e
7.6 A comparison of NLO QCD for p = Er and g = %1 to data for
475 < My; <635 GeV/c? . . . . . . e
7.7 A comparison of NLO QCD for p = Er and g = ZE to data for
M;;>550GeV/c® . . . e
7.8 A comparison of NLO QCD for 0 = Er and pu = %1 to data for
Mjy; >635GeV/c® . . . e e

8.1 A comparison of NLO QCD with an added term for quark compos-
iteness to data for M;; > 550 GeV/c® . . . .. ... ... ...,

89
92
93

96

97
98
99



Foreword

The DD experiment is a large collaborative effort, in which more than 450
physicists and students from 48 institutions are currently participating. The Uni-
versity of Rochester group is active in monitoring of liquid-argon purity, in data
acquisition and reconstruction efforts, and in analysis of data in the areas of QCD,
top-quark physics, and new phenomena. The group is also participating in devel-
opment and construction projects for a scintillating-fiber tracking chamber to be
included in the upgrade of the D@ detector.

I was involved in the monitoring of the liquid-argon purity which consisted of
maintenance of the liquid-argon monitoring and data acquisition system, as well as
tracking the purity level throughout the 1993-1996 collider run. During the 1993-
1996 collider run, I was also an active member of the crew involved in the operation
of the data acquisition system. I participated in studies of the trigger efficiencies
related to QCD analyses, and I developed an online Level 2 tool used to trigger
on the mass of dijet events. My analysis project has involved the measurement of

dijet angular distributions.



Chapter 1

Introduction

Quantum Chromodynamics (QCD) is a theory that describes the strong interac-
tions of quarks and gluons, the basic constituents of hadrons and nuclei. Unlike
electrons, which are considered to be point-like particles, hadrons are composed of
constituents called quarks which are bound together by gluons. The substructure
of hadrons was first observed in deep inelastic scattering experiments in the 1970’s,
in which protons were probed by electrons with large momenta. The composite
structure of protons can be described in terms of the parton model, in which the
proton is regarded as a composite state of three valence quarks, and a sea of virtual
quark-antiquark pairs and gluons. A parton refers to either a quark or a gluon.
The parton distribution functions (PDFs) describe the partonic substructure of
the proton, and represent the probability of a parton carrying a fraction z of the
momentum of the parent proton. The PDFs cannot be calculated from theory,
and various parton distribution functions have been extracted from data. Parton-
parton interactions with high transverse momentum transfer have been successfully
modeled by the theory of QCD.

Protons and antiprotons collide in the Fermilab Tevatron at a center-of-mass



energy of /s = 1.8 TeV, with instantaneous luminosities of the order of 10%° —
103'cm~2s71. At this large center-of-mass energy, occasionally, interactions occur
between the parton constituents of these hadrons. Any pair of scattering partons
can be viewed in the center-of-mass frame as two partons of the same energy, E.
When they scatter, they become transformed into jets of particles of invariant
mass 2F at some center-of-mass scattering angle 6%, as shown in Fig. 1.1. A jetis
a collimated spray of hadrons, which corresponds to the observable remnant of a
scattered parton. The term dijet refers to any pair of jets.

The dijet angular distribution is the distribution of the center-of-mass scat-
tering angle produced by the interaction of two partons. This distribution can
be measured for different regions of the dijet invariant mass (+/3). This angu-
lar distribution is known to be relatively insensitive to the details of the parton
distribution functions, and we can therefore measure certain inherent properties
of parton-parton interactions without concern about ambiguities of the parton
distribution functions. This is an advantage over other methods of testing the
predictions of QCD.

In the theory of QCD, quarks are considered to be point-like particles. Recent
measurements of the inclusive cross section for jet production ([1],[2]) have brought
to the foreground the question of quark compositeness. ‘Quark compositeness’ is a
shorthand notation for any theory which assumes that quarks are composed of yet
smaller point-like particles, sometimes called preons. Quark substructure could
be observed as a departure of data from the predictions of QCD. The Fermilab
Tevatron provides a large sample of parton-parton interactions with large momen-
tum transfer. At the Tevatron center-of-mass energy, we are able to probe quark
compositeness at a scale on the order of 1 TeV. Theories predicting quark compos-
iteness at this scale expect a clear departure from the predictions of QCD at dijet

invariant masses of greater than v/3 ~ 500 GeV/c?, and the Fermilab Tevatron is
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Figure 1.1: At Fermilab, two partons scatter at a center-of-mass scattering angle and
create a dijet pair.

an excellent place for probing such mass regions.

The DO experiment is a collaboration of over 400 scientists from over 40 in-
stitutions around the world. The experiment had data runs in 1992-1993, and
1993-1995. This analysis will be based on data from the 1993-1995 collider run.
The DO detector has an excellent calorimeter, with almost 4w angular coverage,
and uniform response over a large range of transverse momenta and rapidities. It
therefore provides a unique opportunity to study dijet angular distributions.

In this thesis, we study the dijet angular distributions in order to compare the
predictions of QCD to the experimental data, and to determine if the data show a

departure from QCD that could be attributed to quark compositeness.



Chapter 2

Theory

2.1 The Parton Model

The parton model describes the substructure of a proton as consisting of three
valence quarks, and a sea of virtual quark-antiquark pairs and gluons, all bound
together in a quantum mechanical state which is a proton. This binding interaction
between the three quarks creates an extended volume of energy density. A parton
probing the proton with sufficient momentum transfer to resolve the substructure
may interact with one of the valence quarks or with the volume of energy density
(which would be described as an interaction with a virtual quark, antiquark, or
gluon). The substructure of a proton can be visualized as in Fig. 2.1. When a
proton collides with an antiproton, three general types of hard interactions can
occur: a valence quark from the proton can interact with a valence quark from the
antiproton (gg); an interaction between the volumes of energy density from the
proton and the antiproton can produce any one of a variety of interactions between
virtual partons (¢4, 99, 33, 99, 93,99); or a valence quark from the proton (or the

antiproton) can interact with the volume of energy density from the antiproton



(or proton) (g4, qq, 44, 99, g3)- Most quantitative aspects of the substructure
of the proton cannot be calculated directly, but must be measured. A series of
parton distribution functions have been extracted from different experiments, and
parameterized to describe the substructure of the proton as the probability of
encountering a particular constituent (a valence quark, a gluon, or a virtual sea
quark) carrying a fraction z of the proton momentum. Shown in Fig. 2.21is a sketch
of PDFs for the valence quarks, gluons, and virtual sea quarks. The parton model
and the PDFs describe the initial states that comprise a parton-parton interaction
in a proton-antiproton collision. The parton-parton interaction itself is described

by the theory of Quantum Chromodynamics.

N o
P

Figure 2.1: The proton is composed of three valence quarks and a sea of virtual gluons
and quark-antiquark pairs.
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Figure 2.2: Sketch of parton distribution functions for the proton (adapted from [3]).

2.2 Quantum Chromodynamics

The interactions of partons via the strong force are based on the exchange of color,
and are mediated by gluons. Color was first postulated to explain an apparent
violation of Fermi statistics. The A** particle appeared to be composed of three
identical fermions, © quarks, in the same quantum mechanical ground state. If so,
this would violate the Pauli Principle, and consequently, an additional quantum
number, color, was needed in order to distinguish between the ground states of the
three u quarks, and to save the quark model of hadrons. It was later determined
that color is not just a mathematical construct, but plays a fundamental part in
the interactions of partons. Quarks come in three different colors: red, green,
and blue (R,G,B). Antiquarks come in three different ‘anticolors’: cyan, magenta,
and yellow, which are effectively antired, antigreen, and antiblue (R,G,B). To
enable gluons to exchange the color of two partons, they must come in color-
anticolor combinations (RG, BG, etc.). Quarks interact through the exchange of a

gluon, in a fashion similar to the exchange of photons in Quantum Electrodynamics



(QED). A fundamental difference between QED and QCD is that photons are
charge neutral, but gluons have color and can couple to other gluons. This leads
to the concepts of asymptotic freedom and confinement. When two partons are
very close together in space, the strength of their coupling is very small, and they
behave essentially as free particles. This is known as asymptotic freedom. As the
distance between two partons grows, the strength of their coupling increases to a
point at which it requires less energy to create a quark-antiquark pair out of the
vacuum to seal the breach between the two partons than to allow their distance to
increase. This leads to confinement. Confinement occurs, because as the distance
between any two partons grows, a cloud of virtual gluons and quark-antiquark pairs
surrounds the partons and effectively increases the color force between them [4].
The strength of the interaction between two partons is described by the strong
coupling constant, a,.

The fundamental particles of the theory of QCD are the quarks and gluons.
The perturbative predictions of the theory that describe the interactions of partons
can be calculated using Feynman diagrams [5]. A Feynman diagram representing

a quark and an antiquark exchanging a gluon is shown in Fig. 2.3. Feynman di-

>— >

< <

Figure 2.3: A Feynman diagram of a quark and an antiquark exchanging a gluon.

agrams describe parton-parton interactions in terms of a perturbative series in

the strong coupling constant, a,. The order of a given diagram is determined by



the number of vertices, each of which supplies a factor of a, in the calculation of
the cross section. A leading-order (a?) diagram has two vertices. The Feynman
diagrams representing a parton-parton interaction at leading-order are shown in
Fig. 2.4. A next-to-leading-order (a2) diagram has three vertices. Some of the
Feynman diagrams representing a parton-parton interaction at next-to-leading-
order are shown in Fig. 2.5. The higher order contributions are due to the fact
that any parton has a finite probability for radiating gluons. Scattered partons can
radiate any number of gluons, and gluons can split into quark-antiquark pairs, as
represented by the Feynman diagram shown in Fig. 2.6. Each of these radiations
contributes an additional vertex to a diagram. Due to this radiative property, an
infinite series of diagrams must be calculated in order to predict the exact behav-
ior of QCD to all orders. Assuming that the value of a, is small, the magnitude
of each higher-order contribution (a2, o, etc.) decreases, and one can calculate
the predictions of QCD fairly accurately using just the lower-order diagrams. The
mathematical difficulty in calculating the predictions of QCD increases dramati-
cally for each additional order. Currently, only the calculations for leading-order
(a?) and next-to-leading-order (a2) are available.

Perturbative calculations have been successful for QED because its coupling
constant, a = %7, is quite small. Perturbative calculations have been less success-
ful for QCD because its coupling constant is relatively large (> 0.1), and significant
theoretical errors are associated with the exclusion of higher-orders. Fortunately,
the coupling between two partons is not a constant, but is a function of the scale
of the momentum transfer in the interaction, referred to as a running coupling. As
the center-of-mass energy of the interaction increases, the coupling between any
two partons decreases and approaches asymptotic freedom. In this region, calcula-
tions using perturbative QCD can be made with reasonable accuracy. (It should be

recognized that perturbative expansions eventually tend to diverge, and, unless the
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Figure 2.4: Examples of leading-order (a2) Feynman diagrams for jet production.
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Figure 2.5: Examples of next-to-leading-order (a3) Feynman diagrams for jet produc-
tion.
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Figure 2.6: An example of a Feynman diagram showing gluon radiation.

coupling is sufficiently small, there is no guarantee of convergence.) The running of
o, does not help in predicting the substructure of the proton, because quarks are
bound at energies far below those at which the strong coupling approaches asymp-
totic freedom. Parton distribution functions can consequently only be determined
through experimental means. An additional difficulty in calculating perturbative
predictions of QCD is that there are divergences in the theory, primarily due to
the fact that the theory treats particles as point-like objects. To avoid this com-
plication, the theory of QCD is renormalized. Renormalization is a mathematical
procedure in which the divergences in the theory are made to cancel. This is done
by introducing a renormalization scale, u, which is effectively an energy at which
integrals are cutoff in order to avoid divergent regions.

The observables of the theory of QCD are not the quarks and gluons. In fact,
neither quarks nor a gluons have been observed experimentally as solitary objects.
This is because, according to the theory of QCD, observable objects are colorless,
or, more precisely, invariant under rotations in color space. An observed hadron
is either an object with each of the three colors (RGB, RGB), a baryon, or a

color-anticolor pair ( RR, GG, BB), a meson. In a proton-antiproton collision,
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a parton is emitted from its parent hadron. As the distance between the parton
and the remnants of its parent hadron increases, the strong coupling between
them increases. Multiple quark-antiquark pairs are produced out of the vacuum
to seal the breach between the parton and its parent and to create colorless final
state particles. The result is a spray of hadrons formed along the direction of
the original scattered parton. This process is known as fragmentation, and the
spray of hadrons is the observed remnant of a parton-parton interaction, or what
is called a jet. Fragmentation also cannot be calculated from perturbative QCD
because once the initial hard interaction occurs, the subsequent interactions caused
by fragmentation are at ever lower energy levels, and hence have ever greater
couplings. Thus, fragmentation characteristics must be measured and fitted to
some phenomenological forms.

In order to overcome the difficulties of calculating cross sections from perturba.-'
tive QCD, non-perturbative components of the theory are assumed to be separable
from the parton-parton subprocess cross section. This is referred to as factoriza-
tion. For a generic inclusive process of producing C in collisions of A and B,

A+ B — C + X, the cross section can be described as follows [6]:
TA+B—C+X = Z/d$1d$2ﬂ4($1,#F)f,B(-‘Ez,#F)ffijac(é,#n#mas(#R)) (2.1)
tJ

§=zz28 (2.2)

i and j are indices for any pair of partons contributing to the process. f(z,ur)
is a parton distribution function which represents the probability that a parton of
type ¢ carries a fraction z of the momentum of hadron A. 6,;_¢ is the subprocess
cross section for the interaction of partons of types ¢ and j for a center-of-mass

energy, s, and factorization and renormalization scales, ur and pgr. pr and pgr
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are typically chosen to be equal ( g = pr = pr), and of the order of the energy
scale of the parton-parton interaction. The factorization assumption allows one to
calculate the cross section for the subprocess in a way that is relatively independent
of the uncertainties in the measured parton distribution functions. The final result
of any calculation should be, in principle, independent of the choice of the arbitrary
renormalization scale, u. Any dependence on the choice of renormalization scale

can be interpreted as a sensitivity of the calculation to higher-order contributions.

