

Iron isotope fractionation during Fe(II) oxidation mediated by the oxygen-producing marine cyanobacterium *Synechococcus* PCC 7002

Elizabeth D Swanner, Timm Bayer, Wenfang Wu, Likai Hao, Martin Obst, Anneli Sundman, James Martin Byrne, F. Marc Michel, Ilka C Kleinhanns, Andreas Kappler, and Ronny Schoenberg

Environ. Sci. Technol., **Just Accepted Manuscript** • DOI: 10.1021/acs.est.6b05833 • Publication Date (Web): 12 Apr 2017

Downloaded from <http://pubs.acs.org> on April 12, 2017

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

Environmental Science & Technology is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 **Iron isotope fractionation during Fe(II) oxidation mediated by the oxygen-
2 producing marine cyanobacterium *Synechococcus* PCC 7002**

3 Swanner, E.D.^{1*}, Bayer, T.², Wu, W.², Hao, L.², Obst, M.³, Sundman, A.², Byrne, J. M.²,
4 Michel, F. M.⁴, Kleinhanns, I. C.², Kappler A.², and R. Schoenberg².

5

6 ¹Iowa State University, Department of Geological & Atmospheric Sciences, Ames, IA
7 USA.

8 ²University of Tuebingen, Department of Geosciences, Tuebingen, Germany.

9 ³University of Bayreuth, Bayreuth Center of Ecology and Environmental Research,
10 Bayreuth, Germany.

11 ⁴Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.

12

13 *Corresponding author: Iowa State University, Department of Geological &
14 Atmospheric Sciences, 2237 Osborn Drive, 253 Science I, Ames, IA 50011-1027,
15 phone: (515) 294-5826, fax: (515) 294-6049, email: eswanner@iastate.edu

16 **Abstract**

17 In this study, we couple iron isotope analysis to microscopic and mineralogical
18 investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III)
19 precipitation with photosynthetically produced oxygen. In the presence of the
20 cyanobacterium *Synechococcus* PCC 7002, aqueous Fe(II) ($\text{Fe(II)}_{\text{aq}}$) is oxidized and
21 precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe_{ppt}),
22 with distinct isotopic fractionation ($\varepsilon^{56}\text{Fe}$) values determined from fitting the
23 $\delta^{56}\text{Fe(II)}_{\text{aq}}$ (1.79 and 2.15 ‰) and the $\delta^{56}\text{Fe}_{\text{ppt}}$ (2.44 and 2.98 ‰) data trends from
24 two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using
25 microscopy and chemical extractions, and likely represent Fe(II) and Fe(III) sorbed
26 to minerals and cells. The iron desorbed with sodium acetate (Fe_{NaAc}) yielded
27 heavier $\delta^{56}\text{Fe}$ compositions than $\text{Fe(II)}_{\text{aq}}$. Modeling of the fractionation during
28 Fe(III) sorption to cells and Fe(II) sorption to Fe_{ppt} , combined with equilibration of
29 sorbed iron and with $\text{Fe(II)}_{\text{aq}}$ using published fractionation factors are consistent
30 with our resulting $\delta^{56}\text{Fe}_{\text{NaAc}}$. The $\delta^{56}\text{Fe}_{\text{ppt}}$ data trend is inconsistent with complete
31 equilibrium exchange with $\text{Fe(II)}_{\text{aq}}$. Because of this and our detection of microbially-
32 excreted organics (e.g. exopolysaccharides) coating Fe_{ppt} in our microscopic
33 analysis, we suggest that electron and atom exchange is partially suppressed in this
34 system by biologically-produced organics. These results indicate that cyanobacteria
35 influence the fate and composition of iron in sunlit environments via their role in
36 Fe(II) oxidation through O_2 production, the capacity of their cell surfaces to sorb
37 iron, and via the interaction of secreted organics with Fe(III) minerals.

38 **Introduction**

39 Fe(II)-oxidizing bacteria (FeOB) gain energy from the chemical oxidation of
40 Fe(II) coupled to reduction of oxygen or nitrate, or using light energy coupled to
41 reduction of CO₂, e.g. anoxygenic photosynthesis¹. At the near neutral pH of many
42 surface waters, the oxidation of Fe(II) is spontaneous and rapid in the presence of
43 dissolved oxygen. For that reason, cyanobacteria, which generate oxygen as a result
44 of oxygenic photosynthesis, can act as indirect Fe(II)-oxidizing bacteria where
45 anoxic and Fe(II)-containing deep waters upwell to sunlit surface environments.

46 The contribution of cyanobacteria to Fe(II) oxidation has been quantitatively
47 addressed in Fe(II)-rich hot spring environments², and in benthic photosynthetic
48 communities living at the sediment-water interface³. Although the modern oceans
49 are predominantly oxygenated to great depths, promoting the speciation of iron as
50 ferric [Fe(III)] rather than ferrous [Fe(II)], Fe(II) may be increasingly mobilized out
51 of sediments⁴⁻⁷ and stabilized in the marine water column due to expanding low-
52 oxygen conditions in so-called oxygen minimum zones (OMZ)⁸. Where OMZ
53 intersect with the photic zone, Fe(II) oxidation by planktonic oxygen-producing
54 cyanobacteria could contribute to the marine iron cycle. Furthermore, anoxic and
55 Fe(II)-rich bottom waters are a pervasive feature of oceans in the Precambrian Era
56 [before about 500 Million years (My) ago]^{9,10} at a time when oxygen was building
57 up in the surface oceans as a result of cyanobacteria and other oxygenic
58 phototrophs¹¹⁻¹³. Therefore, redox interfaces between anoxic and Fe(II)-containing
59 waters and photosynthetically-produced oxygen were likely common throughout
60 much of Earth's history.

61 Iron redox processes fractionate the naturally occurring isotopes of iron
62 dependent on their mass (e.g. ^{54}Fe , ^{56}Fe , ^{57}Fe , and ^{58}Fe), such that the quantitative
63 contribution of biotic and abiotic iron cycling at the Earth's surface may be recorded
64 in sediments composed of iron-rich minerals^{14, 15}. Due to the large fractionations
65 between Fe(II) and Fe(III) species¹⁶, Fe(II) oxidation generally produces a solid iron
66 phase that is enriched in heavy isotopes of iron relative to aqueous Fe(II), regardless
67 of the mechanism of oxidation¹⁷. This makes it difficult to parse the contribution of
68 enzymatic Fe(II)-oxidizing bacteria from abiotic Fe(II) oxidation, not to mention
69 indirect Fe(II) oxidation by oxygen-producing cyanobacteria by using iron isotopes.
70 However, subtle differences in the mechanism of oxidation and precipitation, and in
71 the characteristics of the iron minerals or phases (e.g. mineralogy, particle size, or
72 presence of impurities) formed can influence the overall fractionation between
73 aqueous Fe(II) and iron minerals¹⁸. Furthermore, the role of cyanobacteria in direct
74 or indirect redox cycling of iron at the cell surface is increasingly recognized¹⁹⁻²²,
75 and may be associated with distinct isotope fractionation²³. Therefore, detailed
76 mechanistic studies of iron isotope fractionation during different pathways of Fe(II)
77 oxidation are warranted, and may help to define isotopic, mineralogical, or
78 microscopic signatures associated with certain biological processes.

79 Furthermore, the isotopic composition of iron minerals is known to be
80 modified by electron and atom exchange between aqueous Fe(II) and Fe(III)
81 (oxyhydr)oxide minerals²⁴⁻²⁶. These processes have been most effectively
82 characterized under reducing conditions, when a supply of aqueous Fe(II) is
83 produced by, for instance, microbial Fe(III) reduction^{27, 28}. However, at Fe(II)-O_2

84 interfaces with a flux of aqueous Fe(II), electron and atom-exchange could also
85 occur on newly-formed Fe(III) (oxyhydr)oxide minerals²⁹. Although the effect of
86 some organics, as well as Si and low pH on blocking electron and atom exchange
87 have been investigated³⁰⁻³², the effect of cell surfaces and microbially-produced
88 organics on this reaction and via blocking sites on Fe(III) minerals, particularly in an
89 oxidizing system, are not known.

90 In this contribution, we tracked the iron isotope composition of different
91 pools of iron during Fe(II) oxidation by the marine planktonic cyanobacterium
92 *Synechococcus* PCC 7002. Several prior studies have characterized the interaction of
93 this oxygen-producing strain with Fe(II)^{33,34}, which gives us a body of work to aid in
94 interpreting the nature of different iron phases in the system, and their mechanism
95 of transformation. Additional microscopy and mineral characterization in this study
96 are used to build the picture of how iron is processed during indirect Fe(II)
97 oxidation resulting from oxygenic photosynthesis. The results have implications for
98 understanding the reactivity of iron minerals as well as identifying isotopic
99 signatures associated with biological activity.

100 **Experimental**

101 **Bacterial Growth Medium**

102 *Synechococcus* PCC 7002 was routinely cultivated on pH 6.8 Marine Phototroph
103 (MP) medium^{18, 33, 35} containing 6 mg L⁻¹ ferric ammonium citrate as the Fe(III)
104 source at 24°C under an irradiance of 12.8 μmol photons m⁻¹ s⁻¹ from a standard

105 40W tungsten light bulb as measured by a Li-250A light probe (Li-cor, Inc.). For
106 Fe(II) oxidation experiments, MP medium was made without ferric ammonium
107 citrate. Fe(II) amendments were added from a sterile, anoxic FeCl_2 stock solution
108 and the medium was filtered twice through a $0.22\ \mu\text{m}$ filter in an anoxic glovebox
109 (100% N_2), separated by 48 hour incubations at 4°C to ensure that all Fe(II)
110 precipitated as carbonate and phosphate minerals with growth media components
111 were removed¹⁸. The final Fe(II) concentration in the medium after filtration was 2
112 mM as measured by the spectrophotometric Ferrozine assay. A log-phase culture of
113 *Synechococcus* PCC 7002 grown with ferric ammonium citrate was degassed for 5
114 minutes with sterile $\text{N}_2:\text{CO}_2$ (90%:10%), and inoculated into the 2 mM Fe(II)-
115 containing medium to a final concentration of 5×10^6 cells mL^{-1} ³³. Growth conditions
116 were as above.

