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Motivation: 3D imaging for a 3D world ) et

Widely available 2D imaging or
point-wise measurement
techniques are often insufficient
to resolve 3D flow phenomena

= Repetition needed to capture
spatial statistics

air
flow

X (mm)

“ mﬁigh-speed video of néztno drop
in an air-stream digital holographic measurement
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field
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Motivation: Single-shot particle statistics ()&

Laboratories

Multi-phase particle flows are often transient and highly 3D

m 140.000

B _s50.000

Shinjo and Umemura, 2010,

Int. J. Multiphase Flow high-speed video of a burning propellant

impact of a water drop on a thin-film.
Guildenbecher et al, 2013, Exp. Fluids.

Digital Holography is one

Yet our diagnostics are mostly limited to 1D or 2D

o\

phase Doppler

laser diffraction

potential solution

» Large 3D measurement
volumes - 1000s of particles
from single-shot experiments

 High-speed recording for
transient dynamics

* Direct imaging of non-
spherical particles
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Outline for talk

Introduction to holography and

the “digital revolution”

Particle measurements

Recent advancements

July 29, 2016
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What is holography? m o)

boratories

% (\Wé%

holographic viewer
plate

/E
— e
—

/E/‘

Optical method first proposed by Gabor in 1948
1. Coherent light diffracted by particle field forms the object wave, E_
2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?
3. Reconstruction with E, forms virtual images at original particle locations
h-E=(|E |?>+ |E|?)E + |E,|?E, + E’E
| ~ D v
DC term virtual real
image image
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Analog holography ) e,

Laboratories

Applications of holography
took off with invention of the
laser in 1960

Challenges:

=  Darkroom needed to
process the hologram

= Limited temporal resolution

= Manual post processing

Collier et al, 1971, Optical Holography

Thompson et al, 1967, Appl. Opt.
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Digital in-line holography (DIH) ) i

Laboratories

__________ P ‘
: ' ® o o PY -
Laser : _|_ @ - ° <
‘%.0
J o
spatial filter  collimating optics particle field CCD

Holographic plate and wet-chemical processing replaced with digital sensor
= First proposed by Schnars and Juptner in ‘90s

= Advantages: (1) no darkroom, (2) temporal resolution is straight forward,
(3) results can be numerically refocused and post-processed

= Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much
less than resolution of photographic emulsions (order 5,000 line
pairs/mm)

= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (8= 0) is typically utilized

-
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Numerical refocusing ) e

Laboratories

Light propagation in a non-absorbing, constant index of refraction medium is
described by the diffraction integral equation:

Flry,2) = [[E(En,2=01

" E(£1,0) = complex amplitude at hologram plane = h(&,n)-E,”

—dédy  where: r = JE=XxP +(n-y) +2°

= FE(x,y,z) = refocused complex amplitude at optical depth z

&% 54

digital holograms of the breakup of an ethanol drop g
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.) A / 5 e
reconstrumoirdmbmmgrﬂmowglj’gyl) depth z
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DIH in the literature | ) i
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Microscopy

o
Phase (Deg.)

Marquet et al 2005, Opt. Lett.

Particle Image Velocimetry s

atz and Sheng 2010, Annu. Rev. Fluid Mech.
Multiphase Flows

y /7

Sheng et al 2009, J. Fluid Mech. Yao et al 2015, Appl Opt. LA
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Particle measurements



Data processing ) i,

Laboratories

Acquisition and refocusing of a digital i 16O°Q Gt ‘
hologram is relatively '
straightforward.

However...

For quantitative measurements,
methods are required to locate and
measure particles.

Challenge: depth-of-focus problem

The spatial extent of the diffraction pattern limits the angular aperture, Q,
from which a particle is effectively reconstructed (Meng et al, 2004, Meas. Sci. Technol.)

=  From the central diffraction lobe > Q= 24/d

= Using the traditional definition of depth-of-focus, o, based on change of
intensity within the particle center 2> 5= 41/C3?

= Therefore: for in-line holography, 6= d?/4
= Example: d =300 um, A =532 nm = 6= 170 mm!