2.3 Jet Definition

In order to compare the predictions of perturbative QCD to data, one must be able
to relate the kinematic aspects of the original scattered parton to its fragmented
remnants, the jet. The aftermath of a parton-parton collision can be examined at
three levels. The first level is the parton level, in which the kinematic variables
are extracted from the final state quarks and gluons before they fragment. The
second level is the particle level, in which the kinematic variables are extracted
from the particles that are the result of the fragmentation process. The third level
is the calorimeter level, in which the kinematic variables are extracted from the
distributions of energy measured in the calorimeter. Of course, data are obtained
from the calorimeter, and consequently a method must be devised to compare the
kinematic information from the calorimeter to that of the particle or parton level.
At the calorimeter level, the energy and position of a jet can be defined as the vector
sum of energy clusters within a cone of radius Reone = \/ An® + A¢® = 0.7. This
will be described in detail in Chapter 5. At leading-order, it is simple to extract the
energy and position of a single parton. At higher-orders, this becomes increasingly
difficult, because additional partons can be radiated in close proximity to the

original scattered parton, and not be distinguished at the calorimeter level. Partons
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are therefore clustered into a single jet if they are within a distance R,ep X Reone of
one another. The value of R, is set by the experiment, and is usually defined to be
between 1.2-1.3, although it is sometimes defined as large as 2.0. Any dependence
of the theory on the choice of R, is considered to be an uncertainty associated
with the choice of a particular jet algorithm. At the particle level, partons must
be converted into particles by using measured fragmentation functions, and the

particles clustered into a cone of radius Rone = \/ An® + A¢® = 0.7, in a manner

similar to that used for the calorimeter.

2.4 Dijet Angular Distributions

The predictions of perturbative QCD have been highly successful in describing the
observed distributions for the interactions of partons. In recent years, predictions
have improved in accuracy through inclusion of next-to-leading-order corrections.
Also, measurements have been extended into regions of greater momentum trans-
fer, providing more sensitive tests of QCD. Dijet angular distributions provide a

good method of testing the predictions of perturbative QCD in these regions.

2.4.1 Definition of Variables

The coordinate system of the D@ detector is a right-handed one, in which the
+2 vector is in the direction of the proton beam (pointing South). +3 points
upward and +& vector (pointing East) is perpendicular to both the +2 and +y
vectors. A spherical coordinate system (r, ¢, ) is also used, in which the z-
axis (the axis of the proton beam) is the polar axis. The longitudinal component
of a kinematic variable is the component along the direction of the beam axis,
and the transverse component of a kinematic variable is the radial component

perpendicular to the beam.



14

The cross section for the dijet angular distribution predicted by leading-order
QCD can be written as follows [7]:

do dée:
- - - d — 7
I deos 0 .,;g/ z1 dz; fi( 21, Q) fi(22, Q%)6(21228 M) o
(2.3)
The subprocess cross section, dilé;, is given by the following.
dé:, 1
= 2.4
d cos 6* Z 32r M2 Z‘M(” - k) 1+ oy @4

The factor 5 +6 is introduced to account for the double counting of processes for
which the final state partons are identical. The matrix elements are averaged and
summed over initial and final state spins and colors.

The angular distribution in 6* is that of the dijet axis calculated relative to
z in the final state parton-parton rest frame. The shapes of the dijet angular
distributions predicted by perturbative QCD will be compared to distributions

observed in several regions of the dijet invariant mass, which is defined as:

M2, = 2E7, Ero(cosh(n; — 1) — cos(¢y — ¢2)) (2.5)

This formula assumes that the masses of the individual jets are negligible. Er is
the transverse component of the energy (E) of the jet, that is Er = Esin §. Pseu-
dorapidity 7 is defined as n = —ln(tan( )). Pseudorapidity is an approximation

of rapidity y = JIn(z= Etp:

£2) {for particles whose masses are much smaller than their
transverse momentum, that is m < pr = Er ~ /E? — p? (p, is the z component
of the momentum). Rapidity is used as a variable because the difference in ra-

pidities is invariant under a Lorentz boost along the z axis. Subscript 1 refers to

the jet in the event with the largest transverse energy, which will be referred to
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as the leading jet. (E7r,; is the transverse energy of the leading jet, and 7, is the
pseudorapidity of the leading jet, etc.) Subscript 2 refers to the jet in the event
with the second largest transverse energy, which will be referred to as the second
leading jet. The center-of-mass scattering angle 6* is related to the center-of-mass
pseudorapidity * = —In(tan %) The pseudorapidity of the parton-parton center-
of-mass can be written as the difference in pseudorapidities of the two leading jets

in the laboratory frame (pp rest frame):

. 1
= 5(771 —12) (2.6)
This can be visualized as in Fig. 2.7, in which two jets scattered back to back at
some 7* are boosted in the lab frame to some 7; and 7,. Another useful variable

is the pseudorapidity boost:

1
Mboost = 5(7]1 + 7]2) (2.7)

which is the offset in pseudorapidity that translates a pseudorapidity in the lab

frame to that in the parton-parton center-of-mass: %} = 7; — Jboost-

n* n,
Center-of-Mass Lab Frame

Frame

M,

Figure 2.7: Two jets back to back in the center-of-mass frame at some 7* are boosted
into the lab frame to some 7; and 7,.
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It is useful to introduce the variable , where

_ 1 + cos §*

- 7 *|
X 1 — cos 6*

— elm—m| — g2In (2.8)
Parameterizing the angular distribution as a function of the variable x facilitates a
comparison with theory. For a leading-order parton-parton interaction, as shown
in Fig. 2.8, the Mandelstam variables are defined as: 3 = (p; + p2)%, £ = (p1 — p3)?%,
% = (p2 — pa)?. £ and 4 can be written in terms of 5 and 8* as £ = —3(1 — cos §*),

and o = —%(1 + cos §*). x is consequently equal to % The latter appears in
leading-order for each subprocess of the cross section. An example of a subprocess

cross section (for k # ) is shown in the following:

dod m34<4+(1+cose*)2 4+(1—cos€*)2)

deos @  2MZ 9\ (1 — cosf*)? (1 + cos 6*)2
24,32 52 a2 §2
_ T é(s i%—u K :}-t) (2-9)
2MZ% 9 t? 2

7ra34<2+2 2, +1+2)
~ = X +x+=+=
2MZ 9 x X2

for 5+ 4 + £ ~ 0 (ignoring the parton mass).

P1 P3 P1 P3 P P3

o B

P2 P4 P2 P4 P2 P4

U

L B

S

Figure 2.8: The Feynman diagrams that represent the exchanges described by the
Mandelstam variables.
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2.4.2 Theoretical Motivations

The dijet angular distributions will be measured inclusively. This means that the
data sample will contain events with two or more jets. A measurement of two par-
tons scattering into two partons describes QCD processes only at leading-order.
When the angular distributions are measured using information from only the two
leading jets, the effects of any additional jets can be considered as arising from
higher-order effects. The need to keep the measurement inclusive and to consider
only the leading two jets is important for experimental, if for no other, reasons.
For example, the definition of a jet can be ambiguous because of the presence of
radiated partons in close proximity to the original scattered parton. The calorime-
try often cannot distinguish the soft partons needed to take proper account of such
higher-order contributions. This is primarily because of inefficiencies in detecting
partons with small transverse energies.

The different subprocesses (g9 — 99, 9§ — 94, g9 — gg) that contribute to
dijet production have similar angular distributions. Shown in Fig. 2.9 are the
quark-antiquark and quark-gluon angular distributions normalized to gluon-gluon
angular distributions. This is because the angular distributions of all contributing
subprocesses tend to be dominated by the exchange of a gluon in the t-channel.
The dijet angular distribution is therefore relatively insensitive to the choice of
parton distribution functions. Shown in Fig. 2.10 is a comparison of the CTEQ3M
and the CTEQ2MS parton distribution functions [8]. The CTEQ2MS PDF's have
a higher gluon distribution at small ¢, and hence a lower gluon distribution at
large = than the CTEQ3M PDFs. This insensitivity to a choice of PDF's allows us
to examine the properties of the subprocess cross section without limitations from
the theoretical error due to uncertainties in the PDFs.

As mentioned above, for small center-of-mass scattering angles, the leading-
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Figure 2.9: Different subprocesses that contribute to jet production produce similar
dijet angular distributions. Shown are the quark-antiquark and quark-gluon angular
distributions normalized to gluon-gluon angular distributions (adapted from [7]).
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Figure 2.10: The shape of the dijet angular distribution is insensitive to the choice
of the parton distribution functions. Shown is a comparison of the CTEQ3M and the
CTEQ2MS parton distribution functions for the dijet angular distribution generated at
next-to-leading-order with the JETRAD Monte Carlo [9]. The small oscillations are due
to statistical uncertainty.
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order processes in §* are dominated by the exchange of a gluon in the t-channel.
This exchange of a spin 1 vector boson is analogous to the exchange of a photon
in electromagnetism. Thus, for small angles, the dijet angular distribution to first

order is proportional to the form from Rutherford scattering:

d&ij 1
~ 2.10
d cos 6% sin4(%) ( )
As a function of the variable x, the Rutherford cross section is a consta;nt.
da; _ doy; dcos (2.11)
dy dcosf* dyx
(x-1)
cos §* = (2.12)
(x+1)
dir; 1 4 ,
dcos6*  sin*(Z) (1 — cos6*)? (x+1) (2.13)
deosf* 1  (x-1) (2.14)
dx (x+1) (x+1)?
déi; 2( 1 (x—1) )
&~ XN\ D T 1y (219

The leading-order predictions of QCD are compared in Fig. 2.11 to the Rutherford
distribution. As expected, the dijet angular distribution is rather flat for large
values of x (which correspond to small center-of-mass scattering angles). At low
values of x, the distribution begins to rise. This is due to the contributions of
s-channel gluon exchange, wqhich is important for large center-of-mass scattering
angles.

The distributions measured in this analysis are not absolute cross sections, but
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Figure 2.11: A comparison of the angular distribution predicted by leading-order QCD
to that of Rutherford scattering. The distribution in cos * is normalized in a limited
range, 0.0 < cos8* < 0.9, in order to avoid the pole at 1.0.
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rather normalized distributions:

1 4N
N dMJJ dx dnboost

(2.16)

The distributions will be integrated over regions in invariant mass and eost to get
a final distribution of %% that can be compared to theory. Thus, we compare the
shape of the predicted distribution to the data, and ignore the absolute cross sec-
tion. Unlike the absolute cross section, the shape of the dijet angular distribution

is not sensitive to most systematic errors stemming from detector effects.

2.4.3 Theoretical Predictions

Various Monte Carlo computer programs are available for generating the distri-
butions predicted by perturbative QCD. The theoretical predictions used in this
analysis are calculated at the parton level with the JETRAD Monte Carlo Event
Generator [9]. Unlike analytical calculations, generating the theoretical predictions
using Monte Carlo methods for integrating over phase space variables causes an
error which is dependent on the number of generated events. Since the predicted
angular distributions are generated in this manner they will not appear smooth
unless enough events were generated to make this statistical error negligible. Due
to the limitations of available computing power, we were unable to generate enough
events to remove the statistical errors in all of the next-to-leading-order distribu-
tions.

The theoretical predictions can be changed through various input parameters
in the JETRAD program. The uncertainty due to the choice of jet algorithm for
comparing predictions at the parton level to the jet distributions is minimized by
choosing an R, of 1.2-1.3 [10]. Recall that two partons are clustered into a single

jet if they are within a distance Ry X Reone of one another. This analysis uses
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R,., = 1.2. The difference between using 1.2 and 1.3 was found to be negligible.
The uncertainty due to the choice of parton distribution functions is negligible due
to the intrinsic properties of the dijet angular distribution. The parton distribution
functions used in this analysis were the CTEQ3M and CTEQ2MS functions [8].
The choice of the renormalization scale has a small effect at leading-order, as shown
in Fig. 2.12, but becomes significant at next-to-leading-order. The renormalization
scales chosen for this analysis are the Er of the leading jet, and, for comparison,
the %1 of the leading jet. As shown in Fig. 2.13, there is a dependence of the
normalized shape of the angular distribution on the order of a few percent. The
angular distribution is most affected by the dependence of the coupling constant
a,(p) on the renormalization scale. At leading-order, the shape of the dijet an-
gular distribution is dominated by the kinematics associated with the exchange
of a gluon. At next-to-leading-order, the scattered partons are allowed to radiate
gluons, and this radiation brings in an additional dependence of the distribution
on the coupling constant, and hence the choice of renormalization scale. This de-
pendence of the theoretical predictions of the dijet angular distributions on the
choice of renormalization scale can be interpreted as the theoretical uncertainty

associated with higher-order terms.

2.4.4 Compositeness

There is speculation that quarks may not be point-like objects but rather bound
states of more fundamental particles. Although there are many theories of quark
compositeness, no single model appears to be more promising than any other. The
interactions of quark constituents, or preons, are characterized by an energy scale
A which defines the energies below which the strength of the interaction between

preons becomes strong enough to bind them into states observed as quarks. A. also
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Figure 2.12: At leading-order, the shape of the dijet angular distribution is insensitive
to the choice of the renormalization scale. Shown is a comparison for = Er of the
leading jet and p = %l of the leading jet for the dijet angular distribution generated at
leading-order with JETRAD. Small oscillations are due to statistical uncertainty.
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Figure 2.13: At next-to-leading-order, the shape of the dijet angular distribution is
sensitive to the choice of the renormalization scale. Shown is a comparison of the u = Ep
of the leading jet and u — %I of the leading jet for the dijet angular distribution
generated at next-to-leading-order with JETRAD. Small oscillations are due to statistical
uncertainty.
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determines the scale at which parton-parton interactions become sensitive to any
interactions between the new constituents. In order to search for evidence of quark
compositeness, one must search for deviations from the predicted behavior of the
parton-parton interactions of QCD. Any such discrepancies could be found by com-
paring the dijet angular distributions predicted by QCD to data in regions which
would be sensitive to quark compositeness. At dijet invariant masses of greater
than ~ 500 GeV/c?, the dijet angular distribution is sensitive to the interactions
of preons for A, ~ 1.0 TeV.