117 Glass media bottles were acid washed in 1 M HCl for 24 h, then soaked in fresh
118 ultrapure water (resistivity of $18.2\ \text{M}\Omega\ \text{cm}^{-1}$) for two successive 24 h treatments
119 before use. Experiments utilized 100 mL bottles filled to 80 mL with growth
120 medium. All anoxic bottles were closed with butyl rubber stoppers that had been
121 washed in 1N HCl for 24 h, then thrice boiled in ultrapure water.

122 This concentration of 2 mM Fe(II) was chosen for experiments because a freshly
123 inoculated culture of *Synechococcus* PCC 7002 took about ten days to oxidize this,
124 during which time we could sample sufficiently often to have resolution on the
125 evolution of the isotopic composition of different iron pools. Despite the fact that
126 this strain grows more slowly at 2 mM Fe(II) than at lower Fe(II) concentrations,
127 due to Fe(II) toxicity^{33, 34}, sufficient growth did occur to fully oxidize all Fe(II).

128 Although this concentration is at the upper end of Fe(II) concentrations in modern
129 sunlit environments^{36,37}, it is within the range documented for environments where
130 cyanobacteria have been documented as having a role in Fe(II) oxidation^{2,3}.

131

132 **Iron species separation, Fe(II) and total iron concentration determination**

133 During Fe(II) oxidation, which lasted about 10 days, volumes of 2 mL were
134 repeatedly removed with a syringe from the bottles of two contemporaneous
135 replicate experiments (samples 1 and 2) in an anoxic glovebox. Before extracting,
136 the bottles were shaken to yield a homogenous slurry of iron precipitates. The
137 aliquots were subsequently centrifuged for 10 minutes at 16,000 g, and the
138 supernatants were filtered through a nylon 0.22 μ m centrifuge tube filter (Costar
139 Spin-X, Corning, International) to yield particle-free aqueous Fe(II), henceforth
140 Fe(II)_{aq}. The solids were washed with anoxic ultrapure water to remove any loosely
141 bound iron. A second wash utilized anoxic 0.5 M sodium acetate (adjusted to pH
142 4.85 using acetic acid) to recover sorbed iron (Fe_{NaAc}) from the solids (24 h
143 incubation in the dark)^{29,38}. The remaining solids were considered the precipitated
144 fraction (Fe_{ppt}).

145 The concentrations of Fe(II) and total iron in the four different iron fractions
146 were measured with the ferrozine assay³⁹. The Fe(II) in the Fe(II)_{aq}, water wash, and
147 in Fe_{NaAc} was stabilized in a final concentration of anoxic 1 M HCl prior to
148 measurements. The Fe_{ppt} was dissolved in 6 N anoxic HCl before analysis. Fe(III)

149 was determined as the difference between Fe(II) measurement and total iron
150 measurements (after reduction of iron by hydroxylamine hydrochloride).

151 **Fe isotope analysis**

152 Purification of the $\text{Fe(II)}_{\text{aq}}$, Fe_{NaAc} , and Fe_{ppt} fractions was performed in
153 positively pressured clean laboratories of the Isotope Geochemistry group at the
154 University of Tuebingen under conditions and with reagents that have previously
155 been described⁴⁰. The concentrations of iron in the water washes of Fe_{ppt} were
156 below the detection limit of the ferrozine assay ($<0.01 \text{ mM}$, $0.56 \text{ } \mu\text{g mL}^{-1}$), and so
157 these samples were not purified. Sample aliquots of the separated iron fractions
158 containing $5 \text{ } \mu\text{g}$ of iron were purified for iron isotope measurements using anion
159 exchange chromatography according to prior methodology⁴⁰. An adequate amount
160 of ^{57}Fe - ^{58}Fe double spike was added to the samples prior to Fe purification to ensure
161 accurate correction of the instrumental mass bias and possible Fe isotope
162 fractionation during anion chromatography caused by the organic matrix of the
163 samples¹⁸. Iron isotope analyses were performed on the ThermoFisher Scientific
164 NeptunePlus multi-collector inductively coupled plasma mass spectrometer (MC-
165 ICP-MS) of the Isotope Geochemistry group of the University of Tuebingen.
166 Polyatomic interferences, such as $^{40}\text{Ar}^{14}\text{N}^+$ on $^{54}\text{Fe}^+$ or $^{40}\text{Ar}^{16}\text{O}^+$ on $^{56}\text{Fe}^+$ were
167 resolved using the high mass-resolution mode ($16 \text{ } \mu\text{m}$ slit). The four iron isotope
168 beams were simultaneously detected with 90 integration cycles at 8 seconds each
169 during the runs. Background corrections for sample signals were based on on-peak-
170 zero measurements on the pure analyte solution (0.3 M HNO_3) run before and after

171 each sample. Iron isotope data are reported relative to the isotopically certified
172 international reference material IRMM-014 (Institute for Reference Materials and
173 Measurements in Gent, Belgium) using the δ -notation:

$$174 \quad \delta^{56}\text{Fe} = [(\text{Fe}^{56}/\text{Fe}^{54})_{\text{sample}} / (\text{Fe}^{56}/\text{Fe}^{54})_{\text{IRMM-014}} - 1] \times 1000$$

175 The results are reported in units of per mil (‰). The reproducibility of the double-
176 spike measuring method as determined by repeated $\delta^{56}\text{Fe}$ measurements of the
177 IRMM-014 reference material in between sample runs was 0.00 ± 0.032 ‰ (2SD; n
178 = 18). Interspersed measurements of our in-house iron standard, HanFe, yielded
179 $\delta^{56}\text{Fe} = 0.282 \pm 0.039$ ‰ (2SD; n = 12), which is in excellent agreement with
180 previously published values of 0.28 ± 0.05 ‰ (2SD; n = 19)⁴¹ and 0.279 ± 0.030 ‰
181 (2SD; n = 5)¹⁸.

182 Rayleigh fits of the isotopic $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ and $\delta^{56}\text{Fe}_{\text{ppt}}$ at different fractions (f) of
183 $\text{Fe}(\text{II})$ remaining were utilized to determine the isotopic enrichment factor ($\alpha^{56}\text{Fe}$)
184 using the following equations:

$$185 \quad \delta^{56}\text{Fe}(\text{II})_{\text{aq}} = (\delta^{56}\text{Fe}(\text{II})_{\text{aq-0}} + 1000) \times f^{\alpha-1} - 1000 \quad (1)$$

$$186 \quad \delta^{56}\text{Fe}_{\text{ppt}} = (\delta^{56}\text{Fe}_{\text{aq-0}} + 1000) \times [(1 - f^{\alpha}) / (1 - f)] - 1000 \quad (2)$$

187 $\delta^{56}\text{Fe}(\text{II})_{\text{aq-0}}$ indicates the $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ at the beginning of the experiment. The isotopic
188 fractionation $\varepsilon^{56}\text{Fe}$ (‰) is related to α by the equation:

$$189 \quad \varepsilon^{56}\text{Fe} = 1000 \times \ln \alpha^{56}\text{Fe} \quad (1)$$

190 The fitting parameters were determined by minimizing the sum of chi² values. Data
191 were also fit by linear regression, with slope and intercept determined by
192 minimizing the sum of chi² values.

193

194 **Mineral Characterization**

195 High energy synchrotron X-ray scattering experiments were performed on
196 the solid, dry products of Fe(II) oxidation by *Synechococcus* PCC 7002 at the
197 Advanced Photon Source at Argonne National Laboratory, Beamline 11-ID-B. The
198 solids were collected from a culture grown with ca. 5 mM Fe(II), freeze-dried, and
199 washed three times with Millipore water to remove excess salt. Data collection and
200 analysis protocols were previously described¹⁸. Additional mineral characterization
201 methods and results are described in the **Supplementary Information**.

202

203 **Confocal Laser Scanning Microscopy**

204 Cells of *Synechococcus* PCC 7002 were grown under similar conditions as
205 described above until the initial ca. 0.5 mM Fe(II) had been oxidized. The cell-
206 mineral aggregates were imaged by confocal laser scanning microscopy (CLSM;
207 Leica SPE, Mannheim, Germany). A 635 nm laser was used for excitation
208 autofluorescence of *Synechococcus* PCC 7002, with a maximum emission peak at 660
209 nm (detected range of emission 640-700 nm). The Fe(III) minerals were visualized
210 using the reflection signal of the 488 nm laser. Several lectin-Alexa dye conjugates
211 were screened in order to optimize visualization of exopolysaccharides (EPS)
212 without overlap with the autofluorescence emission maximum of the pigments of
213 *Synechococcus* PCC 7002 (660 nm). SBA-Alexa 488 (maximum emission peak at 520
214 nm) was chosen because SBA bound to the EPS in higher amounts, resulting in
215 brighter fluorescence than the other lectins screened [Wheat Germ Agglutinin Alexa
216

217 Fluor 555 Conjugate (WGA-555) and Lectin PNA from *Arachis hypogaea* (peanut),
218 Alex Fluor 568 Conjugate (PNA-568)]. Brighter fluorescence at lower laser power
219 was observed with SBA-488, which binds terminal α - and β -N-acetylgalactosamine
220 and galactopyranosyl residues, compared to WGA-555 and PNA-568, which are
221 specific to sialic acid and *N*-acetylglucosaminyl residues, and terminal β -galactose,
222 respectively.