July 29, 2016 Daniel R. Guildenbecher 11




Data processing ) i,
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Literature contains two basic methods to find the focal plane:

1. Fit a model to the observed diffraction patterns (inverse method)
= Generally accurate with small depth uncertainty
= Limited to objects with known diffraction patterns (spheres)
2. Reconstruct the amplitude (or intensity) throughout depth and apply a
focus metric to find “in-focus” objects
=  No a-priori knowledge of particle shape required

= Accuracy is a strong function of the chosen focus metric
Hybrid method:

= Focus metric is a combination of E '
amplitude minimization and edge =
sharpness maximization . _
= Details in Guildenbecher et al 2013, . -
Appl. Opt.; Gao et al 2013, Opt. g
Express; Gao et al 2014, Appl. Opt.

Gao et al 2014, Appl. Opt.
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Experimental validation ) e
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___________________________________________

1 spatial filter and 15 beam expansion 27d beam expansion

! Lo |
[ I Py
Coherent Verdi J— J— E {I J— l\ : ! ! € .o.
" [ I 5] N
© T TP T U et T
1 I
hwp pbs : ! E : i U
1 f= 1 = -
1 =100 mm [imhole =750 mmj ThorLabs BE1SM-A ! “«~—>
! d=50 mm o i . y
: [ I particle field CcCh
""""""""""""" Potmmmmmmm e on z-stage

= Quasi-stationary particle field
= Polystyrene beads (d =~ 465um) in 10,000 cSt silicone oil
= Settling velocity = 0.8 um/s
= Multiple holograms recorded, displacing the particle
field 2 mm in the z-direction between each acquisition

particle field

' 205

200
195

object z [mm)]

2 mm 2 mm ® 185

I I

180

hologram Detected objects colored by z-position
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Experimental validation )
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40

120
—— holography
-~ | 4 | Mastersizer
S 30 -
g 80
Q +~
2201 :
) o
g 40
S 10
> | ,\Ifﬂ
T T e Toboo T e
diameter (pm) 4200 Azz(mmé)L 6 8 10

Diameter measured from area of the Displacement found by particle

detected 2D morphology matching between successive

= Actual mass median holograms
diameter =465 um = Actual displacement = 2.0 mm
= Measured mass median = Mean detected displacement =
diameter =474 um 1.91 mm +/- 0.81 mm
= Error of 2.0% with respect to = Standard deviation of 1.74 times
actual value mean diameter
July 29, 2016
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Aerodynamic drop fragmentation ) i

Laboratories

. . . Dispensing —
Experimental configuration: Double- Tip ? Iz
. . Lenses CCD camera
pulsed laser and imaging hardware as Spatial
typically used in PIV

= A4=532nm, 5 ns pulsewidth

= |Interline transfer CCD Optical configuration (Gao, Guildenbecher et al 2013, Opt. Lett.)
(4008 X 2672, 9 um pixel pitch) -
Trajectory

= Temporal separation, At = 62 ps,

9
determined by laser timing

Note: without a separate reference
wave, coherence length requirements
in DIH are greatly relaxed.

=  Expensive injection seeders are
not always needed

= Faster lasers (ps or fs) can be used
with some advantages (e.g.

N iCOIaS et al 2007’ Opt EXprESS) digital holograms ofthe breakup of an ethanol drop in an
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)
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Aerodynamic drop fragmentation

Secondary drop sizes/positions extracted

by the hybrid method

Probability Density (um™)
o
o

Comparison with phase Doppler
anemometer (PDA) data confirms
accuracy of measured sizes

---------------
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T S N e A

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

150 200 250 300
Diameter (um)

100

Ring measured from z-location of
maximum image gradient
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Total volume of ring + secondary drops =

is within 2.2% of the initial volume
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Aerodynamic drop fragmentation ) i
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. . . .. StereoDIH
Velocimetry suffers from uncertainty in Gl e

the out-of-plane (z) position

= A stereo-view configuration is one
solution

1 Q
QY

o5 mm

i

z

240
Camera 1
—_—
BS 10 m/s
f 4 ’
220} Py
APRE d [um]
r/": /—,// ;{//:;ﬁ' 800
Camera 2 ’.,z:,’,r-' ’“%;—ﬁzf 700
2001 vy afj,,}é = 600
- _ B ‘-’;:g‘;_;z — -rf_’%‘:__
Air Nozzle of T ZE = s
Double-pulsed E B P 500
Laser = SR ;‘kma%\m% 200
L ARNTET. A
180} - SRS 300
;- A \ A -
Advantages: Challenges: ' SN 200
* |mproved z-uncertainty " Increased experimental | R 100
. . . . . 3 e \
* Eliminates false particle size complexity 160 oy \\ ' 0
H . . . B i
and position measurements = Careful calibration required
20 40 60 80
x [mm]
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Aerodynamic drop fragmentation ) e
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Ensemble averaging of 44 realizations at each condition
= Roughly 10,000 individual drops measured per condition