The theory of quark compositeness which we compare to the data describes
a four-fermion contact interaction that assumes all quarks to be composite. The
interactions between preons are taken to be flavor diagonal. Interactions of quark
constituents do not cause changes in flavor, and there are no interactions among
quark generations. For example, two up quarks may interact to form two up
quarks; a charm quark and a strange quark may interact to form a charm quark
and a strange quark; but there are no terms such as an up quark and a charm
quark interacting to form an up quark and a charm quark. These flavor-diagonal

contact interactions can be described by the following term in the Lagrangian [11].

g2

Lo = 2_A2)(77LL‘?L7;1‘1L‘§L7“ 91, + MRRARY.9RARY" dr + MLRALYLILTRY qR) (2.17)

Where 1,1, 7rR, and 7,g can be —1 or +1, but for the theory which was compared
to the data in this analysis, 7, 7rRr, and 7. were equal to +1, which corresponds
to a destructive interference term. g is the effective strong coupling constant. These
contributions lead to an additional isotropic termin the angular distribution, which
would produce an increase in the number of events at small values of x (large 6*).

The predictions of next-to-leading-order QCD with an added term for quark
compositeness are not yet available. The leading-order predictions of QCD with an
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added contact term for quark compositeness were generated using the Papageno
Partonic Monte Carlo Program [12]. Next-to-leading-order predictions with an
added term for quark compositeness were estimated by dividing the leading-order
angular distribution with an added contact term of A, by the leading-order angular
distribution without a contact term, and then multiplying the next-to-leading-
order angular distributions generated with JETRAD by this correction factor.

The contributions of quark compositeness are shown in Fig. 2.14.

><0.15
-o -
g L
% Lt Ac= OO TeV (no compositeness)
> o014 -
~ i \
— I Ac = 1.0TeV
i ' MASS(GeV/c*)>550
0.1 |
0.08 |-
0.06 -
0.04 I N U l d 1 1 J 1 1 L J 1.1 1 l 1 1 1 I 1 1 1 l 1 1 1 l 1 i 1 I 1 i 1
0 2 4 3 8 10 12 14 16 18

X

Figure 2.14: The effect of a contact term for quark compositeness on the shape of the
angular distribution is shown for masses greater than 550 GeV/c2.
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Chapter 3

The DO Detector

The D@ Detector, shown in Fig. 3.1, has been designed to study proton-antiproton
collisions at the Tevatron at a center-of-mass energy of /s = 1.8 TeV. The detector
is comprised of three main systems: the central detector, the calorimeter, and the
muon systems. These systems were designed to identify and measure electrons,
photons, jets, muons, and missing transverse energy - which can signify a neutrino.
This chapter will give a brief overview of the components of the detector. A more

complete description of the detector is available in [13].

3.1 The Central Detector

The central detector, shown in Fig. 3.2, is comprised of three separate systems: the
vertex drift chamber, the transition radiation detector, and the central and forward
drift chambers. Since the D@ detector does not have a central magnetic field, the
primary purpose of the central detector is the identification of charged particles,
mainly electrons, and the reduction of backgrounds produced by particles which

can mimic desired signatures. The vertex drift chamber is located just outside of
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Figure 3.1: The D@ detector is comprised of the central tracking, the calorimeter, and
the muon systems.
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the Tevatron beam pipe and contains three concentric layers of drift chambers.
It is used to determine the longitudinal position of the interaction vertex. Next,
the transition radiation detector is located outside of the vertex chamber. Its
primary function is to distinguish between electrons and charged pions - which can
conspire to produce fake electron signals. It utilizes the fact that highly relativistic
charged particles will radiate X-rays when passing through the boundary between
two media with different dielectric constants. The energy of the radiated X-rays
is dependent on the mass of the charged particle, and this energy can be used to
distinguish between an electron and a pion. Finally, the central drift chamber is
located outside of the transition radiation detector. It contains four concentric
rings of cells and provides tracking coverage for particles scattered at large angles.
The forward drift chambers are located perpendicular to the central drift chamber,

and to the sides of the interaction region. They provide tracking coverage down

to 6 ~ 5°.

3.2 The Calorimeter

The detector of primary importance to this analysis is the calorimeter. The dom-
inant function of the calorimeter is to measure the energy of incident particles -
charged and neutral. The D@ calorimeter is a ‘sampling’ calorimeter, which con-
sists of alternating layers of a dense absorber and an active readout medium. The
absorber layers in the DO calorimeter are made of depleted uranium (Ur). Incident
particles interact in the absorber, and produce showers of secondary particles. The
active layers of the D@ calorimeter are built as ionization chambers with liquid
Argon (LAr) as the active medium. When charged particles pass through the LAr,
they ionize the liquid along their path. The summed charge collected in the active

medium is a measure of the energy of the incident particle, and is proportional
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Figure 3.2: The central detector is comprised of the vertex drift chamber, the transition
radiation detector, and the central and forward drift chambers.

to the absolute energy of the incident particle. This proportionality is determined
from experimental calibration.

The DO calorimeter, shown in Fig. 3.3, was built in three units: the central
calorimeter (CC), and two end-cap calorimeters (EC’s). Each calorimeter was built
with three main layers. The first layer, the electromagnetic layer, was optimized
to measure particles which interact electromagnetically - primarily electrons, pho-
tons, and the electromagnetic components of jets. The other two layers are the
fine hadronic and the coarse hadronic layers. These two layers were optimized to
measure the hadronic components of jets. The coarse hadronic layer uses copper
as an absorber, and is used to measure any remaining energy in a shower while
containing the energy of the shower within the calorimeter. In the electromagnetic
and fine hadronic sections of the calorimeter, depleted uranium was chosen as the

absorber in order to increase the uniformity of the response to electromagnetic and
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Figure 3.3: The D@ calorimeter is comprised of the central and end cap calorimeters.

hadronic particles. A properly chosen combination of LAr and Ur approximately
equalizes the response of the calorimeter to electromagnetic and hadronic showers
( e/m =~ 1.0) and allows for a compact calorimeter with very good resolution and
uniformity. The CC covers a pseudorapidity range of || < 1.2. The EC fully cov-
ers a pseudorapidity range of 1.4 < |g| < 4.1, and provides reduced coverage for
4.1 < || < 4.5. Thus, the D@ calorimeter is able to measure electrons, photons,
and jets to large pseudorapidities. Due to its hermiticity, the calorimeter is also
able to measure well an imbalance in transverse energy, thus providing a signature
of a neutrino.

The active readout layers of the DO calorimeter are finely segmented in the
transverse (7, ¢) direction. Each segment is separately read out, essentially acting
as an independent ionization chamber. These segments are further arranged into

‘pseudo-projective’ towers, as shown in Fig. 3.4. Each tower is comprised of layers
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Figure 3.4: The D@ calorimeter is finely segmented in 7, ¢ and these segments are
arranged into pseudo-projective towers.

of cells whose centers lie along rays projected from the center of the detector (the
nominal vertex). They are pseudo-projective because the boundaries of each cell
do not project towards the vertex, but are aligned perpendicularly to the absorber
plates. The size of a tower in An x A¢ space is 0.1 x 0.1. A readout board is
composed of a copper pad sandwiched between plates of G10, and covered with
a resistive epoxy coating. A unit cell is shown in Fig. 3.5. The absorber plates
are kept at ground, and the readout boards are kept at a voltage of approximately
+2kV. Charged particles traverse the LAr gap, ionizing the liquid. The liberated
electrons then drift to the positive potential of the readout board, and are measured
as a pulse on the board. This pulse is then amplified and converted to digital

counts.
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Figure 3.5: A DO calorimeter unit readout cell.

The Fermilab Main Ring runs through the coarse hadronic section of the
calorimeter. This i1s not a concern for measuring the energy of jets, since rela-
tively little of the jet energy is deposited in the coarse hadronic layer. The main
effect is that interactions of beam halo with the beam pipe cause depositions of
energy in the calorimeter not related to pp interactions. To avoid this problem,
events occurring during main ring activity are ignored.

Due to the necessity of having three cryostats, there is a region in pseudorapid-
ity which is not fully covered by the calorimeter (0.8 < |n| < 1.4), the inter-cryostat
region (ICR) ( refer to Fig. 3.4). This region is instrumented with two detectors
in order to detect particles which escape into the cryostat gap. The first is the
inter-cryostat detector (ICD). The ICD is composed of two scintillation counter
arrays. Each array consists of a set of scintillator tiles which are of the same size in

An x A¢ space as the calorimeter cells (An x A¢ = 0.1 x 0.1). The other detector
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is the massless gap detector, which is a set of LAr cells (An x A¢ = 0.1 x 0.1)
mounted on the inside wall of the CC and EC cryostats.

3.3 The Muon Detector

The muon detector is used to detect the trajectories of muons, and to measure
their momenta. The muon detector is comprised of three layers of proportional
drift tube chambers and a system of iron toroidal magnets. The muon system is
located outside of the calorimeter, which, for the most part, shields the system from
particles other than muons. The first layer of muon chambers is located within the
toroidal magnets, and the final two layers are located outside the toroidal magnets.
The momentum of a muon is measured by the bend angle of the muon track in

the magnetic field, as determined from track hits in the muon chambers.
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Chapter 4

Data Selection

Proton-antiproton interactions occur in the Fermilab Tevatron with a frequency
of approximately 10° interactions per second. The D@ data acquisition system
is capable of recording approximately three interactions per second. The D@
experiment uses a system of selection criteria, a trigger system, in order to select
those events which are of interest. Interactions of interest are primarily those
with large transverse momenta, signifying a hard, inelastic collision. This chapter
discusses the D@ trigger system, the on-line trigger requirements placed on the

data selected for this analysis, and the efficiencies of the trigger requirements.

4.1 The DO Trigger System

The interactions of interest to this analysis are parton-parton interactions which
produce jets. In order to select, or ‘trigger’ on, jet events, D@ uses information
from the calorimeter. The signature of a hard interaction producing a jet is a
cluster of energy deposited in the calorimeter with a large transverse component,

or large Er. The D@ trigger system works in three tiers: Level 0, Level 1, and
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Figure 4.1: The D@ trigger system works in three tiers: Level 0, Level 1, and Level 2.

Level 2, as shown in Figure 4.1. This section will describe the components of the
DO trigger system relevant to the calorimeter and the detection of jets. The overall
D@ data acquisition system is described in detail in [13], and [14].

4.1.1 Level O

Level 0 was designed to trigger when an inelastic collision occurs. Level 0 is
comprised of a set of hodoscopes of scintillation counters. These hodoscopes are
mounted on each of the end-cap cryostats, and have partial coverage in a pseudo-
rapidity range of 1.9 < |g| < 4.3, and nearly full coverage in the pseudorapidity
range of 2.3 < |p| < 3.9. This rapidity coverage gives Level 0 an efficiency of
> 99% in triggering on inelastic collisions. Level 0 can also be used to determine
the vertex of the interaction by using the timing differences in the triggering of the
two Level 0 detectors. When Level 0 triggers on an inelastic collision, it activates
Level 1.

The Tevatron does not specifically collide individual protons with individual
antiprotons, but bunches of protons circling counterclockwise encounter bunches of
antiprotons circling clockwise. These two bunches are collimated at the interaction
point in order to facilitate collisions. Because of this, the number of interactions is
not restricted to one. Level 0 is used to discriminate against multiple interactions
through measuring the rms deviation of the time difference in the triggering of the

two Level 0 detectors.
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4.1.2 Level 1

In the Tevatron, proton-antiproton beam crossings occur in 3.5 ps intervals. In
order to reject, within this time interval, events which are of no interest, Level
1 is comprised of a fast hardware trigger system. For jet triggers, it places a
requirement on the magnitude of the transverse component of energy deposited in
fixed clusters of calorimeter cells. The Er is calculated based on the vertex found
by Level 0. These clusters are of one of two forms. The first is a trigger tower,
which is a cluster of four calorimeter cells defining a radial tower in 7, ¢ space
of An x A¢ = 0.2 x 0.2. The second form is a large tile, which is a cluster of
calorimeter cells forming a radial tower in 7, ¢ space of A X A¢p = 0.8 x 1.6.
The Level 1 trigger system is a set of logically connected requirements placed
by the experimenter. In the case of the calorimeter, it is a set of requirements
on the number of trigger clusters (large tiles, or trigger towers) which contain a
deposit of Er above a threshold. For an inclusive (1 or more jets) jet data sample,
the Level 1 trigger required one large tile above a desired threshold. The threshold
was chosen so that the trigger is efficient for jets in a particular Er range. When an
event fulfills the Level 1 requirements, the trigger framework sends the Level 1 and
detector information to be processed in Level 2. The trigger information sent to
Level 2 is the  and ¢ coordinates of all clusters which fulfilled a Level 1 threshold
requirement. For trigger towers, this is the center of the trigger tower location.
For large tiles, this coordinate is the 7, ¢ position of the E1 weighted center of the
large tile. For jet triggers, a redundant requirement is placed in the Level 1 trigger
solely for use in Level 2, which includes an additional lower threshold requirement.
All large tiles which pass this threshold requirement are used as ‘seeds’ or starting

7, ¢ coordinates for the Level 2 jet algorithm.
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4.1.3 Level 2

Level 2 is a software filter in which events are sent to one of 50 Vax Workstations
running in parallel. Each Vax Workstation executes a set of software tools used
to place physics selection requirements on the incoming events from Level 1. The
parallel processing in Level 2 allows for an average of 200 ms of processing time
for each event. For jet triggers, the software tool utilized is a rudimentary jet
algorithm which finds and calculates the Er of the jets in an event. The algorithm
uses each of the seeds in the list from Level 1 as the center of a jet and sums all
the Er within a R = \/An® + A¢* = 0.7 cone. Level 2 places a requirement on
the number of jets with an Er above a given threshold. When an event fulfills the

requirements placed in Level 2, it is recorded on tape.