223 A turn-on type selective probe for fluorescent labeling of dissolved, sorbed, or
224 ligand-bound Fe(III)^{42, 43}, was previously used to visualize the relationship of Fe(III)
225 *Synechococcus* PCC 7002 cells and minerals from this same incubation³⁴. Because of
226 spectral overlap, the lectin and Fe(III)-binding probe could not be combined in a
227 single experiment here, and therefore we compare new results to prior data³⁴. The
228 Auto-Quant™ deconvolution algorithm implemented in the LEICA LAS AF software
229 was applied to blind deconvolute the 3D image stacks⁴⁴. The spatial relationships of
230 species detected using fluorescence dyes and cell autofluorescence in CLSM image
231 stacks were analyzed using ScatterJ⁴⁵, a plugin for correlation analysis of species-
232 specific maps for use in IMAGEJ and Fiji⁴⁶.

233 Results & Discussion

234 Fractionation patterns during Fe(II) oxidation and Fe(III) precipitation

235 The $\delta^{56}\text{Fe(II)}_{\text{aq}}$ values from two replicated experiments evolved from an
236 initial value near 0 ‰ to lighter values during oxidation (**Table 1, Figure 1**). The
237 Fe(II)_{aq} fraction, measured after the sample was centrifuged and filtered, consisted
238 of only Fe(II). All iron concentration and speciation data (measured by ferrozine) is

239 reported in **Supplementary Table 1**. The first Fe_{ppt} samples analyzed, at about 40%
240 $\text{Fe}(\text{II})$ oxidized, had $\delta^{56}\text{Fe}_{\text{ppt}}$ of about 2 ‰, trending toward 0 ‰ at 100% $\text{Fe}(\text{II})$
241 oxidized. The speciation of Fe_{ppt} , which was measured after washing with water and
242 sodium acetate, consisted of predominantly $\text{Fe}(\text{III})$, with generally <10% $\text{Fe}(\text{II})$. Iron
243 in the water wash of the precipitates was below the detection limit of the ferrozine
244 assay (<0.01 mM, 0.56 $\mu\text{g mL}^{-1}$). Therefore, the iron isotope composition of the
245 water washes was not analyzed. The sodium acetate wash removed sorbed iron,
246 which contained both $\text{Fe}(\text{II})$ and $\text{Fe}(\text{III})$. The Fe_{NaAc} fraction represented 10-20% of
247 total iron in the system after Fe_{ppt} began to form. The Fe_{NaAc} had an intermediate
248 isotopic composition between $\text{Fe}(\text{II})_{\text{aq}}$ and Fe_{ppt} , but was variable and generally
249 lighter than 0 ‰.

250 The fast reaction between $\text{Fe}(\text{II})$ and oxygen⁴⁷ favors the heavy isotopes of iron
251 in the resulting $\text{Fe}(\text{III})$ minerals that precipitate. Abiotic and biotic $\text{Fe}(\text{II})$ oxidation
252 both follow this trend, resulting in ε of ~2-4 ‰ between aqueous $\text{Fe}(\text{II})$ and $\text{Fe}(\text{III})$
253 minerals, with minerals enriched in heavy isotopes^{17, 18, 29, 31}. Our $\varepsilon^{56}\text{Fe}$ for
254 $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ (1.79 to 2.15 ‰ for samples 1 and 2, respectively; **Table 1**), determined
255 from a Rayleigh fit of the $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ data, is on the low end of this range, similar to
256 what was previously documented for $\text{Fe}(\text{II})$ oxidation by anoxygenic phototrophs¹⁸,
257 ⁴⁸. The Rayleigh fit of the $\delta^{56}\text{Fe}_{\text{ppt}}$ data from both replicates resulted in $\varepsilon^{56}\text{Fe}$ of 2.44
258 and 2.98 ‰, larger than that attained for the $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ data (**Table 1**), and within
259 the literature range. Prior explanation for the offset in ε between these two fractions
260 is that following precipitation, the Fe_{ppt} underwent partial equilibration with
261 another phase of iron in the system, possibly a ligand-bound or sorbed $\text{Fe}(\text{III})$

262 phase^{18, 48} or $\text{Fe(II)}_{\text{aq}}$ ^{29, 49}. Below, we use our mineralogical and microscopic
263 characterizations of the experiment to explore possible exchange processes in this
264 system.

265

266 Iron sorption to cells and minerals

267 The third, quantitatively significant fraction of iron in the system in addition to
268 $\text{Fe(II)}_{\text{aq}}$ and Fe_{ppt} was Fe_{NaAc} (up to 18% of total Fe). The $\delta^{56}\text{Fe}_{\text{NaAc}}$ data had an
269 intermediate isotopic composition between $\text{Fe(II)}_{\text{aq}}$ and Fe_{ppt} , from 0.10 ‰ to -0.73
270 ‰ throughout the experiment, and contained both Fe(II) and Fe(III)
271 (**Supplementary Table 1**). The presence of Fe(III) in Fe_{NaAc} has previously been
272 observed in Fe(II) oxidation experiments with anoxygenic phototrophs¹⁸, but not
273 with nitrate-dependent Fe(II)-oxidizing bacteria²⁹. The Fe_{NaAc} must have been
274 sorbed onto one of the surfaces, either Fe_{ppt} or cells, based on its extraction with
275 sodium acetate³⁸. In order to infer whether equilibration processes were occurring
276 between Fe_{NaAc} and Fe_{ppt} , it is necessary to know 1) where Fe_{NaAc} was in our
277 experiments, and 2) what type of iron species [i.e. Fe(II) or Fe(III)] that it was.

278 Our use of a lectin-binding dye in confocal microscopy documents that EPS was
279 also forming during Fe(II) oxidation with *Synechococcus* PCC 7002 (**Figure 3**). We
280 can use this dataset to first determine whether EPS was important in
281 binding/sorbing iron extracted as Fe_{NaAc} , and then to determine whether iron was
282 associated with the surface of cells and/or Fe_{ppt} . An overlay of **Figures 3a, b, and c**,
283 which show the location of cells, EPS, and Fe_{ppt} indicates that EPS is co-localized
284 with Fe_{ppt} (**Figure 3d**). The correlation analysis in **Figure 3e** implies there is no

285 spatial overlap of EPS with cells. In previous work with *Synechococcus* PCC 7002
286 under identical growth conditions as in **Figure 3**, a fluorescent sensor for soluble or
287 ligand-bound Fe(III) was used in CLSM, and fluorescence was localized directly at
288 the *Synechococcus* PCC 7002 cell surfaces¹⁸. While spectral interferences prevented
289 us from simultaneously labeling EPS and Fe(III) in our current CLSM experiments,
290 we can infer from comparing our dataset with the previously published one³⁴ that
291 there was Fe(III) sorbed to the surface of cells, but not EPS or Fe_{pp}⁵⁰. In support of
292 this, EPS is expected to stay with the aqueous phase during filtration through a 0.2
293 μm filter⁵¹, or be washed off of Fe_{pp} in the water wash¹⁸. We did not detect any
294 Fe(III) in the Fe(II)_{aq} fraction, or measure any detectable iron in the water wash.
295 From these results we exclude EPS as having a major role in binding soluble Fe(III)
296 in the current system. This data indicates that cell surfaces sorbed Fe(III). Previous
297 experiments with *Synechococcus* PCC 7002 cells demonstrated that sorption to cells
298 is a major fate for aqueous iron, although the oxidation state of sorbed iron was not
299 determined in those experiments, so we cannot rule out that some Fe(II) was also
300 sorbed to cells³⁴. However, sorption onto cells has previously been documented as a
301 fate for aqueous iron with diverse cyanobacteria, with Fe(III) more commonly
302 detected at the cell surface than Fe(II)²², via attachment of Fe-O-Fe polymers to
303 phosphoryl groups^{22, 23}, strengthening the inferences made from CLSM that
304 *Synechococcus* PCC 7002 cells sorbed Fe(III).

305 The other surface in our experiments that could have sorbed iron extracted as
306 Fe_{NaAc} was Fe_{pp}. The three techniques we used to address mineralogy indicate that
307 our Fe_{pp} was a mixture of 58% ferrihydrite, 22% goethite, and 20% lepidocrocite

308 (Figure 2), and ferrihydrite was likely the predominant mineral present during the
309 experiments (see **Supplementary Information**). Minerals such as ferrihydrite and
310 goethite, similar to what was present in our experiments, can sorb Fe(II)^{27,52}. Both
311 Fe(II) and Fe(III) were detected in the Fe_{NaAc} (**Supplementary Table 1**), raising the
312 possibility that Fe(III) was extracted from the mineral. However, we verified that no
313 Fe(III) was extracted from synthetic ferrihydrite with our 0.5 M sodium acetate
314 solution prior to beginning experiments (data not shown), consistent with previous
315 reports that used a 1 M sodium acetate solution³⁸. Further inference in support of
316 sorbed Fe(II) being extracted from Fe_{ppt} by sodium acetate is that Fe_{ppt} still
317 contained some Fe(II) after extraction, as measured by ferrozine (**Supplementary**
318 **Table 1**). We take this as evidence that sorbed iron associated with the mineral was
319 predominantly Fe(II), although we cannot exclude that some Fe(III) may also be
320 sorbed to the mineral surface^{53,54}.