95 100 105 |
. — 3ms (c)t=31.4ms (d)t=43.6 ms
! >
= o — 0.01
z 081 \
a
5 ] 0.003
£ 061 - : o Y o
= | v
_‘é’ M 1000 0 00 1000 0 500 1000
& 544 L [wm] diameter, d [um] diameter, d [um]
0.
g 154 15 1
g —
0.2 1 10
0 5 omglggwo%%g Y2
' ' 0
500 di ltOOOd 1500 2000 500 1000 0 500 1000
jameter. d lum] diameter, J [um] diameter, J [um]

DIH is particularly advantageous for rapid quantification of particle statistics
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Recent advancements



High-speed (kHz) DIH ) e

1'10:,'1'65va
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3 m/s—*

Regression based Multi-frame Tracking (RMT) allows for 3D-3C temporal
measurements (Guildenbecher et al., 2016, Appl. Opt.)
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Breakup of a water jet in a shock-tube )
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Diaphragm Driven Sections

Section

f=1.15 ms

laminar water jet

5 mm

| July 29, 2016 Daniel R. Guildenbecher 21
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Observed breakup morphologies ()

!‘ ' ] : ;

Breakup morphologies similar to those observed for isolated drops




Well characterized boundary conditions ) i
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40

Pulse-burst PIV
provides detailed
characterization of
u (m/s) the empty shock
220 tube at 50 kHz

180 = Wagner et al.
AIAA-2016-0791.

35

E
£ 20 '
S—
> ’:E./_“_— e i \",\-ZE\‘-- i RN s - \’I‘."\-'\—‘ '“-: P4 N 150 kPa
| e [ R— P =220kPa | |-
15 60 !
P4 =360 kPa

convective velocity [m/s]

2.5
time [ms]

Stream wise velocity at the center of the shock-tube
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Sandi
DIH recorded at 100,000 fps () s
recorded hologram at 7= 1.16 ms
shock-tube
sl.lock‘propagation
direction l mm
initially laminar N
water jet
refocused to z= 80 mm
6x magnification
camera and lens
2x magnification
camera and lens
] mm
[
Daniel R. Guildenbecher 24
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Temporally resolved, 3D particle field () b

Data processing similar to drop impact experiment

recorded hologram at ¢ = 1.29 ms

(V8]
o]
<o

[ mm

[\
<
<

diameter d [pm]

45 m/s —»

1 mm
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Multiple downstream fields of view i i,
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=-0.02 ms

I mm

0.04 3500 3
0.035
3000 25 .

)

§‘~ 0.03 L, 2500 E 5
= 0025 9 g
B S 2000 £
5 S 3

S 0.02 o S 15
z ool g 1500 z
= 0.015 o

§ = 1000 E !
2 0.01 g
(o9 =

0.

0.005 500 :

0 0 0

0 100 200 300 400 0 10 20 30 40 50 60 0 10 20 30 40 50 60
diameter [pum] downstream position [mm] downstream position [mm]
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Characteristic mean diameters

= Measured drops with
relative We>11 are We <111
expected to be unstable
and will break apart further

= Excluding drops with We>11 We>11}f
eliminates the unusual dip

Sandia
m National
Laboratories

deformation fragmentation

)

lo | a

200 -
El
2 150 -
2 /
: /./
% S % A g ___________________ é
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gﬁ
b

[ | —O— DlO
el D30
-] - o----- D3 2

0 10 20 30 40 50

downstream position [mm]
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Aluminum drop combustion in propellants ()&
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Motivation: rocket failures can
lead to propellant fires

= Sandia Laboratories is
interested in predicting the
response of objects in this
environment

http://www.cbsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/

Aluminum agglomeration at the surface
yields large reacting drops with high
damage potential

= Prediction requires knowledge of
particle size, velocity, and temperature

high-speed video of a burning propellant

July 29, 2016 Daniel R. Guildenbecher




Aluminum drop combustion in propellants ()&
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= -
double- ! ' : s
pulsed laser | : i !
° 1}
_______ / &\. ¥
spatial  collimating camera focal- camera and lens
filter optics plane
propellant

strand

propellant in the text fixture

Propellant: solid-rocket propellant pressed into a pencil size strand

= Combusts from the top surface down, ejecting molten aluminum particles
traveling a few m/s

Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision at 15Hz

Lens: Infinity K2 long distance microscope with CF-4 objective

= ~ 6X magnification
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Aluminum drop combustion in propellants (@) &
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X

ake contalnlng nm

k / *smed AI 03 partlcles
115

._’.