4.2 'Trigger Requirements

The data of interest to this analysis are the events with two or more jets with dijet
invariant masses of greater than approximately 250 GeV/c?. In order to increase
the efficiency of selecting events with two or more jets, the triggers used in this
analysis are the set of triggers which require one jet with an Er above a given
threshold. In order to select events with dijet invariant masses of greater than 250
GeV/c?, the triggers used were three of the triggers with the highest E7 thresholds,

as summarized in Table 4.1.

Table 4.1: Level 1 and Level 2 requirements placed on data sample.

Trigger Level 1 Level 2

JET 30 | 1tile > 15GeV |1 jet with Er > 30 GeV

JET 85 | 1tile > 35GeV |1 jetwith Er > 85GeV
JET MAX | 1tile > 35GeV | 1jet with By > 115 GeV




40

4.3 Trigger Efficiencies

There are essentially two pathways through which information is collected from the
calorimeter: a complete readout of all components of the calorimeter, which is the
event information stored on tape; and a subset of this information, which is used
by the trigger system. The D@ trigger system is unable to use the full information
available from the calorimeter because of the need to reject events in a very short
time interval. The rudimentary jet information used by the trigger systyem causes
some inefliciencies in selecting events with jets in certain Er and 7 ranges. Three
primary components of the calorimeter trigger cause inefficiencies in selecting jet
events: the fixed locations of the calorimeter tiles, reduced instrumentation of the
gap between the cryostats, and the reduced integration time of the calorimeter
readout.

e Inefficiency due to the fixed tile locations: In order to quickly identify
an object in the calorimeter as a jet, the towers of the calorimeter are clustered
into large tiles at fixed, pre-determined locations. The efficiency of the Level 1
trigger as a function of Er is related to the probability of a jet depositing the
required amount of Er within a single tile to fulfill the trigger requirements. If
a jet, which is about the size of a Level 1 large tile, is not centered within one
tile, but overlaps with an adjacent tile, its deposited energy will be split between
the two tiles. Such a jet will have a reduced probability of fulfilling the Level 1
requirements. The only jet energy ‘seen’ by Level 2 is that which is within a 0.7
radius of the E7 weighted center of the large tile which triggered in Level 1. The
rudimentary jet algorithm used in Level 2 does not optimize the location of the
center of a jet, and may not envelop the majority of the jet’s energy within the
cone. This will reduce the probability of a jet fulfilling the Level 2 requirements.

o Inefficiency due to the inter-cryostat region: The efficiency of the Level
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Figure 4.2: The D@ calorimeter is comprised of three cryostats. In an 7 region of
0.6 < |n| < 1.6, a jet of a radius of 0.7 may deposit a significant amount of energy into

the gap between the cryostats, and reduce its probability of fulfilling the Level 1 trigger
requirements.

1 trigger as a function of 5 is related to the fact that Level 1 does not include the
information from the inter-cryostat detectors. The inter-cryostat region extends
from a |n| of 0.6 to 1.6. As shown in Figure 4.2, in this region, a jet with a radius of
0.7 centered about a given n will deposit a significant amount of energy within the
gap between the cryostats. Since the information of the deposition of this energy
is not used in Level 1, the probability of a jet depositing the required amount of
Er within a single large tile is reduced. Level 2 does include the information from
the inner cryostat detectors, so the n dependence of the jet trigger in Level 2 is
greatly reduced.

¢ Inefficiency due to reduced integration time: In order to meet the
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time restrictions of Level 1, the trigger readout of the energy deposited in the
calorimeter is not fully integrated. Deposited energy is read as a function of time
as a pulse with a large tail. The calorimeter information stored on tape has an
integration time which encompasses the pulse and the majority of the tail. The
calorimeter trigger information uses a reduced integration time which does not
encompass the full tail. This increases the inefficiency by degrading the resolution
of the calorimeter trigger.

A study was done in order to determine the Er and 7 dependence of the
efficiencies of the jet triggers used in this analysis. The trigger efficiencies were
measured as a function of Er in three 7 regions defined by the central and endcap
cryostats, and the inter-cryostat region. These 7 regions were defined as |5| < 0.6,
0.6 < |p| < 1.6, and || > 1.6. Since the emphasis of this analysis is to measure the
dijet angular distributions in high mass regions, minimizing the final off-line Er
requirement on the data sample was not necessary. It was of far greater importance
to ensure that the trigger was 100% efficient in the mass, Er, and 7 regions used
to measure the dijet angular distributions. For the final off-line data sample, a
requirement was placed on the jet with the largest Er in the event(the leading jet)
to have an Er greater than a threshold determined for each of the three triggers,

as summarized in Table 4.2,

Table 4.2: The final Er threshold requirements placed on the leading jet in an
event.

Trigger | Off-line Er Limit on Leading Jet(GeV)
JET 30 55.0
JET 85 120.0

JET MAX 175.0
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Chapter 5

Jet Reconstruction and

Corrections

The D@ data acquisition system records events as a series of data banks which
hold the information collected from the various components of the D@ detector. In
order to do an analysis, this detector information must be converted into physical
quantities. The D@ experiment uses an off-line software package which recon-
structs the properties of the physical jets, electrons, photons, and muons from the
detector information. Jet reconstruction identifies a cluster of energy deposited
in the calorimeter as a jet and measures its E7 and position in 7, ¢ space. This
chapter discusses the reconstruction of jets and the determination of corrections

for the jet energy scale and the jet energy and position resolutions.

5.1 The DO Jet Cone Algorithm

The D@ experiment uses a cone algorithm for measuring jets [15]. Simplistically,

the cone algorithm forms a jet from the sum of the E; deposited in all cells within
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a cone of radius R = \/An®> + A¢* = 0.7. This is similar to the algorithm used
in Level 2, but to increase the accuracy of the measurement of the jet Er and
position, the D@ jet reconstruction algorithm follows a series of iterative steps:
preclustering, jet clustering, and jet splitting and merging.

e Preclustering: First, the transverse component of the energy deposited in
each calorimeter cell is summed into radial towers of Ap X A¢ = 0.1 x 0.1. The
Er is calculated based on the vertex of the interaction. The towers which have
an Er > 1.0 GeV are then ordered in descending Er. This is a list of seeds, or
starting 7, ¢ positions, for preclusters. Preclusters are formed using the following
iterative process. Using the 7,¢ position of the highest Er seed as the center axis,
a precluster is formed from the sum of the E7 of all towers which have an Er > 1
GeV within a cone of radius R = \/An® + A¢* = 0.3. The 75,4 centroid of the
precluster is then calculated from the Er weighted 7, ¢ positions of each tower
included in the precluster. All towers included within this precluster are then
removed from the list of starting seeds. The remaining preclusters are formed in a
similar manner, using the position of the highest Er seed from the seed list as the
center axis of each precluster. This process continues until all towers in the seed
list are used. Preclustering lowers the number of seed towers used as the starting
points for jets. This reduces the computing time needed for the jet reconstruction
algorithm.

e Jet clustering: The next step is the clustering of towers into jet cones. The
list of preclusters is ordered in descending Er, to be used as seeds for the jet cones.
Beginning with 7,¢ position of the highest Er precluster as the center axis, the
Er of all towers within a cone of radius R = \/An®* + A¢’ = 0.7 is summed. The

Er weighted centroid of the jet is calculated using the following formulae, where z
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runs from one to the number of towers in the jet.

Erjet = ;ET:' Njet = é%% Pjet = %ﬁ (5.1)
If the calculated jet centroid is not within a radius R = \/An® + A¢* = 0.001 of
the center axis, the # and ¢ of the calculated jet position are used as the center
axis, and the clustering of towers into a jet cone of radius 0.7 is repeated. This
continues until the calculated jet centroid is within a radius of 0.001 of the center
axis, and the location of the centroid of the jet has converged. To avoid the
possibility of a jet center oscillating between two centers, the maximum number of
iterations is 50. The formulae used to determine the 7,¢ position of the jet (Eq.
5.1) are ‘Snowmass’ angles, which are used to better agree with theory [16]. For
historical reasons, once the center of the jet is found, the 7,¢ position of the jet
is converted back to the original D@ angles definition described by the following

formulae, where ¢ runs from one to the number of towers in the jet.

> Ex;

=1 -1
bt = tan (Z.'EY.'

) (5.2)

1.0 . \/Z.’E§<i+ZiE}2’i

If the Er of the jet is less than 8.0 GeV, then the jet is ignored. The next jet

Njet = —1.0 x In( 0 = tan

cluster is formed using the position of the next highest Er precluster seed as the
center axis, provided that the seed is not within a radius R = /An® + A¢* = 0.35
of the center of a previously found jet. This iterative algorithm is continued until
all of the precluster seeds in the list have been used.

e Jet splitting and merging: Jets determined by the cone algorithm can

overlap due to irregular jet shape or because of a small separation between the
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jets. An additional step is added to the D@ jet algorithm to deal with overlapping
jets. As each jet is determined, the algorithm checks to see if any of the towers
included in the jet are included in any previously determined jets. If this is so,
the jet is then either split or merged with the overlapped jet using the following
algorithm. For a jet which overlaps with only one other jet, the total Er that is
shared between the two jets is summed. If the fraction of this shared Er divided
by the Er of the jet with the lower Er is greater than or equal to 0.5, the two
jets are merged. This means that the Er of all the towers within the two jets is
summed to make a new jet. The Er weighted 7,4 position of the final merged jet
is calculated using the original D@ angles definition described above. If the shared
Er fraction is less than 0.5, then the jets are split. Each tower from the list of
towers within either jet, is assigned to the jet which has the closest center position.
The 7,¢ positions of the two split jets is determined by the D@ angles definition,
as with merged jets. If the jet overlaps with more than one jet, it is split or merged
as described above with the jet with which it shares the most Er. The Er shared
between the jet and the jet not split and merged is not included in the overlapped
jet. Sphtting and merging occurs after the requirement is placed that the jet must
have an Er greater than 8.0 GeV. Jets which have been split are not required to
have an Er greater than 8.0 GeV.

5.2 The Jet Energy Correction

Energy measured by the calorimeter as ionized charge is proportional to the true
energy of an incident particle. If the calorimeter were ideal, the conversion of mea-
sured charge into energy (in units of GeV) would be accomplished with a simple
calibration constant which would be independent of the type and the energy of

the incident particle. In the D@ calorimeter there is some non-linearity in the
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response, which is to say that the calibration constant varies with particle energy
and with particle type. Initial calibration constants were obtained by measur-
ing the charge deposited by electrons and by pions of known energies in a test
calorimeter ( [17], [18]). The energy obtained by using this calibration is referred
to as uncorrected Ep. Since the e/w ratio of the response of the calorimeter is
not exactly one, slightly different calibration constants were determined for elec-
tromagnetic particles (electrons and photons), and for hadronic particles (mostly
charged pions). These measurements also determined that the response of the
D@ calorimeter to pions of incident energies lower than approximately 10 GeV is
significantly non-linear.

Furthermore, jets are complicated objects which contain large numbers of par-
ticles of different types with a broad energy spectrum, and this presents difficulties
in determining the jet’s true energy. In order to measure the true energy of a jet,
one must sum the measured energies of all its constituent particles within a cone of
radius R = \/An® + A¢? = 0.7. These particles are primarily neutral and charged
mesons. Most neutral mesons within a jet decay into photons before hitting the
calorimeter and are measured as electromagnetic particles. The energy calibration
for electromagnetic objects, such as photons and electrons, was fully determined by
using the known masses of the Z, J/9, and #° resonances ( [19], [20]). Any objects
identified as electromagnetic within a jet were corrected by the electromagnetic
calibration. Due to the complex structure of the jet, not all of the photons are
identified as electromagnetic objects, and are hence not properly corrected. Ad-
ditionally, a significant portion of the energy in a jet due to hadronic particles
is carried by pions with energies below 10 GeV. Therefore, the non-linearities of
the response of the calorimeter must be accounted for in the measurement of jet
energy. Additional uncertainty in the jet energy measurement is introduced by the

large size of a jet in 7,¢ space. Since particles comprising the jet are distributed
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over a large area in the calorimeter, some energy may be lost in regions of the
calorimeter which are poorly instrumented. Since the calorimeter is composed of
three independent cryostats, systematic differences in their calibration constants
must be measured. The measured jet energy is contaminated by uranium noise
from the decay of nuclei, and pileup of events due to high luminosities. There
is also contamination due to energy deposits from beam remnants and spectator
interactions (the underlying event). The jet energy correction [21] was determined
in order to correct for all of these effects.

The jet energy correction takes the form of the following equation.