321

322 **Fractionation Processes**

323 We observed evidence for three reactions in our experiments that are essential
324 for understanding the observed fractionations of iron isotopes, and these are
325 summarized in **Figure 4**. They are 1) Fe(II) oxidation to Fe(III), which forms Fe_{ppt}, 2)
326 sorption of Fe(III) to cells, and 3) and sorption of Fe(II) to Fe_{ppt}. These observations
327 fit a two step-model of Fe(II) oxidation, where Fe(II) is oxidized and undergoes
328 rapid isotopic equilibration with a pool of Fe(III), which then precipitates as Fe(III)
329 minerals⁴⁹. We suggest, however, that in our experiments, Fe_{ppt} undergoes
330 subsequent partial equilibration with Fe(II)_{aq}.

331 The fitting of our $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ and $\delta^{56}\text{Fe}_{\text{ppt}}$ with Rayleigh equations representing
332 isolation of the Fe_{ppt} pool from $\text{Fe}(\text{II})_{\text{aq}}$ after precipitation, and a linear equation
333 representing complete isotopic equilibrium are helpful in interpreting the
334 fractionation mechanisms taking place. The larger ΣX^2 values for linear fits of all
335 data as compared to Rayleigh fits indicates that complete isotopic equilibrium
336 between $\text{Fe}(\text{II})_{\text{aq}}$ and Fe_{ppt} is not occurring during $\text{Fe}(\text{II})$ oxidation and precipitation
337 (**Table 1**). The smaller $\varepsilon^{56}\text{Fe}$ values for Rayleigh fits of the $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ (1.79 and 2.15
338 ‰ as compared to 2.44 and 2.98 ‰ for $\delta^{56}\text{Fe}_{\text{ppt}}$) are on the order of fractionation
339 observed in other biological $\text{Fe}(\text{II})$ oxidation experiments in batch at circumneutral
340 pH: 1.5 ‰⁴⁸, 1.5-2 ‰²⁹, and 1-2 ‰¹⁸. Such small net fractionations have been
341 noted when the presence of significant quantities of sorbed or ligand-bound $\text{Fe}(\text{III})$
342 has been detected or observed²⁹.

343 Up to a few percent of total iron was found as $\text{Fe}(\text{III})$ in the Fe_{NaAc} fraction
344 (**Supplementary Table 1**). Based on detection of iron sorbed to cells with a dye
345 that is specific for an aqueous or ligand-bound $\text{Fe}(\text{III})$ ^{42, 43}, we suggest that this
346 $\text{Fe}(\text{III})$ could equilibrate with $\text{Fe}(\text{II})_{\text{aq}}$ ^{29, 48}. In experiments with *Synechococcus* sp.
347 cells at pH 6, added $\text{Fe}(\text{II})$ [which was adsorbed as $\text{Fe}(\text{III})$] was 1.84 ‰ heavier than
348 aqueous $\text{Fe}(\text{II})$ ²³, and equilibrium with $\text{Fe}(\text{II})_{\text{aq}}$ was inferred from the data. This
349 fractionation is very similar to our ε values derived from Rayleigh fits of $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$
350 (1.79 and 2.15 ‰). Because of the similar type of organism that we used, it is likely
351 equilibrium fractionation between $\text{Fe}(\text{II})_{\text{aq}}$ and $\text{Fe}(\text{III})$ sorbed to cells is a relevant
352 process in our experiments.

353 While the $\delta^{56}\text{Fe}_{\text{ppt}}$ data are not well fit by a linear model representing
354 complete equilibrium exchange with $\text{Fe}(\text{II})_{\text{aq}}$, the range of the $\varepsilon^{56}\text{Fe}$ determined from
355 Rayleigh fits of the two $\delta^{56}\text{Fe}_{\text{ppt}}$ datasets (2.44 and 2.98 ‰) are of the same
356 magnitude expected for equilibrium between Fe_{ppt} and $\text{Fe}(\text{II})_{\text{aq}}$. Wu et al.³¹ inferred a
357 $\Delta^{56}\text{Fe}_{\text{ferrihydrite-Fe}(\text{II})_{\text{aq}}}$ (where $\Delta^{56}\text{Fe}_{\text{ferrihydrite-Fe}(\text{II})_{\text{aq}}} = \delta^{56}\text{Fe}_{\text{ferrihydrite}} - \delta^{56}\text{Fe}_{\text{Fe}(\text{II})_{\text{aq}}}$) of 3.2
358 ‰, while Beard et al. and Friedrich et al. reported a $\Delta^{56}\text{Fe}_{\text{goethite-Fe}(\text{II})_{\text{aq}}}$ of 1.1 ‰^{25,55}.
359 Considering the 58% ferrihydrite, 22% goethite, and 20% lepidocrocite in our
360 precipitates as determined from X-ray scattering (**Figure 2**), the equilibrium
361 $\Delta^{56}\text{Fe}_{\text{Fe}_{\text{ppt-Fe}(\text{II})_{\text{aq}}}}$ for our minerals could range from 2.3 to 2.7 ‰, depending on
362 whether the assumed fractionation for lepidocrocite is the same as for goethite or
363 ferrihydrite, respectively. The larger $\varepsilon^{56}\text{Fe}$ we calculate for our second dataset (2.98
364 ‰) may reflect that ferrihydrite, with a larger $\Delta^{56}\text{Fe}$ value, was likely the mineral
365 present during active $\text{Fe}(\text{II})$ oxidation (see **Supporting Information**).

366 In our batch experiments, $\text{Fe}(\text{II})_{\text{aq}}$ may continue to react with Fe_{ppt} , given their
367 proximity and the time frame of experiments (10 days). Sorption of $\text{Fe}(\text{II})$ on Fe_{ppt}
368 provides a likely mechanism for partial isotope equilibrium, and is supported by our
369 detection of $\text{Fe}(\text{II})$ in Fe_{ppt} (**Supplementary Table 1**). Sorption of $\text{Fe}(\text{II})$ is an
370 important pathway in recrystallization of $\text{Fe}(\text{III})$ (oxyhydr)oxide minerals,
371 particularly ferrihydrite²⁸. During this process, equilibrium atom and electron
372 exchange occur between sorbed $\text{Fe}(\text{II})$ and $\text{Fe}(\text{III})$ minerals²⁴, with complete
373 equilibrium attained within two weeks for goethite, for instance⁵⁵ (a similar time
374 frame as our 10 day experiment). In this model, $\text{Fe}(\text{II})$ sorbs to $\text{Fe}(\text{III})$ minerals and
375 donates an electron into the bulk mineral structure, adding to the $\text{Fe}(\text{III})$ mineral,

376 and causing the desorption of a newly produced Fe(II) from the mineral. This is also
377 consistent with the shifts in mineralogy we see during the course of oxidation (see
378 **Supplementary Information**).

379 We do not see evidence for complete equilibrium between $\text{Fe(II)}_{\text{aq}}$ and Fe_{ppt} ,
380 given the poor linear fit of $\delta^{56}\text{Fe}_{\text{ppt}}$ (**Table 1**). Atom and electron exchange between
381 Fe_{ppt} and sorbed Fe(II) is expected to be diminished in the presence of organic
382 compounds³⁰. Our CLSM data indicate that EPS is co-localized to minerals (**Figure**
383 **2**). It is possible that atom and electron exchange can still occur when Fe(III)
384 minerals are co-precipitated with organics, as retardation of this process seems to
385 result from blockage of surface sites when organics coat already formed Fe(III)
386 minerals⁵², or if long chain carbon molecules are present³⁰. Therefore, we suggest
387 that only partial atom and electron exchange occurred in our system as a result of
388 the EPS coating the Fe_{ppt} .

389 During atom exchange, the fractionation when $\text{Fe(II)}_{\text{aq}}$ sorbs onto goethite varies
390 among experiments. One study reports sorbed Fe(II) is 0.73 ‰ heavier than
391 $\text{Fe(II)}_{\text{aq}}$ ⁵⁶, and another reported sorbed Fe(II) was 1.24 ‰ heavier²⁵. Differences are
392 likely due to a lack of equilibrium obtained. Crosby et al.^{53, 54} directly measured
393 sorbed Fe(II) extracted with sodium acetate during microbial Fe(III) reduction
394 experiments, which was just 0.3 ‰ heavier than $\text{Fe(II)}_{\text{aq}}$ for experiments using
395 hematite, and up to 0.8 ‰ heavier for experiments using goethite as the sorbing
396 surface. Our $\Delta^{56}\text{Fe}_{\text{FeNaAc-Fe(II)aq}}$ ranged from 0.45 to 2.66 ‰, which is much larger and
397 more variable than the experiments of Crosby et al.^{53, 54}, which may be in part
398 because our Fe_{NaAc} includes both Fe(II) and Fe(III). Another factor is that in our

399 experiments, the less crystalline mineral ferrihydrite was likely the sorbing surface
400 present during experiments (see **Supplementary Figures 1** and **2** and
401 **Supplementary Information**). Several studies have noted a trend of larger
402 fractionations during sorption to less crystalline minerals or higher surface area
403 minerals^{25, 54}. The Fe_{pp} in our experiments had a surface area of 122.1 m² g⁻¹.

404 We calculated $\delta^{56}\text{Fe}_{\text{NaAc}}$ considering that the Fe(III) fraction of Fe_{NaAc} should be
405 1.84 ‰ heavier than Fe(II)_{aq} due to adsorption of Fe(III) at cell surfaces²³, and the
406 sorbed Fe(II) fraction of Fe_{NaAc} should be at least 0.8 ‰ heavier than Fe(II)_{aq}. The
407 calculated $\delta^{56}\text{Fe}_{\text{NaAc}}$ is a good model of our actual $\delta^{56}\text{Fe}_{\text{NaAc}}$ values (**Figure 4**). This
408 calculation supports the model presented here, in which Fe(II) is oxidized to Fe(III),
409 which is sorbed onto cells and equilibrates with Fe(II)_{aq}, and partial equilibration of
410 Fe(II)_{aq} with Fe_{pp} via atom and electron exchange is hindered by the presence of
411 EPS on Fe_{pp}.