{' A/.“"f‘,‘lzos cap )
S A,

: <—,forﬂ’1at|o
zone "
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Aluminum drop combustion in propellants ()=
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Algorithms automatically measure unique features of burning aluminum

| July 29, 2016 Daniel R. Guildenbecher 31




Aluminum drop combustion in propellants ()&
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Three strand burns = 5594 images
and 17496 measured drops

N

Toz25°C

~

= Main peak due to agglomerated
particulates

\S]

volume pdf (1/um)

0 100 200 300 400 500
= Peak at 50 um due to non-

- Al diameter (um)
agglomerated particulate 107
. . e ey = 6 :
Experiments repeated at higher initial g B T~ 100 °C
temperature (faster burn rate) < 4
o
= Main peak is reduced due to £ 2] Hﬂ
decreased residence time for =0 - - - :
. 0 100 200 300 400 500
agglomeration Al diameter (um)
= Peak at 50 um remains "y x10° |
. . . . e ey T =~ 140 °C
Trend is consistent at still higher initial =, 0
G
temperatures = )
L o
: =
= Main peak reduced further 2,
S : . . :
[ ] Peak at 50 “m remains 0 100 200 300 400 500
Al diameter (um)
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particles ejected from the surface of a burning propellant
captured with 3D hologra(i)%' = 0.00 mdt
i

@ ﬁg{ligir?al
Laboratories
Recorded at
20,000 fps

Camera: Photron SA-
Z

Laser: Coherent
Verdi V6

43,684 frames 2>
= 15,991 drops

= mass flux =
0.24 mg/s-mm?

From burn rate and
known composition,
expected mass flux is

>
p—
oI

N

S
=
~
—_
G
o]
(aF
=
=
o
>

mass flux pdf [1/um]

(e
(e

()

200 300 200 300
diameter [um] diameter [um]
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Particle temperature measurements =) i,
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We also need to quantify heat transfer

= Combination of DIH and two-color pyrometery =
particle size + velocity + temperature

Raw Hologram Refocused Hologram

pyrometer front
focal plane

100 200 300 400
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Particle temperature measurements =) i,
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2600
Assuming graybody emission,

calibrated ratio imaging gives an
estimate of particle temperatures

2500

12400 T
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|
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. 12300 ©
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L 5
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0.02} 2100
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Gas-phase temperatures with CARS | s,
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S. Kearney is measuring gas-phase temperatures using fs/ps CARS

iy Data — — Theory Residual
o e e L P B 1 LN B S e e e e R B S
s Tk ()
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04f z=2mm 0.4
z Py
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$ 2} (c
— 4
% 1 I T B BT 1 0
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£ osl 02’N2=0-3%(.) 0.6 e
£ 04f Z=15mm : 04 1
O 02¢ 02
0k 0F
02% 02t (d
Ok . . M | A e v . 104t Y Y N Y
100 150 200 1250 300 100 150 200 q 250 300
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4000 L L B L L LB R BL LI B 250 L e T T T T T e T e T e T e T T T
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X : ] 200 L ]
© 3000 E - LTS 3 r Mean =2164 K 1
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© A A ] S r N
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Kearney and Guildenbecher, 2016, Appl. Opt.
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Optical challenges in DIH )
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Coherent imaging is susceptible to:

= |mage distortion through index
of refraction gradients

” ,‘f

z='0.0 mm
4 i -
! Desired: optical corrections to remove
' these noise sources before recording
i
‘
2 mm
I !

Reconstructed amplitude throughout depth, z Holography configuration for shotgun investigations
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Alternative 3D measurements ) e,

J laboratories

Plenoptic cameras use micro-lens arrays and white light to create a 3D image

diameter d [pum]
150 200 250 300 350 400




Alternative 3D measurements ()

Laboratories

Plenoptic imaging of a shotgun

| July 29, 2016 Daniel R. Guildenbecher 39



Conclusions i i,
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DIH has many advantages: ... and opportunities for research:
e 3D-3C measurement e Depth-of-focus problem

* Rapid quantification of statistics * Data processing
* Simple optical configuration * Optical improvements
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Where is the reference wave? i) s
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__________ P .
: ' ® o o PY -
Laser : @ - ° <
‘%.0
J o
spatial filter  collimating optics particle field CCD