(Emeasured — O)
((1 — S) X Rhad)

Ej.: = (5.4)
O is the offset due to noise, pileup, and the underlying event. S is the correction
factor for loss of energy due to particles within the jet cone which shower beyond
the cone boundaries. This term is negligible for the cone size of radius R =
VAn® + A¢? = 0.7 used for this analysis, for all but the most forward 7’s. Rphaq
is the response of the calorimeter to the components of a jet not identified as
electromagnetic objects.

e The offset: The offset, O, was determined as the sum of two components:
the underlying event, and the noise. The distribution of energy deposited in the
calorimeter due to the underlying event was assumed to be similar to that of the soft
interactions of minimum bias events. Minimum bias events are produced by non-
diffractive inelastic collisions. The offset due to the underlying event was measured
by studying the average Er density as a function of detector 7 for minimum bias
events. Detector 7 is defined as the 5 determined from the nominal vertex at
z = 0, as opposed to the physics 7 which is determined from the interaction

vertex. It was assumed that the underlying event is twice as large for events
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with two interactions as for events with a single interaction. Events with a single
interaction were separated from those with multiple interactions by using a multiple
interaction tool, which, among other things, looked at the RMS deviation of the
time differences measured in Level 0, and the magnitude of the energy deposits
measured in the end cap calorimeters. Since the tool cannot determine the exact
number of interactions, a low luminosity minimum bias sample was used to ensure
that the number of interactions in a multiple interaction event was two. The
underlying event was measured as the difference between the Er density for events
with two interactions and that for events with a single interaction. The average
number of interactions as a function of luminosity was determined, and this was
used in order to obtain the dependence of the underlying event on luminosity.
The noise component of the offset was measured as the difference between the
Er density of single interactions and the measured underlying event for a single
interaction. The total offset correction, O, is on the order of 2 GeV for a jet cone
with a radius R = 1/An® + A¢? = 0.7.

¢ The response: The dominant factor in the energy correction is the response
of the calorimeter, Rj,4. Since the initial momentum of the beam is in the longitu-
dinal ( along the z axis) direction, transverse momentum ( in the z,y plane) must
balance due to conservation of momentum. For high energy jets the magnitude
of the transverse momentum is approximately the same as the transverse energy
(Pr = Er), so the Er must sum vectorally to zero. An imbalance would be mea-
sured as missing Er (£r). For an event with two objects, say a photon and a jet,
the E7’s of these two objects must balance. Photons are relatively simple objects,
which are well collimated in 7, ¢ space, and their energies are entirely measured
within the electromagnetic portion of the calorimeter. Thus, the measured energy
of a photon is well known. Any imbalance in the E7 in a photon-jet event can be

interpreted as an error in the measurement of the energy of the jet. Photon-jet
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events can therefore be used to determine the final calibration of the response of
the calorimeter to a jet. Studying the balance of the Er of a photon with the Er
of a jet can be complicated by the fact that jets can radiate particles outside of the
jet cone, which would cause an imbalance between the jet and the photon due to
physics rather than the response of the calorimeter. The impact of this uncertainty
is minimized by studying the ratio of the component of the Fr projected into the
direction of the photon over the Er of the photon, the Er projection fraction, or
MPF. Mathematically, the MPF is

ET o7,

—-1.0 x
Er,

(5.5)

The MPF will contain the information of any other radiated particles which balance
the photon, as well as containing the information of any E; imbalance between
the jet and the photon. The MPF is the opposite of the mismeasured jet energy.
The response of the calorimeter to the jet is described by the following formula.

iT'ﬁv

Rla :1+
had -ET7

(5.6)

In order to fully calibrate the response of the calorimeter to jets with a wide
range of energies, Rp,q was measured in the following manner. First the response
was measured in the central cryostat (CC) as a function of E' = Er,cosh(nje).
The jet was required to be within the CC, |5| < 0.7. The statistical sample of
photon-jet data within the CC only allowed the response to be measured up to
energies of approximately 150 GeV. In order to extend the measurement of the
response to energies greater than 150 GeV, the response was measured in the end
cap cryostat (EC), again as a function of E’. The jet was required to be within the

EC, 1.8 < |p| < 2.5. In order to account for the systematic differences in response
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between the CC and EC, the ratio of the response in the CC to the response in
the EC was measured for those energies for which they overlapped (90 < E’ < 180
GeV). This ratio, called the cryostat factor, was used to normalize the response as
a function E’ measured in the EC to that measured in the CC. This provided a
complete calibration of jet energies in the CC from approximately 10 GeV to 500
GeV, as shown in Fig. 5.1. The response as a function E’ measured in the CC
was then normalized using the inverse of the cryostat factor, in order to obtain
a complete calibration of jet energies in the EC. In the inter-cryostat region, the
calibration of jet energies was normalized by the linear extrapolation as a function
of 7 of the response difference between the CC and the EC.

In order to convert the jet energy correction measured as a function of E’ into
a correction as a function of the measured uncorrected Er of a jet, the average
uncorrected jet energy was measured as a function of E’, as shown in Fig. 5.2.
The complete jet energy correction factor is shown as a function of uncorrected
Er in Fig. 5.3. The correction varies from approximately 0.95 for jets with an
uncorrected ET of 10 GeV to approximately 1.17 for jets with uncorrected Er
above 100 GeV.

5.3 The Jet Energy and Position Resolutions

5.3.1 Jet Energy Resolution

The jet energy correction described in the previous section is a correction based
on the average response of the calorimeter to jets. In reality, the response of the
calorimeter to a sample of jets of a particular energy and position in 7 is not a
single number, but has a distribution, which is approximately gaussian, about the
mean response. This distribution of the response of the calorimeter is called the

jet energy resolution and is due to many factors.
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Figure 5.1: The response of the calorimeter to jets in the CC and EC cryostats is shown
versus E’. The solid triangles are the response measured in the CC and the open circles
are the response measured in the EC.
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The D@ calorimeter is a sampling calorimeter, and therefore has an intrinsic
energy resolution, even for a sample of mono-energetic particles. Define ”—(EQ as

the resolution. The resolution of a ’perfect’ sampling calorimeter is then:

% = % (5.7)
o, is conceptually related to tl.le calibration constant of the calorimeter. The
amount of charge detected in the calorimeter is proportional to the number of
particles, Np, created when the incident particle showers in the calorimeter. Np is
then related to the energy of the incident particle, E, by some calibration constant,

K.

Np =X F (58)

For a poisson distribution, the width of the distribution of Np for a sample of
measured incident particles with the same energy, E, is given by the following

relation.

o(Ne) _ V/Np
o (5.9)

Using the relationship between Np and the energy, E, the intrinsic energy resolu-
tion of a sampling calorimeter is then described by the following relation.
o(E) /&

il (5.10)

As previously described, jets are composed of many particles of different types and
different energies. A sample of jets of the same energy will have a distribution
of the fraction of the energy of the jet carried by electromagnetic particles, as
well as a distribution of the fraction of the energy of the jet carried by hadronic

particles with energies less than 10 GeV. If the calorimeter were perfectly linear as a
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function of energy, and had the same response to hadronic and to electromagnetic
particles, the energy resolution for a jet would still be described by & = 5—2—,
But, the calorimeter is non-linear for hadrons with energies less than 10 GeV, and
its response to electromagnetic particles is different from its response to hadronic
particles. All of this contributes to the width of the energy resolution.

The total energy resolution of a jet measured in the D@ calorimeter, is of the

following form.

oE) [NT §2
— == 4+ — 11
= R Y (5.11)

The noise term, N, describes the contribution to the energy resolution from the
distributions of instrumental noise, uranium noise, and other detector effects. The
sampling term, S, is primarily the intrinsic resolution of the D@ calorimeter. The
’constant’ term, C, is the contribution of fluctuations which are weakly dependent
on the energy of the jet, such as the non-linearities of the response.

The jet energy resolution was measured by studying the asymmetry of the
response of the calorimeter to dijet events [22]. The Er of the two jets in a dijet
event must balance. This balance is measured by using the jet asymmetry, which

is described by the following formula.

_Er1—En

A= T2 572
Er, + Er,

(5.12)

Er; is randomly chosen from one of the two leading jets, and Er, is the other.

The variance of the asymmetry can be described by the following relation.

2

2
2 o4 5, (5.13)

a —
Er BET2

. 94
47 |8Er,

If one assumes that Er = Ery = Er,; and op, = 0g,, = 0g,,, then the jet energy
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resolution as a function of Fr can be described in terms of o 4.

(”—EE;) =204 (5.14)

Using this relationship the jet energy resolution as a function of Er was measured
by studying the asymmetry of dijet events in regions of the jet pseudorapidity, 7.
The jet energy resolution was parameterized using the following formula.

o(E7) NT 5T
Y A 5.15
By B + B +C (5.15)

The resulting parameters are summarized in Table 5.1.

Table 5.1: The jet energy resolution measured in six regions of 7 is parameterized as
a function, ‘L(EETTl = g—; + E% + C?. The dominant term in this function is the term
T

associated with the sampling parameter, S. The noise and constant term are primarily
for improving the fit of the curve to the data.

7 Region N S C

Inl < 0.4]4.185|0.655 | 0.0

04 < |g] < 0.8]4.998]0.678 | 0.0
08 < g < 1.2[1799]0.964] 0.0
1.2 < Jg] < 1.60.003 | 0.949 | 0.0293
16 < |p < 2.0(3.402[0659| 0.0
20 < |p < 3.0 [4.664|0.433| 0.0

5.3.2 Jet Position Resolution

The jet position in pseudorapidity, 7, also has a distribution for a sample of jets
which are created from partons of a particular energy and position. This distribu-
tion is due to both physics and detector effects. A jet is defined in this analysis
as the sum of all the particles within a cone of radius R = {/Ap? + A¢* = 0.7.
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The position of a jet is determined based on the distribution of energy within
the jet cone. Fluctuations in the fragmentation of a jet, when combined with the
non-linearities and spatial non-uniformities of the calorimeter response, cause the
measured pseudorapidity of a sample of jets to fluctuate around its true value. The
jet position resolution is also due to the actual size of the calorimeter cells.

The jet position resolution was measured as a function of the energy of the
jet and the position of the jet in 5, by comparing Herwig Monte Carlo sam-
ples [23], [24]. The variance of the pseudorapidity distribution as a function of
energy and detector  , 0,(E,74), was determined by measuring the variance of
the distribution of the difference of the % of a jet formed from the Monte Carlo
particle information, and the reconstructed 7 of a jet formed from the Monte Carlo
calorimeter information. The variance was measured to be quite small, and was

approximated as o, = 0.06.
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Chapter 6
Analysis

Measuring a dijet angular distribution is essentially a counting experiment in which
we count the number of events which occur within each of a series of regions defined
by the mass and x of a dijet pair. The goal of this counting experiment is to
compare the measured dijet angular distributions to the distributions predicted
by perturbative QCD. For this comparison to have meaning, any inefficiencies
or backgrounds which may erroneously alter the measured distributions must be
removed or taken into account. This chapter describes the analysis which was
done to extract a measurement in which we have confidence from the collected
data sample. The main attributes of this analysis are the following:

¢ Event Selection: A series of requirements are placed on the collected data
sample in order to remove spurious events. Cosmic rays, accelerator effects, and
instrumental noise can create false energy deposits within the calorimeter. These
false energy deposits can be reconstructed as fake energy within a jet. Event
selection requirements are placed to avoid events containing these spurious jets.
Inefliciencies in the event selection requirements are taken into account through

an applied correction.
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e Acceptance Limits on Mass, x, and 70t Limits are placed on the
kinematic variables of mass, x, and 7005t in order to exclude regions which either
have large backgrounds or uncertain efficiencies. These are, in part, inefliciencies
due to trigger requirements and jet reconstruction, as well as the physical limits
of the detector.

e Systematic Errors: As a final step in the analysis, remaining systematic
errors are studied in order to understand the accuracy of the measurement. These

errors are primarily due to detector effects and the jet energy scale correction.

6.1 Event Selection

The data sample used to measure the dijet angular distributions was an inclusive
dijet sample, which is a sample of events with two or more jets. This section dis-
cusses the off-line selection requirements placed on the jet and overall event quality
of the data sample in order to remove or reduce the number of false events [25].
Corrections applied to the data sample, in order to account for selection require-
ment inefficiencies and in order to correct for biases in the event reconstruction,

are also discussed.

6.1.1 Requirements for Jet Quality

Jet quality requirements were placed on the EM fraction, the CH fraction, and the
hotcell fraction of a jet in order to remove events with fake or contaminated jets.
Only the information from the two jets with the highest E7 in an event was used
to determine the mass and x bin in which the event belongs. Therefore, events
were removed from the sample unless both of the leading two jets fulfilled the jet

quality requirements. There were no quality requirements placed on any other jets
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in an event.

e EM fraction: The fraction of the energy of a jet deposited in the elec-
tromagnetic layers of the calorimeter, the EM fraction, can be used to eliminate
electromagnetic objects, such as electrons and photons, from the jet sample. The
EM fraction was required to be greater than 0.05 and less than 0.95 in the central
and end cap calorimeters. In the inter-cryostat region, the electromagnetic layers
of the calorimeter are reduced or missing, so the EM fraction was only required to
be less than 0.95.

e CH fraction: As mentioned in Chapter 3, the main ring of the Fermilab
Collider runs through the coarse hadronic section of the calorimeter. In order
to remove events which were contaminated by main ring activity, the fraction of
the energy of a jet deposited in the coarse hadronic layers of the calorimeter was
required to be less than 0.4.

¢ Hotcell fraction: Occasionally, a calorimeter tower can include an extremely
noisy cell, a ‘hotcell’. A hotcell can contaminate a jet with false energy. Hotcell
contamination was removed from the data sample by requiring that the ratio of
the energy deposited in the calorimeter cell of the highest energy within a jet over
the energy deposited in the next highest cell within a jet be less than 10.

The efficiencies of the jet quality requirements have been measured [26], and
are approximately 97% to 92%. A correction was applied to each event in order to

correct for jet quality requirement inefficiencies.

6.1.2 Requirements for Event Quality

Event quality requirements were also placed on the missing E7 fraction and the
vertex of the interaction in order to remove events biased by detector defects.

e Missing E7 fraction: In a dijet event, transverse momentum must balance
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due to conservation of momentum. For high energy jets the magnitude of the
transverse momentum is approximately the same as the transverse energy (Pr =~
Er), so the E7 must sum vectorally to zero. Therefore, a requirement placed on
the imbalance in the E7 of a dijet event, the missing Er, is another method of
removing those events which have been contaminated by false energy deposits. The
fraction of the missing E7 in an event over the Er of the leading jet was required
to be less than 0.7.