412 Our experiments provide evidence that iron isotope fractionation during
413 microbially-influenced Fe(II) oxidation by cyanobacteria is not a simple reaction,
414 controlled only by the abiotic oxidation of Fe(II) with oxygen and rapid precipitation
415 of Fe(III) at circumneutral pH³⁴. Multiple secondary processes generate a significant
416 fraction of sorbed iron that is isotopically distinct from either residual Fe(II)_{aq} or
417 Fe_{pp}, and subsequent equilibration between the iron pools can further modify the
418 isotopic composition of these phases. Our data indicate that sorption of Fe(III) at cell
419 surfaces likely further fractionates the Fe(II)_{aq} pool. In addition, abiotic sorption of
420 Fe(II) to Fe(III) mineral surfaces can also fractionate Fe(II)_{aq}, through equilibrium
421 atom and electron exchange subsequent to Fe(II) sorption, despite the presence of

422 EPS. Follow-up experiments could investigate atom and electron exchange in this
423 system. Specifically, isotopically enriched $\text{Fe(II)}_{\text{aq}}$ solutions mixed with pre-formed
424 cells and minerals would be useful for monitoring atom exchange between the
425 $\text{Fe(II)}_{\text{aq}}$ and $\text{Fe}_{\text{ppt}}^{57}$.

426 The processes and phases described here can overprint the anticipated
427 fractionations and compositions of Fe(III) minerals and organic-associated iron
428 present in the environment, and can challenge interpretation of the genesis of
429 Fe(III) minerals in the geological record, where the residual $\text{Fe(II)}_{\text{aq}}$ pool is no
430 longer present^{12, 58-60}. Although iron atom and electron exchange has received the
431 most attention as a process relevant to Fe(III) -reducing systems where Fe(II) is in
432 contact with Fe(III) minerals, our data suggest this process could also be relevant in
433 environments where Fe(II) is abundant during Fe(II) oxidation and Fe(III) mineral
434 formation. This includes oxidizing environments with high enough fluxes of Fe(II)
435 for Fe(II) to persist even in the face of rapid oxidation^{2, 61}, such as Fe(II) -rich springs
436 or seeps, and marine upwelling zones that tap ferruginous bottom waters, past or
437 present³³. Furthermore, our work documents atom and electron exchange in the
438 presence of iron minerals whose formation pathways are biologically induced, and
439 when organic phases that coat iron minerals. Finally, iron redox cycling and
440 sorption of iron at the surface of cyanobacteria may be an important component of
441 modern and ancient aquatic iron cycling, and our work highlights the effect of such
442 processes on iron isotope systematics.

443 **Acknowledgements**

444 *Synechococcus* PCC 7002 was a gift of M. Eisenhut. E. Reitter assisted with iron
445 purification and isotope analysis. E. Struve performed the Mastersizer and BET
446 analyses. Portions of this research were carried out at the Stanford Synchrotron
447 Radiation Lightsource (SSRL), a directorate of SLAC National Accelerator Laboratory
448 and an Office of Science User Facility operated by the U.S. Department of Energy
449 Office of Science by Stanford University. R. Davis assisted with EXAFS
450 measurements. The use of the Advanced Photon Source, an Office of Science User
451 Facility operated for the U.S. Department of Energy (DOE) Office of Science by
452 Argonne National Laboratory, was supported by the U.S. DOE under Contract No.
453 DE-AC02-06CH11357. We thank K. Chapman, P. Chupas, and K. Beyer for their
454 support at APS beamline 11-ID-B. E.D.S. was supported by a Carl Zeiss Stiftung
455 Postdoctoral Fellowship, which also supported the work of T.B. W.W. received
456 support from Sino-German (CSC-DAAD) Postdoc Scholarship Program and China
457 Postdoctoral Science Foundation (2014M560115). F.M.M. received support from the
458 Center for Environmental Implications of Nanotechnology (CEINT) funded under
459 NSF cooperative agreement EF-0830093. A.K. was supported by the German
460 Research Foundation (DFG, KA 1736/24-1), and by the European Research Council
461 under the European Union's Seventh Framework Programme (FP/2007–2013)/ERC
462 Grant, Agreement n. 307320 – MICROFOX.

463

464 **Supporting Information.** Supporting methods, discussion, 3 figures and 4
465 tables.

466 **References**

467 1. Melton, E. D.; Swanner, E. D.; Behrens, S.; Schmidt, C.; Kappler, A., The
468 interplay of microbially mediated and abiotic reactions in the biogeochemical Fe
469 cycle. *Nat Rev Micro* **2014**, *12*, 797-808.

470 2. Trouwborst, R. E.; Johnston, A.; Koch, G.; Luther III, G. W.; Pierson, B. K.,
471 Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications
472 for Precambrian Fe(II) oxidation. *Geochimica et Cosmochimica Acta* **2007**, *71*, 4627-
473 4643.

474 3. Epping, E. H. G.; Schoemann, V.; de Heij, H., Manganese and Iron Oxidation
475 During Benthic Oxygenic Photosynthesis. *Estuarine, Coastal and Shelf Science* **1998**,
476 *47*, (6), 753-767.

477 4. Conway, T. M.; John, S. G., Quantification of dissolved iron sources to the
478 North Atlantic Ocean. *Nature* **2014**, *511*, (7508), 212-215.

479 5. Scholz, F.; McManus, J.; Mix, A. C.; Hensen, C.; Schneider, R. R., The impact of
480 ocean deoxygenation on iron release from continental margin sediments. *Nature
481 Geosci* **2014**, *7*, (6), 433-437.

482 6. Staubwasser, M.; von Blanckenburg, F.; Schoenberg, R., Iron isotopes in the
483 early marine diagenetic iron cycle. *Geology* **2006**, *34*, (8), 629-632.

484 7. Severmann, S.; Lyons, T. W.; Anbar, A.; McManus, J.; Gordon, G., Modern iron
485 isotope perspective on the benthic iron shuttle and the redox evolution of ancient
486 oceans. *Geology* **2008**, *36*, (6), 487-490.

487 8. Stramma, L.; Johnson, G. C.; Sprintall, J.; Mohrholz, V., Expanding Oxygen-
488 Minimum Zones in the Tropical Oceans. *Science* **2008**, *320*, (5876), 655-658.

489 9. Poulton, S. W.; Canfield, D. E., Ferruginous Conditions: A Dominant Feature of
490 the Ocean through Earth's History. *Elements* **2011**, *7*, (2), 107-112.

491 10. Canfield, D. E.; Poulton, S. W.; Narbonne, G. M., Late-Neoproterozoic deep-
492 ocean oxygenation and the rise of animal life. *Science* **2007**, *315*, 92-95.

493 11. Scott, C.; Lyons, T. W.; Bekker, A.; Shen, Y.; Poulton, S. W.; Chu, X.; Anbar, A. D.,
494 Tracing the stepwise oxygenation of the Proterozoic ocean. *Nature* **2008**, *452*, (27),
495 456-459.

496 12. Czaja, A. D.; Johnson, C. M.; Roden, E. E.; Beard, B. L.; Vogelin, A. R.; Nägler, T.
497 F.; Beukes, N. J.; Wille, M., Evidence for free oxygen in the Neoarchean ocean based
498 on coupled iron-molybdenum isotope fractionation. *Geochimica et Cosmochimica
499 Acta* **2012**, *86*, 118-137.

500 13. Sahoo, S. K.; Planavsky, N. J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.
501 D.; Lyons, T. W.; Jiang, G., Ocean oxygenation in the wake of the Marinoan glaciation.
502 *Nature* **2012**, *489*, (7417), 546-549.

503 14. Beard, B. L.; Johnson, C. M.; Cox, L.; Sun, H.; Nealson, K.; Aguilar, C., Iron
504 Isotope Biosignatures. *Science* **1999**, *285*, 1889-1892.

505 15. Johnson, C. M.; Beard, B. L.; Roden, E. E., The Iron Isotope Fingerprints of
506 Redox and Biogeochemical Cycling in Modern and Ancient Earth. *Annual Review of
507 Earth and Planetary Sciences* **2008**, *36*, (1), 457-493.

508 16. Schauble, E. A., Applying Stable Isotope Fractionation Theory to New
509 Systems. *Reviews in Mineralogy and Geochemistry* **2004**, *55*, (1), 65-111.

510 17. Balci, N.; Bullen, T. D.; Witte-Lien, K.; Shanks, W. C.; Motelica, M.; Mandernack,
511 K. W., Iron isotope fractionation during microbially stimulated Fe(II) oxidation and
512 Fe(III) precipitation. *Geochimica et Cosmochimica Acta* **2006**, *70*, 622-639.

513 18. Swanner, E. D.; Wu, W.; Schoenberg, R.; Byrne, J.; Michel, F. M.; Pan, Y.;
514 Kappler, A., Fractionation of Fe isotopes during Fe(II) oxidation by a marine
515 photoferrotroph is controlled by the formation of organic Fe-complexes and
516 colloidal Fe fractions. *Geochimica et Cosmochimica Acta* **2015**, *165*, (0), 44-61.

517 19. Kranzler, C.; Lis, H.; Shaked, Y.; Keren, N., The role of reduction in iron uptake
518 processes in a unicellular, planktonic cyanobacterium. *Environ Microbiol* **2011**, *13*,
519 (11), 2990-9.

520 20. Lis, H.; Kranzler, C.; Keren, N.; Shaked, Y., A Comparative Study of Iron Uptake
521 Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence
522 of Reductive Iron Uptake. *Life* **2015**, *5*, (1), 841-860.