Hologram is the combination of object and reference waves: h = |E_+E,|?
= Reconstruction with E, gives: h-E,= (|E,|*>+ |E,|?)E,+ |E,|%E, + E*E
. J

~ N NN

DC term virtual real
image image

= |n off-axis holography, these terms are spatially separated are we attempt to
reconstruct the original object wave, E,

= Inin-line holography, we actually want to reconstruct the combination of
the reference wave and object wave, E_+E,

= Rearranging: h-E,= |E_|%E, + |E,|%(E+E,) + E’E
A\ S

v v
DC term virtual real
image image
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Pulse-burst DIH i i,

|jm———————— I Laboratories
: igniter in boom box : Photron SAZ + K2 long-
vacuum spatial I I I distance microscope with
f=200 mm filter f=500 mm ! ,X. f 1 CF4 objective
I |
1 |

o—
o—y

50 pm diamond ND filter +
pinhole 532 bandpass
filter
periscope e - ! _____ 1

QuasiModo 1000
pulse-burst laser,
532 nm

%

boom-box and high-speed DIH imager

Spectral Energies pulse-burst laser
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Sandia

Pulse-burst DIH o

= Beam quality is sufficient for DIH
= Freezes high-speed particles and penetrates through flash and smoke

= Noise due to soot and index-of-refraction gradients



Phase-conjugate DIH theory ) i
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——————

e P p——p . —>
Pulsed laser i____J' / b -

< — —
particles with 25% random phase phase conjugate
disturbance at each particle plane mirror

traditional in-

line hologram firstfparticle z-position

Dramatic improvement
compared to
traditional in-line

optircrally restored numériéally re-fbéuéed to hol ogram
hologram first particle z-position

= Phase-conjugate mirror reflects the incoming wave with opposite phase

= Non-linear optical effect achieved through passive means (stimulated Brillouin
scattering) or active means (degenerate four-wave mixing)

= After double passing, the phase disturbance is canceled
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SBS phase-conjugate DIH ) e
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A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

| z | z |
Quanta-Ray Pro 350 " I I " I I
injection seeded, H H
Nd:YAG, 532 nm, H i
~10 ns pulse duration 0 < >
CCl, cell
v phase wire in-line =300 mm
conjugate hologram
image plane image plane
LaVision sCMOS + K2 long- LaVision sCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
July 29, 2016 Daniel R. Guildenbecher 46




SBS phase-conjugate DIH

Without a
disturbance
both views give
similar results

in-line hologram

@ Sandia

National
Laboratories
phase-conjugateshelogram

e Ay e
A _

e

Py G N

R SOV W S 2
o SO

PP ’
4
e

refocused t0.z = 197
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SBS phase-conjugate DIH ) e

Laboratories

A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

= A misaligned lens in the beam path causes a phase disturbance

Quanta-Ray Pro 350

i i —>
injection seeded, i 1 i i
Nd:YAG, 532 nm, H i

~10 ns pulse duration
—> CCl4 cell
phase wire in-line =300 mm
conjugate hologram
image plane image plane
phase d1sturbance
(f=2000 mm)
LaVision sCMOS + K2 long- LaVision sCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
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° Sandia
SBS phase-conjugate DIH () i
Phase N N
conjugation NN NN
corrects image R AR
distortion

in-lie hologram [phase-conjugate hiblogram

% %
NN

\\[refocused to z =HISEAmm
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Ballistic DIH i i,

Laboratories

Multiple scattering can be reduced through
ps time gating

= Combination with DIH might enable
scatter free 3D imaging through optically

dense media ballistic image of a diesel spray
(Linne et al 2006, Exp. Fluids)

= First proposed by: Trolinger et al 2011,
International Journal of Spray and
Combustion Dynamics

gate transmission

-1 0 1 2
delay [ps]
measured gate transmission

CS, cell

\

Ti:Sapphire, £=250mm s

800 nm, 100 fs

imaging plane

crossed polarizers
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Ballistic DIH i) s

Laboratories

DIH imaging through a Kerr gate (no scatter sources)

z=33.0 mm

DIH image of a needle recorded with the ballistic configuration (1.6 ps switch delay)

Next step: Explore ballistic DIH through dense scattering sources

= Challenge: Can we retain sufficient image fidelity and coherence to resolve
3D phenomena?
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