¢ Interaction vertex: The calorimeter was built to project from a vertex of
0, but the interaction vertex has a gaussian distribution centered about 0 with a
o =~ 30cm. A vertex offset can cause an increase in detector effects which are due
to the fixed positions of the calorimeter towers. In order to reduce these vertex-
dependent detector effects, the vertex of the event was required to be within 50

cm of the nominal vertex.

6.1.3 Corrections for Event Reconstruction

The data were corrected for biases in the event reconstruction. In particular,
corrections were applied in order to replace jet energy lost in an event due to an
algorithm used to remove hot cells from the calorimeter, and to correct events with
incorrectly reconstructed vertices.

¢ ‘Hot cell killer’ correction: During the data acquisition run, there was a
requirement placed on-line which removed, from the total energy of a jet, the energy
deposited in cells which were labelled as noise by the ‘hot cell killer’ algorithm.
Although this ‘hot cell killer’ was effective in other physics analyses, it was found
that in the jet data sample, sometimes, energy was removed which belonged within
the jet. A correction was made to replace in a jet the energy from a cell labelled

as noise if it was within a radius R = 0.7 of the jet’s center and was less than 50%



63

of the jet’s total energy. This correction reduced the average missing F7 in these
events.

e Vertex correction: For those events in which multiple vertices were found,
occasionally an incorrect vertex was used which would cause an error in the calcu-
lation of the Er and the 7,¢ positions of the jets in the event. For this analysis,
the chosen vertex of the event was the vertex which had a minimum Hy, where
Hy is the scalar sum of the Er of the jets in the event. Using this method, a new

vertex was chosen in approximately 10% of the events.

6.2 Acceptance: Limits on Mass, x, and 7,0st

Acceptance can be defined as the number of events which are counted in a partic-
ular region of mass and x divided by the number of events which belong in that
region. In order to take an accurate measurement of a dijet angular distribution,
the acceptance must be very close to 100%. Inefficiencies which can not be taken
into account by a correction can cause the acceptance in a mass and x region to be
less than 100%. These inefficient regions are avoided through restrictions placed
on the mass, x, and 7bo0s:- Recall that the goal of this analysis is to measure
the distribution of the dijet center-of-mass scattering angle as a function of the
variable x in regions of the dijet invariant mass. Four mass bins were chosen in
order to maximize the number of events, while trying attain a maximum x range
of around 20 and retaining nearly 100% acceptance. The mass, X, and uoost limits
are described in Table 6.1. This section discusses how the mass, x, and fyoost limits

were determined.
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Table 6.1: Limits were placed on the mass, x, and 7uo0s; in order to have 100% accep-
tance in the regions in which the dijet angular distributions were measured.

Min ETl (GCV) Mass (GBV/CZ) Xmaz |7’:nax| |"7boostmax|
55 260 < My < 425 20 1.5 1.5
120 475 < M;; < 635 13 1.3 1.5
120 M;; > 550 | 18 1.45 1.5
175 M;; > 635 11 1.2 1.5

6.2.1 Limits on Mass and y

For each jet trigger, the Er of the leading jet in an event was required to be above
a minimum value to exclude regions in which the trigger was inefficient. Using the
restrictions on Er, the corresponding limits in mass and x were calculated in order
to restrict the measurement to those regions in which there was 100% acceptance.
For each jet trigger, a mass region was chosen which would maximize the use of
the statistical sample given by the jet trigger while also maximizing the range in x.
The limits on mass and x were calculated using the kinematic relationship between
mass, X, and Er, which is visualized in Figure 6.1. The maximum x with 100%
acceptance in a given mass range was determined from the Er requirement placed

on the leading jet using the following formula.
M2, = 2B}, (cosh(In(x)) + 1) (6.1)

In this formula, the Er’s of the two jets are assumed to be identical and equal to

the Er of the leading jet in order to fully exclude regions of x in which acceptance

was not 100%.
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Figure 6.1: In the mass versus x plane, the curves shown are contours of constant Er
which correspond to the off-line Er thresholds used in this analysis. The simplest form
of uniform acceptance in this plane is a rectangle. For a chosen mass region, the limit
on x corresponds to the intersection of the lower mass limit and the E1 contour. The
two hatched regions shown are two of the mass bins chosen for this analysis.
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6.2.2 Limits on 7peost

The 7 range in which the leading two jets could be measured was restricted to
7] < 3.0 due to the finite size of the calorimeter and our current abilities to
properly measure 77 dependent detector effects. A limit was placed on the fyo0st of
the dijet pair in order to restrict the measurement of the dijet angular distribution
to an angular region where there is 100% acceptance. Recall that by transforming
the measured 7’s of two leading jets in the lab frame to n* in the center-of-mass
frame, the shape of an angular distribution becomes independent of the boost of
a dijet pair, so we can choose an arbitrary range in fpoost-

The fyoos: limit was calculated using the relationship between p0s:, 7*, and
the maximum laboratory 5 allowed in this analysis, fmar. First, we converted the

x limit into a limit on 7*, using the relation defined in Chapter 2:
x = el (6.2)

In the 7, versus 7, plane, contours in 7,0, and 7™ appear as a grid of perpendicular
lines, as shown in Figure 6.2. 7; and 7, are the n’s of the leading jet and the second
leading jet, respectively. Given the limit on #%*, the limit on #peos. s simply the
value that limits the distribution to a rectangle which resides completely within
the limits placed on 7; and 7,. Mathematically, this limit can be described by the

following formula:

|nb005t| + lﬂ*’ < ]nmax‘ (6.3)

where fmax = 3.0. The Muo0se imit is kept at 1.5 for all mass bins for simplicity,

although a larger 7,005 cut is possible for some mass bins.
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Region of 100%
acceptance —n*

Figure 6.2: The 7’s of the two leading jets were required to be less than 3.0. For a
maximum 7* of 1.5, the 7,05t Was chosen to be less than 1.5 to restrict the measurement
of the dijet angular distribution to a region with 100% acceptance.
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6.3 Systematic Errors

A systematic error is defined as an error introduced by an intrinsic inaccuracy in
the experimental system. The purpose of this analysis is to compare the shapes
of the experimental angular distributions of parton-parton scattering to those pre-
dicted by perturbative QCD. In determining the systematic error on the measured
dijet angular distributions, only those experimental factors which alter the shapes
of the dijet angular distributions are of interest. There are two main ‘categories
of experimental factors which contribute to the systematic error: biases due to
event selection requirements and corrections, and inaccuracies in measuring the
properties of jets. Most systematic errors due to spurious events and detector ef-
fects were removed through the event selection requirements and corrections. But,
these requirements and corrections themselves may cause a bias in the angular
distributions and must be taken into account in the systematic error. Some of
the inaccuracies in measuring the properties of jets are due to the jet algorithm.
The experimental factors associated with the jet algorithm which contribute to the
systematic error are the jet splitting and merging, and the jet  bias. Additional
experimental factors which contribute to the systematic error are those associated
with measuring the E7 of a jet: the jet energy scale correction, the jet energy
resolution, and the n-dependence of the energy scale. This section discusses how
the systematic error on the shape of each distribution was determined. Table 6.2
shows, for each mass region, a complete list of each experimental factor which
contributes to the systematic error, the contributed systematic error averaged over
the number of bins in x, and the maximum systematic error. Most systematic
errors due to the event selection requirements and the inaccuracy of the measure-
ments of the properties of a jet are minimal in comparison to the statistical error,

which is approximately 5%. Some experimental factors, such as the error due to
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jet splitting and merging, contribute as much as 9% to the systematic error in par-
ticular regions of y. These may be fluctuvations due to statistical error that were
not removed by our method of determining the systematic error. The dominant
systematic error is due to the residual 77-dependence of the energy scale. The final

systematic error is the sum in quadrature of the error of each contributing variable.

Table 6.2: Shown are the experimental factors which contribute to the systematic error
for each massregion. The approximate error on the shape of the dijet angular distribution
is shown as the maximum error and the error averaged over the number of bins in x in
the distribution. The numbers shown do not fully describe the systematic error. The
error is only fully described by the shape of the systematic error curve as a function of
X-

Exp. Factor | 260 < Mj; < 425 | 475 < Mj; < 635 | My > 550 | My; > 635 |

Max Avg Max Avg Max | Avg | Max | Avg
Jet & Evt Quality | 4% 1% 3% 1% 4% | 2% | ™% | 3%
Quality Efficiency | 2 1 2 1 3 1 4 2
Mult. Interactions 2 1 3 1 4 1 2 1
Jet Split & Merge | 3 2 3 1 9 3 8 4
Jet Energy Scale | 4 1 2 0 3 0 7 3
Jet Resolution 3 1 4 2 7 3 4 1
7 bias 3 1 2 1 4 1 4 2 |
n Dep E Scale | 4 1 6 2 9 5 | 10 4 |

6.3.1 Determination of the Systematic Error

In order to determine the systematic error, the influence of each experimental
factor on the shape of the angular distribution was studied. A comparison of the
shape of the nominal distribution to that of a test distribution with(or without)
a requirement or correction based on an experimental factor was made by looking
at the ratio of the two distributions (test over nominal). For instance, the effect

on the shape of the angular distribution due to the jet quality requirements was
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studied by looking at the ratio of the angular distribution without jet quality
requirements over the nominal distribution, as shown in Figure 6.3. It is difficult
to determine any effect on the shape from this ratio due to the large statistical
errors. In order to determine any systematic change in shape, we fit the test and
nominal distributions with a function: F = A+ Bx + C/x + D/x* + E/x®. This
function was chosen because the general form of the dijet angular distributions
predicted by QCD contains factors of x and % The X—12 and xl“ terms were added
to improve the fit. The systematic error in percent was extracted from the ratio of
the two parameterized curves, shown in Figure 6.4, by assuming that the error is

symmetric, and calculating the absolute value of one minus the ratio as a function

of x.

6.3.2 Systematic Errors Due to Event Selection and Cor-

rections

This section discusses the contribution to the systematic errors of the jet and event
quality requirements, the jet and event quality efficiency corrections, and multiple
interactions.

e Jet and event quality requirements: The jet quality requirements are
necessary for removing false energy deposits from the event sample. Even so, their
effect on the shape of the angular distribution is , on average, 2%. The missing Er
requirement and the vertex requirement are also necessary to retain a clean event
sample. Their effect on the angular distribution is, on average, 1%.

e Jet and event quality efficiency corrections: The jet and event quality
efficiency corrections are approximately 92 - 97%. The effect on the shape of the
angular distribution is, on average, 1%.

e Multiple Interactions: Recall that the Tevatron does not specifically col-
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Figure 6.3: Because of large statistical errors, it is difficult to see any change in
shape by looking at the ratio of two distributions. Shown here is the ratio of the
angular distribution without jet quality requirements over the nominal distribution.
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lide individual protons with individual antiprotons, but bunches of protons circling
counterclockwise encounter bunches of antiprotons circling clockwise. These two
bunches are collimated at the interaction point in order to facilitate collisions. Be-
cause of this, the number of interactions is not restricted to one. The probability
of a second, or third, interaction increases as the luminosity increases. A second
interaction is, with high probability, a minimum-bias interaction, which is char-
acterized by two jets at very low Er’s (of a few GeV). Multiple interactions in
an event can cause confusion in measuring the properties of a single interaction.
Many analyses exclude events with multiple interactions in order to avoid this pos-
sible error. Events with multiple interactions are excluded by utilizing a multiple
interaction tool which discriminates between single and multiple interactions. We
chose not to place a requirement on the number of interactions in an event because
the efficiency of the multiple interaction tool is not well understood, and may have
some 7] dependence which would bias the angular distribution.

The errors introduced by a secondary interaction were studied in order to de-
termine the effect of including events with multiple interactions. A secondary
interaction adds approximately 0.6 GeV of Er per unit of , ¢. Since the angular
distributions are measured in regions in which the E7r’s of the two leading jets are
in excess of 50 GeV and are often above 100 GeV, the effect on the Er’s of the two
leading jets due to this additional energy is negligible. It is possible that a second
interaction may produce a vertex which is incorrectly reconstructed as the primary
vertex for the leading two jets. This would cause an error in the measured 7 posi-
tions, as well as the measured Ep’s of the jets. We studied the effect of switching
from the primary vertex to the secondary vertex if the secondary vertex minimizes
the Hr in the event. This had a negligible effect on the angular distribution.

It is also possible that the vertex produced by a second interaction is the only

vertex reconstructed in the event. This would cause an error in the measured 75
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positions and Er’s of the jets. We studied the possibility of multiple interactions
affecting the angular distribution in this manner by the following method. For 20%
of events, we switched the vertex to a randomly chosen vertex. The new vertex
was based on the measured vertex distribution, which is a gaussian distribution
with a mean of approximately 0 and a width, o =~ 30cm. We then recalculated the
7 positions and E7’s of the two leading jets in the event and measured the angular
distribution. The percentage of events in which the vertex was switched to a new
vertex was determined based on the approximate efficiency of vertex reconstruction
for events with large Er jets (€yerter = 70%), and the approximate percentage of
multiple interactions in the data used for this analysis (Np; = 60%). The effect
on the angular distribution is small and on average 1%.

Figure 6.5 shows the resulting ratio curves of the systematic studies of the

errors due to the event selection requirements and corrections.

6.3.3 Systematic Errors Due to Accuracy of Jet Measure-

ment

This section describes the contribution to the systematic error due to the splitting
and merging attributes of the jet algorithm, the overall energy scale correction,
the resolution, and the 7 bias.

e Splitting and merging: The jet algorithm used in this analysis allows for
the splitting and merging of jets which overlap. This can cause a shift in the
measured 7 of the jet, and therefore affect the angular distribution. The effect on
the shape of the distribution due to removing those events in which either of the
leading two jets were split or merged is, on average, 2%.

e Overall energy scale: The error on the overall energy scale correction

described in Chapter 5 does not affect the shape of the distribution because a
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Figure 6.5: Ratios of parameterized curves showing effects of event selection re-

quirements and corrections for two of the four mass ranges.
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shift in the overall energy scale shifts the entire distribution in mass. The angular
distribution changes very slowly with mass, so a small shift would not cause a
significant change in the shape. The effect of the error of the overall energy scale
correction on the shape of the angular distribution is, on average, 1%.