523 21. Rose, A. L.; Salmon, T. P.; Lukondeh, T.; Neilan, B. A.; Waite, T. D., Use of
524 superoxide as an Electron Shuttle for Iron Acquisition by the Marine
525 Cyanobacterium *Lyngbya majuscula*. *Environ. Sci. Technol.* **2005**, *39*, 3708-3715.

526 22. González, A. G.; Pokrovsky, O. S.; Jiménez-Villacorta, F.; Shirokova, L. S.;
527 Santana-Casiano, J. M.; González-Dávila, M.; Emnova, E. E., Iron adsorption onto soil
528 and aquatic bacteria: XAS structural study. *Chemical Geology* **2014**, *372*, (0), 32-45.

529 23. Mulholland, D. S.; Poitrasson, F.; Shirokova, L. S.; González, A. G.; Pokrovsky,
530 O. S.; Boaventura, G. R.; Vieira, L. C., Iron isotope fractionation during Fe(II) and
531 Fe(III) adsorption on cyanobacteria. *Chemical Geology* **2015**, *400*, (0), 24-33.

532 24. Williams, A. G. B.; Scherer, M. M., Spectroscopic Evidence for Fe(II)-Fe(III)
533 Electron Transfer at the Iron Oxide-Water Interface. *Environmental Science &*
534 *Technology* **2004**, *38*, 4782-4790.

535 25. Beard, B. L.; Handler, R. M.; Scherer, M. M.; Wu, L.; Czaja, A. D.; Heimann, A.;
536 Johnson, C. M., Iron isotope fractionation between aqueous ferrous iron and
537 goethite. *Earth and Planetary Science Letters* **2010**, *295*, (1-2), 241-250.

538 26. Johnson, C. M.; Roden, E. E.; Welch, S. A.; L., B. B., Experimental constraints on
539 Fe isotope fractionation during magnetite and Fe carbonate formation coupled to
540 dissimilatory hydrous ferric oxide reduction. *Geochimica et Cosmochimica Acta*
541 **2005**, *69*, (4), 963-993.

542 27. Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.;
543 Fendorf, S., Secondary mineralization pathways induced by dissimilatory iron
544 reduction of ferrihydrite under advective flow. *Geochimica et Cosmochimica Acta*
545 **2003**, *67*, (16), 2977-2992.

546 28. Hansel, C. M.; Benner, S. G.; Nico, P.; Fendorf, S., Structural constraints of
547 ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). *Geochimica*
548 *et Cosmochimica Acta* **2004**, *68*, (15), 3217-3229.

549 29. Kappler, A.; Johnson, C. M.; Crosby, H. A.; Beard, B. L.; Newman, D. K.,
550 Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-
551 oxidizing bacteria. *Geochimica et Cosmochimica Acta* **2010**, *74*, (10), 2826-2842.

552 30. Pasakarnis, T.; McCormick, M. L.; Parkin, G. F.; Thompson, A.; Scherer, M.,
553 Fellaq-FeIIIoxide electron transfer and Fe exchange - effect of organic carbon.
554 *Environ Chem* **2015**, *12*, 52-63.

555 31. Wu, L.; Beard, B. L.; Roden, E. E.; Johnson, C. M., Stable Iron Isotope
556 Fractionation Between Aqueous Fe(II) and Hydrous Ferric Oxide. *Environmental*
557 *Science & Technology* **2011**, *45*, 1847-1852.

558 32. Reddy, T. R.; Frierdich, A. J.; Beard, B. L.; Johnson, C. M., The effect of pH on
559 stable iron isotope exchange and fractionation between aqueous Fe(II) and goethite.
560 *Chemical Geology* **2015**, *397*, 118-127.

561 33. Swanner, E. D.; Młoszewska, A. M.; Cirpka, O. A.; Schoenberg, R.; Konhauser,
562 K. O.; Kappler, A., Modulation of oxygen production in Archaean oceans by episodes
563 of Fe(II) toxicity. *Nature Geosci* **2015**, *8*, (2), 126-130.

564 34. Swanner, E. D.; Wu, W.; Hao, L.; Wuestner, M.; Obst, M.; Moran, D. M.; McIlvin,
565 M.; Saito, M.; Kappler, A., Physiology, Fe(II) oxidation, and Fe mineral formation by a
566 marine planktonic cyanobacterium grown under ferruginous conditions. *Frontiers in*
567 *Earth Science* **2015**, *3*.

568 35. Wu, W.; Swanner, E. D.; Hao, L.; Zeitvogel, F.; Obst, M.; Pan, Y.; Kappler, A.,
569 Characterization of the physiology and cell-mineral interactions of the marine
570 anoxygenic phototrophic Fe(II)-oxidizer *Rhodovulum iodosum* - implications for
571 Precambrian Fe(II) oxidation. *FEMS Microbiol Ecol* **2014**, *88*, 503-515.

572 36. Llirós, M.; García-Armisen, T.; Darchambeau, F.; Morana, C.; Triadó-Margarit,
573 X.; Inceoğlu, Ö.; Borrego, C. M.; Bouillon, S.; Servais, P.; Borges, A. V.; Descy, J. P.;
574 Canfield, D. E.; Crowe, S. A., Pelagic photoferrotrophy and iron cycling in a modern
575 ferruginous basin. *Scientific Reports* **2015**, *5*, 13803.

576 37. Busigny, V.; Planavsky, N. J.; Jézéquel, D.; Crowe, S.; Louvat, P.; Moureau, J.;
577 Viollier, E.; Lyons, T. W., Iron isotopes in an Archean ocean analogue. *Geochimica et*
578 *Cosmochimica Acta* **2014**, *133*, 443-462.

579 38. Crosby, H.; Johnson, C.; Roden, E.; Beard, B., Coupled Fe(II)-Fe(III) electron
580 and atom exchange as a mechanism for Fe Isotope fractionation during dissimilatory
581 iron oxide reduction. *Environmental Science & Technology* **2005**, *39*, 6698-6704.

582 39. Stookey, L. L., Ferrozine - a new spectrophotometric reagent for iron.
583 *Analytical Chemistry* **1970**, *42*, (7), 779-781.

584 40. Schoenberg, R.; Von Blanckenburg, F., An assessment of the accuracy of stable
585 Fe isotope ratio measurements on samples with organic and inorganic matrices by
586 high-resolution multicollector ICP-MS. *International Journal of Mass Spectrometry*
587 **2005**, *242*, 257-272.

588 41. Moeller, K.; Schoenberg, R.; Grenne, T.; Thorseth, I. H.; Drost, K.; Pedersen, R.
589 B., Comparison of iron isotope variations in modern and Ordovician siliceous Fe
590 oxyhydroxide deposits. *Geochimica et Cosmochimica Acta* **2014**, *126*, (0), 422-440.

591 42. Mao, J.; He, Q.; Liu, W., An rhodamine-based fluorescence probe for iron(III)
592 ion determination in aqueous solution. *Talanta* **2010**, *80*, (5), 2093-2098.

593 43. Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W., Tuning the Selectivity of
594 Two Chemosensors to Fe(III) and Cr(III). *Organic Letters* **2007**, *9*, (22), 4567-4570.

595 44. Schmid, G.; Zeitvogel, F.; Hao, L.; Ingino, P.; Floetenmeyer, M.; Stierhof, Y.-D.;
596 Schroeppel, B.; Burkhardt, C.; Kappler, A.; Obst, M., 3D analysis of bacterial cell-
597 (iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing
598 *Acidovorax* sp. strain BoFeN1 using complementary microscopy tomography
599 approaches. *Geobiology* **2014**, *12*, 340-361.

600 45. Zeitvogel, F.; Schmid, G.; Hao, L.; Ingino, P.; Obst, M., ScatterJ: an ImageJ
601 plugin for the evaluation of analytical microscopy datasets. *Journal of Microscopy*
602 **2014**, *00*, (0), 1-9.

603 46. Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J., Image processing with IMAGEJ.
604 *Biophotonics Int* **2004**, *11*, 36-42.

605 47. Stumm, W.; Lee, G. F., Oxygenation of Ferrous Iron. *Industrial and Engineering*
606 *Chemistry* **1961**, *53*, 143-146.

607 48. Croal, L. R.; Johnson, C. M.; Beard, B. L.; Newman, D. K., Iron isotope
608 fractionation by Fe(II)-oxidizing photoautotrophic bacteria. *Geochimica et*
609 *Cosmochimica Acta* **2004**, *68*, (6), 1227-1242.

610 49. Beard, B.; Johnson, C. M., Fe Isotope Variations in the Modern and Ancient
611 Earth and Other Planetary Bodies. *Reviews in Mineralogy and Geochemistry* **2004**,
612 *55*, 319-357.

613 50. Hao, L.; Guo, Y.; Byrne, J. M.; Zeitvogel, F.; Schmid, G.; Ingino, P.; Li, J.; Neu, T.
614 R.; Swanner, E. D.; Kappler, A.; Obst, M., Binding of heavy metal ions in aggregates of
615 microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and
616 glycoconjugates-specific fluorophores. *Geochimica et Cosmochimica Acta* **2016**, *180*,
617 66-96.

618 51. Bramhachari, P. V.; Dubey, S. K., Isolation and characterization of
619 exopolysaccharide produced by *Vibrio harveyi* strain VB23. *Letters in Applied*
620 *Microbiology* **2006**, *43*, (5), 571-577.

621 52. Jones, A. M.; Collins, R. N.; Rose, J.; Waite, T. D., The effect of silica and natural
622 organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III)
623 minerals. *Geochimica et Cosmochimica Acta* **2009**, *73*, (15), 4409-4422.