¢ Jet resolution: The resolution of the measurement of a jet’s energy can also
affect the angular distribution. The effect of resolution was determined by looking
at the difference between the smeared and unsmeared theory calculations, using
the resolutions described in Chapter 5. The effect of resolution on the shape of
the angular distribution is, on average, 2%.

e 7 bias: An 7 bias due to our jet reconstruction algorithm was studied by
comparing reconstructed Herwig jets to particle level jets. A correction based on
this study [23]| was applied to the data and the ‘corrected’ angular distribution was
compared to the uncorrected distribution. The difference was, on average, 1%.

Figure 6.6 show the resulting ratios of the systematic studies for jet splitting

and merging, the overall jet energy scale, the jet resolution, and the jet 5 bias.

6.3.4 Systematic Error Due to a Residual 7 Dependence of
the Energy Scale

Measurements of the dijet angular distributions are dependent primarily on the 5
positions of the leading two jets, so the systematic variables which strongly affect
the shapes of the dijet angular distributions are those which are 7 dependent. The
final systematic variable studied was a residual 7 dependence of the energy scale
factor. This section discusses how a residual n dependence of the emnergy scale
could affect the shape of a dijet angular distribution, the determination of the
7 dependence, and the determination of the systematic error associated with the

residual  dependence.
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The Systematic Effect of a Residual 7 Dependence of the Energy Scale

The energy scale factor affects the shape of an angular distribution through the
choice of mass bin. Recall that the energy scale correction is the proportionality
constant which converts the energy measured in the sampling calorimeter to the
true energy. An error in the overall energy scale does not cause a significant error
in the shape of the angular distribution because every region of x is shifted the
same amount in mass, and any difference in cross section is taken into account
by the normalization of the distribution. A small shift in mass will not cause
a significant change in the shape of the angular distribution. But, if there is a
residual 7 dependence in the energy scale factor which is not accounted for in the
energy scale correction, a significant error in the shape of an angular distribution
would be introduced. As an example, consider two dijet events of the same mass.
For the first dijet pair, both jets are in the central region (|| < 1) and the pair
has a x of 2. For the second pair, both jets are in the forward region (|5 > 1)
and the pair has a x of 15. If the energy scale correction converts the energies
of the jet pair in the central region to the true energies, then the measured mass
of the pair will be the true mass. If the energy scale correction does not convert
the energies of the jet pair in the forward region to the true energies, but to lower
energies, then the measured mass of the pair will be lower than the true mass.
The cross section of dijet events drops rapidly with increasing dijet mass. The
mass bin is selected according to the measured mass; thus, for eventsin the forward
region with a higher true mass than was measured, j—: for the selected mass range
will be too low. Therefore, fewer events will be measured in the x region which
corresponds to forward jets. For events in the central region with a correctly
measured mass, j—: for the selected mass range will be the true cross section and

the correct number of events will be measured in the x region which corresponds
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to central jets. A small error in the energy scale correction can cause a large shift
in the dijet mass cross section, and hence a large error in an angular distribution

measurement.

The Determination of the Residual  Dependence of the Energy Scale

In order to determine the residual 7 dependence of the energy scale, the principle
of dijet balancing was used. As previously described in Chapter 5, the Er’s of
the jets in a dijet event must vector sum to zero. This section describes the
determination of the residual  dependence of the energy scale through measuring
the dijet asymmetry, the photon-jet response factor, the Er dependence of the
response factor, the dijet response factor, and the resolution dependence of the
dijet response factor.

eDijet asymmetry: As a preliminary step, all E values were corrected using
the standard D@ correction factors. Then, the asymmetry of the Er’s of a dijet
pair was measured as a function of the 7 of a probe jet while the other jet remained

central (|| < 0.5). The asymmetry is defined as:

A . 2(ETcentral - ETPTObe)
JJ =
(ETcentral + ETPTObe)

(6.4)

Each event used to measure the asymmetry was required to have two and only
two jets with an Ej greater than 8 GeV; the Er of the leading jet was required
to be greater than the corrected E7 limit in order to remove any trigger bias; and
one jet in the event was required to have a central 5 (|5| < 0.5). The asymmetry
measured as a function of the 7 of the probe jet showed a significant 7 dependence.
It was thus determined that there was a residual 7 dependence in the energy scale.

eThe response factor for photon-jet events: In order to measure the

residual 7 dependence of the energy scale, the corrected calorimeter response was
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measured in a similar manner to the Rpqq of the energy scale correction described
in Chapter 5. The response was measured versus the 7 of the probe jet rather
than the energy in order to measure the 7 dependence of the response relative to
the response in the central n region. A photon-jet sample was used to measure
the response, in which the photon was required to be central (|n| < 0.5) and have
an Er greater than the lowest Er threshold used in this analysis, 55 GeV. The
response was measured using the missing Er projection fraction, MPF, which is

defined by the following formula.

MPF = 1.0 x % (6.5)
Y

For historical reasons, the response Rj,q was not measured to determine the resid-
ual 7 dependence of the energy scale. A ‘response factor’ R, was measured. The

response Rp,q is defined in Chapter 5 by the following formula.

Rog—14 Frof (6.6)
Er,
The response correction to the Er of a jet would be:
ETmeasure 'E mea sure

Rhad B .’T on
1+ JE—EH 1

For a small MPF, E—ET;:? < 1, the response correction can be approximated,

through a Taylor expansion, as:

ETmeasured ETmeasurecl iT o7
= = ~ Ermeasured(l — Y=FE 6.8
Rhad 1 + ET'fl7 ( ET-Y ) TI?‘TI ( )

E1y
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We define the response factor as:

Ry=1- ——Eg;j” (6.9)

R, was measured as a function of 7 using a sample of energy corrected photons
and jets. A significant residual 7 dependence of the energy scale was found and a
correction was determined to calculate the final Er of a jet as a function of 7. The

correction is described by the following formula.

ETfinal = ETmeasurean (610)

The photon-jet response factor is shown in Figure 6.7. When the photon jet re-
sponse factor was applied as a correction to the jet data sample, the 7 dependence
of the dijet asymmetry was removed for the data from the trigger which corre-
sponded to the 55 GeV Er threshold. But, an # dependence of the dijet asymme-
try remained for the jet data samples corresponding to triggers with greater Er
thresholds. This was evidence that the response factor R, was dependent on the
Er of the jets.

eThe F; dependence of the response factor: An Er dependence of the
response factor can be explained by the fact that as jet Er increases the fraction
of energy clustered in the center of the jet increases. So, for instance, if there is
a defect in some portion of the calorimeter, the higher the jet Er, the higher the
fraction of the jet Er affected by the defect, and the larger the overall effect. We
were unable to confirm the E; dependence of the response factor with a photon-jet
sample because of the lack of photon data samples with Er’s above 100 GeV. To
determine the E7 dependence we needed to measure the response factor with a

dijet sample.
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Figure 6.7: The photon-jet response factor versus 7.

¢ The response factor for dijet events: To determine the Er dependence
of the response factor, R, was measured using the dijet data samples for four Er
thresholds: 55, 90, 120, and 175 GeV. The requirements placed on the sample
which was used to measure the response factor were: the event contained two and
only two jets above 8 GeV; one of the jets was central (|7| < 0.5); and the leading
jet was required to have an Er greater than the corrected Er threshold for its
corresponding trigger. The response factor was measured as a function of 7 for
each of four thresholds, and the result is shown in Figure 6.8

The response is commonly measured with photon-jet events, as opposed to
dijet events, because photons have a better resolution and are better measured
by the calorimeter. In order to check any differences between using a photon-jet
sample and a dijet sample, the dijet response factor was compared to the photon-
jet response factor for the 55 GeV threshold, and the results were the same for 7’s
less than approximately 2, as shown in figure 6.9

eThe resolution dependence of the response factor: When one looks at
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Figure 6.8: The dijet response factor versus 7 for four trigger samples.
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Figure 6.9: The response factor versus 7 for dijet(parameterized) and photon-
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the response factor measured beyond an 7 of approximately 2, the response factor
appears to increase rapidly. This seems unphysical because the response of the
central calorimeter versus the response in the end cap calorimeter has been studied
and does not show such a large effect. The effect is due to resolution. The resolution
of a jet is a function of the jet’s energy. The resolution is primarily dependent on
the sampling term, which can be approximated as o ~ 0.8/E. As an example, if
we require a jet with 120 GeV in Er, for a jet at an 7 of 0, the o =~ 9 GeV. This
corresponds to a g, ~ 9 GeV. For a jet at an 7 of 2, a jet with 120 GeV in Er
has 450 GeV in energy. This corresponds to a o ~ 17 GeV, which corresponds to
op, =4 GeV. As a function of E7 the resolution is wider in the central region than
in the forward region. As the probe jet goes forward in 7, the energy increases.
As a jet goes forward, it rapidly approaches the kinematic limit imposed by the
center-of-mass energy of the Tevatron. Eventually, the jet reaches an  at which
the probability of a jet pair with the required E7, say 120 GeV, is less likely to
occur than a jet pair with 90 GeV in Et in which a central jet fluctuated up to 120
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GeV and passed our minimum Er requirement. The increase in the response factor
is due to this resolution effect. This was qualitatively confirmed by measuring the
dijet asymmetry (2—&(;%%1) versus 7] using leading-order JETRAD, for smeared
and unsmeared data, as shown in Figure 6.10.

Another concern was that the resolution was responsible for the Er dependence
of the response factor measurement. We looked at leading-order JETRAD with
smearing for each of our different thresholds. At an 7 of 1.5, where the large 7
dependence of the response factor occurs, the effect of smearing on the monte carlo
is the same regardless of the Er threshold applied. So, the Er dependence of the
response factor measurement is unlikely to be from resolution effects. To deal with
the resolution effect for jets around an 7 of 2 and above, we applied a mass cut
to the data used to measure the response factor. The mass cut is the cut we use
in our analysis which corresponds to the minimum Er for each trigger. The mass
cut removes these events in which one jet from a low Er pair fluctuates to pass
our minimum FE7 cut, because it essentially requires that the product of the 2
Er’s be greater than a threshold. The response factor with an applied mass cut
was measured and parameterized, as shown in Figure 6.11. This parameterization
was compared to the parameterization of the response factor without a mass cut
applied. In the regions below an 7 of 2, the two curves agree fairly well, as shown

in Figure 6.12.

Determination of the Systematic Error

The parameterization for the response factor measurement with the applied mass
cut was used to correct the data sample. Since the cause of the n dependence of the
energy scale is not yet known, a conservative error is placed on the response factor

correction as the difference between a correction for a trigger and the correction for
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Figure 6.10: The effect of smearing on the dijet asymmetry for four triggers. Shown
are the results of Monte Carlo studies.
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the lowest trigger using the photon-jet data. The error on the angular distribution
due to the response factor correction error is determined by the angular distribution
measured with the photon-jet correction over the angular distribution measured
with the nominal correction for that mass bin and is, on average, 3%. We also
place a small error for the difference between the angular distribution corrected
by the response factor measured without an applied mass cut, for 7 < 2, and the
angular distribution corrected with the MPF measured with the mass cut which
is, on average, 1%. Figure 6.13 show the resulting ratio of the angular distribution
calculated by using the photon-jet response factor correction over the nominal

distribution which uses the dijet response factor correction.
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“ ‘. e 1 K\
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Photon—Jet Response Factor Corrected over Nominal

Figure 6.13: Ratios of parameterized curves showing effects of the photon-jet cor-
rected angular distributions over nominal distributions.

6.4 Interpretations of a Shape Comparison

LdN

This analysis measures a normalized distribution dx

for a region in invariant
mass and Mpeos.. 10 determine how well the shapes of two normalized distributions
agree, one must take into account the comparison of each point in the distribution.

Any disagreement between a measured and a theoretical point in the distribution
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can not be interpreted solely as a departure in that particular region in x, but
must be considered as a possible shift in the full distribution. The error on the
measured distribution comes from two sources: statistical error, and systematic
error. The statistical error is caused by the fact that the measured distribution is
extracted from a finite number of events. The statistical errors can explain small
deviations in the measured distribution from a smooth curve. The systematic error
can explain overall shifts in the distribution, as well as errors in individual regions
in x.

Consider an exaggerated example of systematic error, in which the angular
distributions were not corrected for a residual # dependence of the energy scale.
Figure 6.14 shows a comparison of a nominal angular distribution and an angular
distribution which has not been corrected for a residual 7 dependence of the energy
scale. The effect of this error is a decrease in the measured number of events for
larger values of x. The normalization constant  is one over the sum of the
total number of events in the distribution. For the uncorrected distribution, the
normalization constant is larger than for the nominal distribution since the total
number of events is smaller. When the uncorrected distribution is then normalized,
the lower values of x shift up in relation to the nominal distribution, while the larger
values of x appear to agree. Any systematic error will affect the distribution in
this manner.

A systematic error band can be interpreted as the effective range that the
shape of the distribution can shift, given that the final distribution is normalized.
If an error was introduced, the points in the distribution would shift by a series
of positive and negative values that would form a curve as a function of x which
would fully reside within the systematic error band centered about zero. For the
distribution to remain normalized, the area between this curve and the centerline

at zero must sum to zero, given that the area above the curve is defined as positive,



91

and the area below the curve is defined as negative. Using the previous exaggerated
example, not correcting for a residual 7 dependence of the energy scale would result

in a shift in the distribution described by a curve shown in Figure 6.15.
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Figure 6.14: Shown is a comparison of a nominal angular distribution and an angular
distribution which has not been corrected for a residual 77 dependence of the energy scale.
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Chapter 7

Results

The goal of this analysis is to compare the shapes of the observed dijet angular
distributions to those predicted by perturbative QCD. Such a comparison is im-
portant because it measures how well predictions of perturbative QCD describe
the distributions produced by interactions of partons. This chapter will discuss the
comparison of the measurements of the dijet angular distributions to the leading-

order and next-to-leading-order predictions of QCD.

7.1 Comparison to Theoretical Predictions

The dijet angular distributions were compared to predictions of perturbative QCD
in four mass bins. The predictions were generated using JETRAD with the
CTEQ3M parton distribution function. Renormalization scales were set to Er
and %1 of the leading jet in an event. The Er’s and 7’s of jets in the generated
events were smeared by the resolutions described in Chapter 5 for comparison to

the data. As discussed in Chapter 6, the effect of resolution on the shape of the
dijet angular distribution is small.
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The predicted shapes depend on the nature of higher-order corrections. The
shapes predicted by leading-order QCD are significantly different than those pre-
dicted by next-to-leading-order QCD. A comparison of the observed dijet angular
distribution in the mass range of 260 < Mj;; < 425 GeV/c? to predictions of
QCD for leading-order and next-to-leading-order terms generated with a renor-
malization scale of Er are shown in Fig. 7.1. Comparisons for the mass ranges
of 475 < M;; < 635 GeV/c?, M;; > 550 GeV/c?, and M;; > 635 GeV/c? are
shown in Figs. 7.2, 7.3, and 7.4 respectively. The predictions of perturbative QCD
are consistent with the data in all four mass bins, however, overall, the data agree
somewhat better with the next-to-leading-order predictions.

A measure of the dependence of the predictions of perturbative QCD on higher-
order terms is given by the dependence of the theory on the choice of renormaliza-
tion scale. The shapes of the next-to-leading-order predictions of the dijet angular
distribution show a dependence on the choice of renormalization scale that is on
the order of a few percent. A comparison of the dijet angular distribution in
the mass range of 260 < M;; < 425 GeV/c? with predictions of QCD for next-
to-leading-order generated with a renormalization scale of p = Er and p = %1
is shown in Fig. 7.5. Comparisons for the mass ranges of 475 < Mj;; < 635
GeV/c%, M;; > 550 GeV/c?, and M;; > 635 GeV/c? are shown in Figs. 7.6, 7.7,
and 7.8, respectively. Within systematic uncertainty, the predictions of QCD for

both renormalization scales agree with the data.
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Figure 7.1: Shown is a comparison of the leading-order and next-to-leading-order pre-
dictions of QCD to measured data in a mass range of 260 < My; < 425 GeV/c?. The
renormalization scale used was the Er of the leading jet in the event. The systematic
error band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.2: Shown is a comparison of the leading-order and next-to-leading-order pre-
dictions of QCD to measured data in a mass range of 475 < M;; < 635 GeV/c?. The
renormalization scale used was the Er of the leading jet in the event. The systematic
error band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.3: Shown is a comparison of the leading-order and next-to-leading-order pre-
dictions of QCD to measured data in a mass range of M;; > 550 GeV/c2. The renor-
malization scale used was the E7 of the leading jet in the event. The systematic error
band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.4: Shown is a comparison of the leading-order and next-to-leading-order pre-
dictions of QCD to measured data in a mass range of M;; > 635 GeV/c2. The renor-
malization scale used was the Er of the leading jet in the event. The systematic error
band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.5: Shown is a comparison of the next-to-leading-order predictions of QCD
generated with renormalization scales of the E7 and the %1 of the leading jet in an
event to measured data in a mass range of 260 < M;; < 425 GeV/c? The systematic
error band is shown at the bottom. Small oscillations are due to statistical uncertainty.



101

X
I r ® DATA
= 012 7 _JETRAD NLO CTEQ3M ET
— e JETRAD NLO CTEQ3M ET/2
> I 475 < MASS(GeV/c?) < 635
0.1 — l‘
0.08
0.06 —
I Systematic Error
r 1N e
0.04 / .................................................................................
] 1 1 | [ 1 i 1 I 1 1 1 | 1 1 i I 1] 1 1 ! 1 1 1 I 1
0 2 4 6 8 10 12

Figure 7.6: Shown is a comparison of the next-to-leading-order predictions of QCD
generated with renormalization scales of the E; and the %’C of the leading jet in an
event to measured data in a mass range of 475 < M;; < 635 GeV/c?. The systematic
error band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.7: Shown is a comparison of the next-to-leading-order predictions of QCD
generated with renormalization scales of the E7 and the %1 of the leading jet in an
event to measured data in a mass range of M;; > 550 GeV/c2. The systematic error
band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Figure 7.8: Shown is a comparison of the next-to-leading-order predictions of QCD
generated with renormalization scales of the E; and the %1 of the leading jet in an
event to measured data in a mass range of M;; > 635 GeV/c?. The systematic error

band is shown at the bottom. Small oscillations are due to statistical uncertainty.
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Chapter 8

Quark Compositeness

Any observed departure from the predictions of QCD may indicate that quarks are
composite states of more fundamental particles. In the mass region of M;; > 550
GeV/c?, the shape of the dijet angular distribution is sensitive to quark composite-
ness at energy scales of A, &~ 1.0 TeV. In this chapter, we will present a comparison
of the measured dijet angular distributions to next-to-leading-order predictions of
QCD that have an added term for quark compositeness, as described in Eq. 2.17
(refer to Chapter 2), and we will discuss the limit we obtain on the minimum value

of A, sustained by the data.

8.1 Comparison to Predictions of QCD Includ-
ing Quark Compositeness

A comparison of the measured dijet angular distributions to the predictions of
next-to-leading-order QCD with an added term for quark compositeness in the
mass region of M,; > 550 GeV/c® is shown in Figure 8.1. The predictions were

generated as described in Chapter 2 for values of A, from co to 1.0 TeV. The next-
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to-leading-order predictions of QCD with a composite energy scale of A, = oo show
the best agreement with the data. We do not observe any significant discrepancies

from the expectations of QCD.

8.2 Calculation of a Limit on A,

We can use the data to place a limit on the energy scale A.. We calculate a
95% CL lower limit as a function of A, based on the probability that the angular
distribution predicted by QCD (with an added contact term) is consistent with the
measured angular distribution. The lower limit on A. at a 95% confidence level is
the value of A, required to contain 95% of the integral of the probability density.

There are difficulties associated with calculating a limit based purely on the
shape of the measured dijet angular distribution because of correlations of uncer-
tainties between the points as a result of normalization. In order to minimize these
difficulties, we chose to compare a ratio of the number of events observed in the
region 1 < x < 6, to the number of events found in the region 6 < x < 18, which
removes point-to-point correlations due to normalization. This ratio was calcu-
lated for the mass region M;; > 550 GeV/c? and had the value of Ryqe = 0.37.
The uncertainty on the measured ratio was determined by adding the statistical
and systematic errors in quadrature. The systematic error was determined by com-
paring the calculated ratio for the nominal distribution to the calculated ratio for
the distribution associated with the error on the 7 dependence of the energy scale,
the dominant error. Using the difference between the two ratios as the systematic
error, the total error was estimated as A Ryq, = 0.03.

The ratio Rjneory Was calculated for a series of theoretical predictions as a
function of A.. The statistical uncertainty of the ratio of the theoretical predictions

is small and was ignored. There are uncertainties associated with the theoretical
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Figure 8.1: Shown is a comparison of data with the next-to-leading-order predictions
of QCD with an added term for quark compositeness at energy scales A., in a mass
range of M;; > 550 GeV/c2. The systematic error band is shown at the bottom. Small
oscillations are due to statistical uncertainty.
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predictions due to the dependence of the distribution on the renormalization scale.
In order to avoid the complications associated with including these uncertainties in
the calculation of a limit, the predictions associated with each renormalization scale
were treated as separate theoretical models. Since the next-to-leading-order QCD
predictions generated with a renormalization scale of p = Er best modeled the
data, Ripeory Was calculated from this set of predictions. The ratios corresponding
to these theoretical predictions as a function of A, is shown in Table 8.1

The limit on A. was calculated in the following manner. Given a particular
data set, the probability of a particular theoretical prediction can be determined
using a Bayesian technique for setting confidence intervals [27]. Defining P(A|BI)
as the probability of event A given event B and I, where I has all relevant prior

information in the problem, Bayes’ Theorem states that

P(B|AI)P(A[I)

P(A|BI) = 8.1

(4150 = 0 (8.1)
The denominator P(B|I) is determined by a normalization:

Y P(A|BI)=1" (8.2)

allA

For continuous parameters, the normalization is the integral over the relevant
parameters. P(B|AI) is referred to as the likelihood. P(A|I) is referred to as the
prior probability. P(A|BI) is referred to as the posterior probability.

The value of the theoretical ratio depends on the value of A., and so we will
therefore determine the limit as a function of A.. As discussed in Chapter 2,
the effect of the added contact term for quark compositeness on the dijet angular
distribution is approximately proportional to 7\1%— We will therefore determine the

limit as a function of a more natural parameter v which is defined as v = A%
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Table 8.1: The ratio of Nﬁ((elé%)' for the theoretical predictions of QCD generated

with a renormalization scale of £ with an added term for quark compositeness at
various energy scales, A..

A, (TCV) Rtheory
oo 0.385
10 0.386
5.0 0.388
3.0 0.389
2.5 0.397
2.4 0.399
2.3 0.402
2.2 0.401
2.1 0.404
2.0 0.413
1.95 0.414
1.9 0.415
1.85 0.418
1.8 0.423
1.75 0.426
1.7 0.433 |
1.65 0.439
1.6 0.460
1.55 0.453
1.5 0.480
1.4 0.501 |
1.0 0.757 |
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The posterior probability we wish to determine is of the form:

_ P(BuaD)P(r1D)
PO\ Raata) = 75 P(RuatalyI) P(v|1)dy

(8.3)

The limit on 7, which translates to a limit on A, is determined in a series of steps.
We first define the likelihood function and the prior probability. We then integrate
the product of the likelihood function and the prior probability over a range in
from 0 to oo in order to determine the normalization. Finally, the limit on ~ is the
value for which the integral of the normalized posterior probability from 0 (which
corresponds to a A. = 0o, or no compositeness) to v is 0.95.

o Definition of the likelihood function: We assumed that, given the dis-
tribution of v is a gaussian with a standard deviation equal to the error on Ry,
ARgata = 0 = 0.03, the likelihood of measuring Ry, can be written as:

(- H(Ba ) 64)

P(Rdata|71) =

1
V2ro
where Ryyia = 0.37, 0 = 0.03, and f(7) is defined by Ripeory and is a function of +.
f(y) was determined by linearly interpolating between the Ripeory values as shown
in Table 8.1.

e Definition of the prior probability: The prior probability represents all
prior knowledge of the distribution of the energy scale for quark compositeness in
terms of 7. Since we have no knowledge of this probability other than the fact that
v is physically constrained to be between 0 and oo, and that values of A, lower
than 1.0 TeV have been excluded, we define the prior probability as a ‘flat prior’,

as a constant in the range of v from 0 to 1.0 and zero elsewhere. This means that,

a priori, any value of v less than 1.0 is equally likely.
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¢ The normalization: The normalization Z was determined by integrating

f(*r)
7 = Rata=iOY? 8.5
f 2M . (8.5)

¢ Determination of the limit on A.: The limit on v at a 95% confidence
level was determined as that value for which the following was true:

f(;’ —1—6_%(M)2d

V2o _ '
~ = 0.95 (8.6)

The limit for 4 (y < 0.31) was converted to a limit on A, which, at the 95%
confidence level, is A, > 1.8 TeV.

In order to obtain a more realistic limit on the value of A., we must take into
account the dependence of the next-to-leading-order predictions on the renormal-
ization scale. In order to avoid the complications of folding in the dependence of
the limit on the renormalization scale, we chose to treat the theoretical predictions
for each renormalization scale as a separate model and to calculate a limit on A,
for each. The difference between the two limits will provide an indication of the
dependence of the result on the uncertainty in renormalization scale. The identical
procedure as used for u = Er was used to calculate a limit on A, for a renormal-
ization scale of u = %11 The ratios corresponding to the theoretical predictions
generated for u = %2 as a function of A. is shown in Table 8.2

The limit on A, at 95% confidence level for a renormalization scale of p = &=

2
is found to be A, > 2.1 TeV.



Table 8.2: The ratio of ~YLLSX<E).

N(6<x<18)
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for theoretical predictions of QCD for a renormal-

ization scale of %I with an added term for quark compositeness at various energy

scales, A..

A (TeV) | Rincory
o3 0.423
10 0.424
5.0 0.425
3.0 0.427
2.5 0.436
2.4 0.438
2.3 0.441
2.2 0.441
2.1 0.443
2.0 0.453

1.95 0.454
1.9 0.456
1.85 0.459
1.8 0.465
1.75 0.468
1.7 0.476
1.65 0.483
1.6 0.505
1.55 0.498
1.5 0.528
14 0.552
1.0 0.835
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Chapter 9

Conclusions

The dijet angular distribution provides a good test of the predictions of QCD
because it allows us to measure the properties of parton-parton interactions without
reliance on the details of parton distribution functions. We have measured the dijet
angular distributions in four mass regions: 260 < M;; < 425, 475 < M;; < 635,
Mj; > 550, and Mj; > 635 GeV/c®. We found that the measured distributions
are well modeled in all mass regions by the predictions of next-to-leading order
QCD. We did not observe any departure from QCD that would indicate a need for
an addition of a theory for quark compositeness.

The 1993-1996 collider run of the Tevatron provided the D@ experiment with
a large amount of data in mass regions high enough to place a good constraint on
the energy scale of quark composite interactions A.. Using Bayesian techniques for
finding confidence limits, we placed a limit of A, > 1.8 TeV at the 95% confidence
level.

For the future, the higher luminosities that will be attained in Run 2 of the
Tevatron will provide more data in higher mass regions that will have a greater

sensitivity to the energy scale of quark compositeness and allow us to place a more

restrictive constraint on the minimum value of A..
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