624 53. Crosby, H. A.; Johnson, C. M.; Roden, E. E.; Beard, B. L., Coupled Fe(II)-Fe(III)
625 Electron and Atom Exchange as a Mechanism for Fe Isotope Fractionation during
626 Dissimilatory Iron Oxide Reduction. *Environmental Science & Technology* **2005**, *39*,
627 (17), 6698-6704.

628 54. Crosby, H. A.; Roden, E. E.; Johnson, C. M.; Beard, B. L., The mechanisms of
629 iron isotope fractionation produced during dissimilatory Fe (III) reduction by
630 *Shewanella putrefaciens* and *Geobacter sulfurreducens*. *Geobiology* **2007**, *5*, 169-189.

631 55. Friedich, A. J.; Beard, B. L.; Reddy, T. R.; Scherer, M. M.; Johnson, C. M., Iron
632 isotope fractionation between aqueous Fe(II) and goethite revisited: New insights
633 based on a multi-direction approach to equilibrium and isotopic exchange rate
634 modification. *Geochimica et Cosmochimica Acta* **2014**, *139*, 383-398.

635 56. Mikutta, C.; Wiederhold, J. G.; Cirpka, O. A.; Hofstetter, T. B.; Bourdon, B.; Von
636 Gunten, U., Iron isotope fractionation and atom exchange during sorption of ferrous
637 iron to mineral surfaces. *Geochimica et Cosmochimica Acta* **2009**, *73*, 1795-1812.

638 57. Welch, S. A.; Beard, B. L.; Johnson, C. M.; Braterman, P. S., Kinetic and
639 equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). *Geochimica*
640 *et Cosmochimica Acta* **2003**, *67*, (22), 4231-4250.

641 58. Planavsky, N.; Rouxel, O. J.; Bekker, A.; Hofmann, A.; Little, C. T. S.; Lyons, T.
642 W., Iron isotope composition of some Archean and Proterozoic iron formations.
643 *Geochimica et Cosmochimica Acta* **2012**, *80*, (0), 158-169.

644 59. Johnson, C. M.; Beard, B. L.; Klein, C.; Beukes, N. J.; Roden, E. E., Iron isotopes
645 constrain biologic and abiologic processes in banded iron formation genesis.
646 *Geochimica et Cosmochimica Acta* **2008**, 72, (1), 151-169.

647 60. Rouxel, O. J.; Bekker, A.; Edwards, K. J., Iron Isotope Constraints on the
648 Archean and Paleoproterozoic Ocean Redox State. *Science* **2005**, 307, (5712), 1088-
649 1091.

650 61. Wu, L.; Brucker, R. P.; Beard, B. L.; Roden, E. E.; Johnson, C. M., Iron isotope
651 characteristics of hot springs at Chocolate Pots, Yellowstone National Park.
652 *Astrobiology* **2013**, 13, (11), 1091-1101.

653

654 **Figure Captions:**

655

656 **Figure 1.** a. Sample 1 and b. sample 2 are biological replicates of the Fe(II) oxidation
657 experiment with *Synechococcus* PCC 7002. Green circles are $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ data, orange
658 squares are $\delta^{56}\text{Fe}_{\text{ppt}}$ data, and blue diamonds are $\delta^{56}\text{Fe}_{\text{NaAc}}$ data. The solid green
659 lines are the Rayleigh fits of the $\delta^{56}\text{Fe}(\text{II})_{\text{aq}}$ data, with an $\varepsilon^{56}\text{Fe}$ for $\text{Fe}(\text{II})_{\text{aq}}$ of 1.79 ‰
660 (panel a) to 2.15 ‰ (panel b). The solid orange lines are the Rayleigh fits of the
661 $\delta^{56}\text{Fe}_{\text{ppt}}$ data, with $\varepsilon^{56}\text{Fe}$ for $\delta^{56}\text{Fe}_{\text{ppt}}$ of 2.44 ‰ (panel a) and 2.98 ‰ (panel b). The
662 linear fits are shown as dotted lines for reference.

663

664 **Figure 2.** a. X-ray diffraction (XRD) pattern obtained from X-ray total scattering
665 data of the Fe_{ppt} phase after complete Fe(II) oxidation, freeze-drying, and water
666 washing. The indexed reflections for lepidocrocite (Lp) and goethite (Gt) are shown.
667 b. A 3-component linear combination fit of 58% ferrihydrite, 22% goethite, and 20%
668 lepidocrocite (**Supplementary Table 4**).

669

670 **Figure 3.** CLSM images of *Synechococcus* PCC 7002 cultured anoxically with 4.5 mM
671 Fe(II). a. Autofluorescent cells, b. stained with the lectin-binding dye SBA-488, c. the
672 reflection signal from Fe(III) minerals, and d. an overlay of a, b, and c. Correlation
673 plot of the fluorescence intensity in individual pixels from e. autofluorescence (a) vs.
674 SBA-488 (b), and f. SBA-488 (b) vs. Fe(III) minerals (c). This analysis demonstrates
675 that EPS, which is bound by SBA-488, is coating Fe(III) minerals, but is not spatially
676 associated with cells.

677

678 **Figure 4.** The controls on the overall iron isotope fractionation in the system are 1)
679 Fe(II) oxidation and precipitation of Fe(III) as Fe_{ppt} ; 2) sorption of Fe(III) to cells;
680 and 3) equilibrium atom and electron exchange after sorption of $\text{Fe}(\text{II})_{\text{aq}}$ to Fe_{ppt} . 1
681 generates Fe_{ppt} (dashed orange line) that is 2-3 ‰ heavier than $\text{Fe}(\text{II})_{\text{aq}}$ (solid green
682 line). 2 produces sorbed Fe(III) on cells with an estimated equilibrium $\Delta^{56}\text{Fe}_{\text{FeNaAc-}}$
683 $\text{Fe}(\text{II})_{\text{aq}}$ of 1.84 ‰²³. 3 produces Fe(II) sorbed on goethite with an estimated
684 $\Delta^{56}\text{Fe}_{\text{FeNaAc-Fe}(\text{II})_{\text{aq}}}$ of 0.8 ‰⁵⁴. The resulting $\delta^{56}\text{Fe}_{\text{NaAc}}$ predicted from 2 and 3 are
685 denoted by the light blue diamonds.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Table 1. Iron isotope data from experiments with *Synechococcus* PCC 7002. Each sample was measured twice.

Replicate	Sample	Fraction of Fe(II) oxidized	$\delta^{56}\text{Fe}_{\text{aq}} (\text{\textperthousand})$	2SE	$\delta^{56}\text{Fe}_{\text{ppt}} (\text{\textperthousand})$	2SE	$\delta^{56}\text{Fe}_{\text{NaAc}} (\text{\textperthousand})$	2SE
Sample 1	A1	0.00	0.13	0.05	ND		ND	
	B1	0.42	-0.34	0.03	ND		0.10	0.08
	D1	0.36	-0.97	0.04	2.16	0.04	ND	
	E1	0.43	-1.22	0.04	1.96	0.03	-0.36	0.04
	F1	0.49	-1.49	0.04	1.87	0.04	-0.65	0.04
	G1	0.57	-1.75	0.05	1.74	0.03	ND	
	H1	0.60	-2.05	0.04	1.55	0.03	-0.42	0.05
	I1	0.72	-2.53	0.05	1.25	0.03	-0.73	0.04
	J1	0.81	-3.25	0.05	0.97	0.04	-0.59	0.04
	K1	0.99	ND		0.10	0.04	ND	
<i>Rayleigh fit</i>		ϵ	2.15		2.44		NA	
		ΣX^2	0.66		0.06			
<i>Linear fit</i>		ϵ	2.90		3.42		NA	
		ΣX^2	0.85		0.38			
Sample 2	A2	0	-0.08	0.04	ND		ND	
	B2	0.47	-0.57	0.05	ND		*-11.11	0.06
	D2	0.41	-1.08	0.04	2.07	0.04	-0.33	0.06
	E2	0.48	*-8.75	0.07	1.97	0.03	-0.31	0.04
	G2	0.57	-1.59	0.04	1.83	0.04	-0.18	0.04
	H2	0.56	-1.75	0.05	1.75	0.04	-0.09	0.04
	I2	0.65	-1.96	0.04	1.59	0.03	-0.57	0.04
	J2	0.63	-2.04	0.04	1.58	0.04	ND	
	K2	0.99	ND		0.07	0.03	ND	
<i>Rayleigh fit</i>		ϵ	1.79		2.98		NA	
		ΣX^2	0.47		0.36			
<i>Linear fit</i>		ϵ	2.66		4.17		NA	
		ΣX^2	0.84		1.23			

ND = not determined, due to a low amount of sample. NA = not applicable. *Samples from B2 and E2 had anomalous values for $\delta^{56}\text{Fe}_{\text{NaAc}}$ and $\delta^{56}\text{Fe}_{\text{aq}}$, respectively. These samples were most likely lost after drying down due to electrostatic charging of the Teflon beakers. These results are therefore excluded from further analysis.

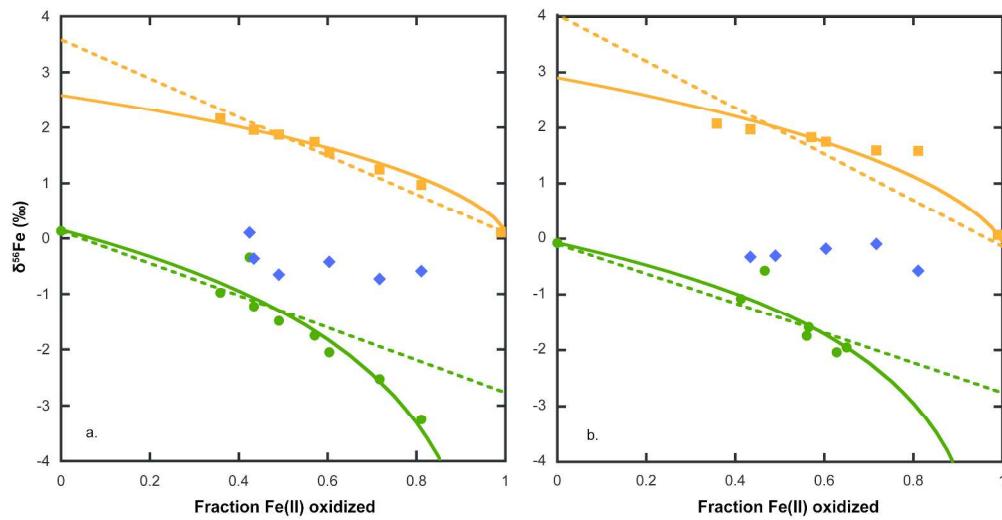


Figure 1. a. Sample 1 and b. sample 2 are biological replicates of the Fe(II) oxidation experiment with *Synechococcus* PCC 7002. Green circles are $\delta^{56}\text{Fe(II)aq}$ data, orange squares are $\delta^{56}\text{Fepept}$ data, and blue diamonds are $\delta^{56}\text{FeNaAc}$ data. The solid green lines are the Rayleigh fits of the $\delta^{56}\text{Fe(II)aq}$ data, with an $\varepsilon^{56}\text{Fe}$ for Fe(II)aq of 1.79 ‰ (panel a) to 2.15 ‰ (panel b). The solid orange lines are the Rayleigh fits of the $\delta^{56}\text{Fepept}$ data, with $\varepsilon^{56}\text{Fe}$ for $\delta^{56}\text{Fepept}$ of 2.44 ‰ (panel a) and 2.98 ‰ (panel b). The linear fits are shown as dotted lines for reference.

275x140mm (300 x 300 DPI)

Figure 2.

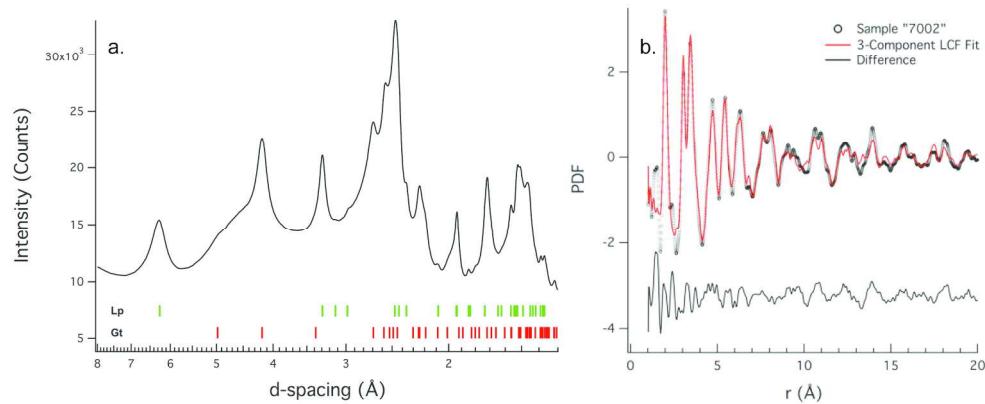


Figure 2. a. X-ray diffraction (XRD) pattern obtained from X-ray total scattering data of the Feptt phase after complete Fe(II) oxidation, freeze-drying, and water washing. The indexed reflections for lepidocrocite (Lp) and goethite (Gt) are shown. b. A 3-component linear combination fit of 58% ferrihydrite, 22% goethite, and 20% lepidocrocite (Supplementary Table 4).

205x89mm (300 x 300 DPI)

Figure 3.

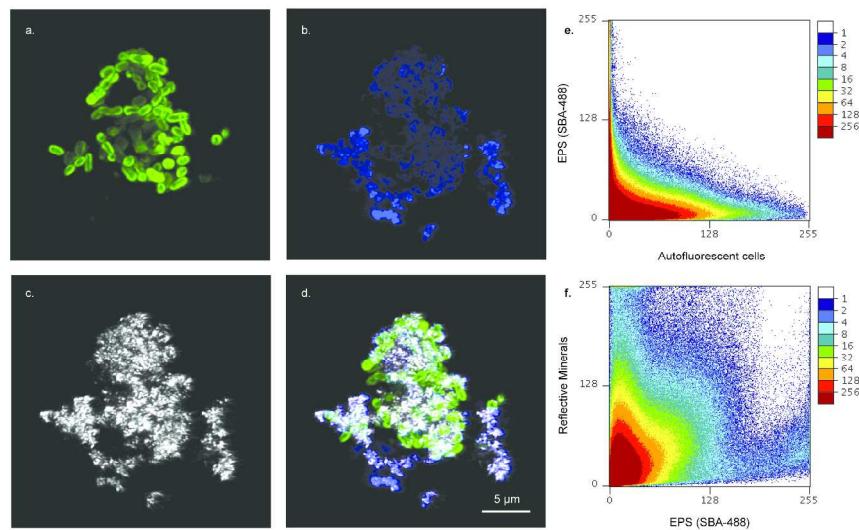


Figure 3. CLSM images of *Synechococcus* PCC 7002 cultured anoxically with 4.5 mM Fe(II). a. Auto-fluorescent cells, b. stained with the lectin-binding dye SBA-488, c. the reflection signal from Fe(III) minerals, and d. an overlay of a, b, and c. Correlation plot of the fluorescence intensity in individual pixels from e. auto-fluorescence (a) vs. SBA-488 (b), and f. SBA-488 (b) vs. Fe(III) minerals (c). This analysis demonstrates that EPS, which is bound by SBA-488, is coating Fe(III) minerals, but is not spatially associated with cells.

329x203mm (300 x 300 DPI)

Figure 4.

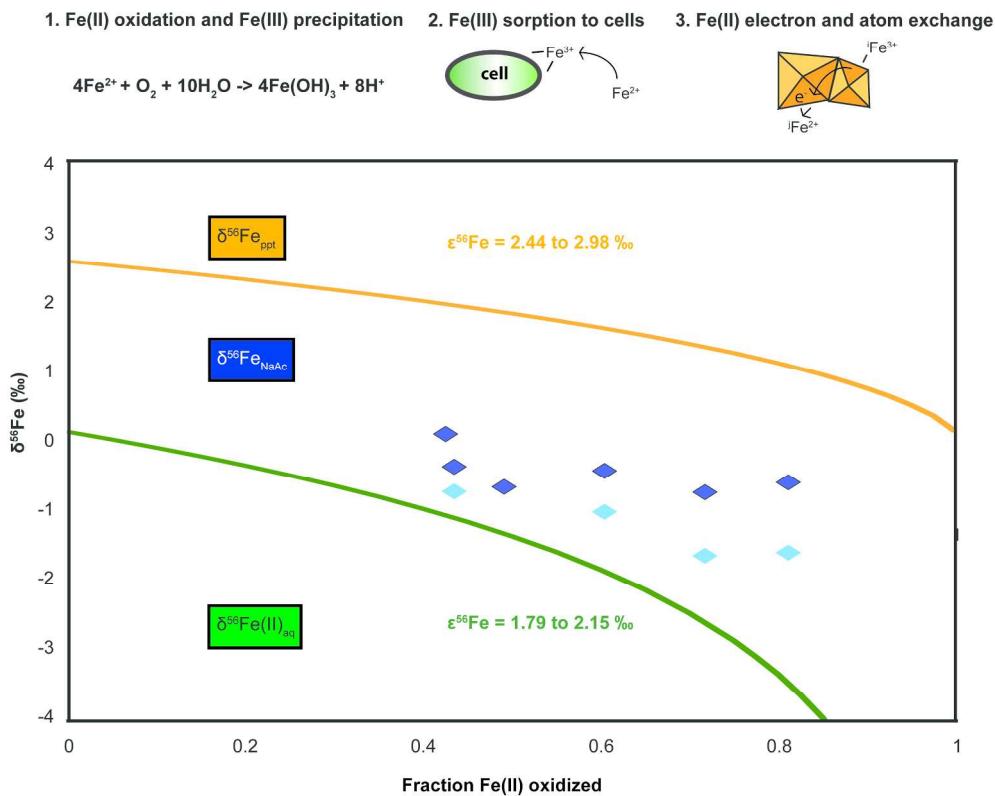
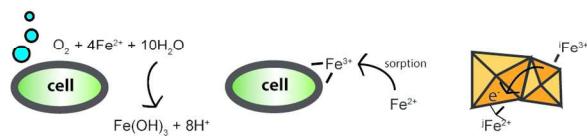



Figure 4. The controls on the overall iron isotope fractionation in the system are 1) Fe(II) oxidation and precipitation of Fe(III) as Fe_{pppt}; 2) sorption of Fe(III) to cells; and 3) equilibrium atom and electron exchange after sorption of Fe(II)_{aq} to Fe_{pppt}. 1 generates Fe_{pppt} (dashed orange line) that is 2-3 ‰ heavier than Fe(II)_{aq} (solid green line). 2 produces sorbed Fe(III) on cells with an estimated equilibrium $\Delta^{56}\text{FeFeNaAc-Fe(II)}_{\text{aq}}$ of 1.84 ‰²³. 3 produces Fe(II) sorbed on goethite with an estimated $\Delta^{56}\text{FeFeNaAc-Fe(II)}_{\text{aq}}$ of 0.8 ‰⁵⁴. The resulting $\delta^{56}\text{FeNaAc}$ predicted from 2 and 3 are denoted by the light blue diamonds.

230x197mm (300 x 300 DPI)

TOC Art

TOC art

141x128mm (300 x 300 DPI)